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Introduction
[bookmark: _Hlk100306366]In RAN#94e, the new study item on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface was approved [1]. This is the first AI/ML study for 3GPP RAN1, and it explores the 3GPP framework for adopting AI/ML in the air interface. The study needs to investigate AI/ML model characterization, various levels of collaboration between UE and network, data sets for training/validation/testing/inference, life cycle management, etc. The investigation should also consider aspects such as performance, robustness, complexity, and potential specification impact.
One of the use cases identified for the pilot study is positioning accuracy enhancements:
	RP-213599 (SID):
Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels




In Appendix A, RAN1#109e agreements for the positioning use case are provided for reference. 
In this contribution, we discuss the issues for establishing the framework for evaluating the potential enhancements achievable by AI/ML based positioning and provide some initial evaluation results.
ML model reporting 

In the first RAN1 meeting for the AI PHY SI, it was agreed that the main KPI to report is the horizontal positioning accuracy. In addition to reporting positioning accuracy, we propose that AI/ML model and related procedure should also be shared by the participating companies. As discussed in our companion paper [7], one of the objectives of the study item is to build understanding around complexity and performance gains of AI/ML PHY enhancements. To enable this, it is important to ensure a high level of trust in reported experimental results. Hence, we propose in [7] that along with evaluation results, the participating company should provide sufficient details about the experiment (e.g., data generation, feature extraction, AI/ML model design, training, validation, and testing) so that the main conclusions can be reproduced.

Specifically, the following details would typically need to be reported:
· A high-level, academic paper style and/or pseudocode, description of the AI/ML model architecture (e.g., CNN structure). Sufficient details should be provided so that others can re-construct the AI/ML model. 
· Simulation parameters used to generate synthetic datasets for training, validation, and testing. Sufficient detail should be provided to enable others to reproduce and align the most important characteristics of the dataset(s). Important differences between training, validation, and testing datasets should be highlighted. 
· Description of data preprocessing / feature extraction steps which are applied in generating the input to the ML model. 
· Loss functions with detailed description. For example, regularization terms in the loss function.  
· Description of the type of generalizability that is targeted should be included. How the training, validation, and testing procedure supports the claimed generalizability should be explained. It is encouraged to also report on pseudorandom number generation assumptions used for deployment, large scale fading, spatial correlation, and spatial consistency. 
Optionally, companies can share useful hyperparameters including, for example, the learning rate, learning rate decay, mini-batch size, optimizer details (e.g., ADAM), and any training techniques (such as dropout regularization). The latter may, for example, be important when studying AI/ML model generalizability. 
Key Performance Indicators

In RAN1#109e, it was agreed that for all scenarios and use cases, the main KPI is the CDF percentiles of horizonal accuracy. It was also agreed that the KPI include the model complexity and computational complexity. Computational complexity can for example be reported via the metric of floating point operations (FLOPs) when performing model inference. 
One remaining issue is the details of model complexity. For the CSI use case, it is agreed that model complexity is reported as AI/ML model size and number of AI/ML parameters. For positioning use case, the same reporting should be used to reflect the memory storage requirement, i.e., companies are expected to report the AI/ML model size and the number of AI/ML parameters that are necessary for ML inference. The AI/ML model size include: number of layers, type of layers (dense, convolutional, etc). The total number of AI/ML parameters refer to the total number parameters that are trained and then used for model inference.

[bookmark: _Toc111221766]For evaluation of AI/ML based positioning, model complexity is reported via the AI/ML model size and number of AI/ML parameters. The model size includes the total number of layers, and the type of each layer. The number of AI/ML parameters include the total number of parameters used in model inference.

Another important KPI is model generalization. It is difficult to define a quantifiable metric to measure model generalization. It is up to each company to describe the following to reflect the model generalization capability:
· Model training stage: If/how the model training took into account the model generalization capability. For example, if the training dataset include data in one deployment scenario only, or multiple different deployment scenarios.
· Model testing stage: If/how a trained model is tested with consideration of model generalization. For example, a model obtained with training dataset of one deployment scenario is tested with dataset corresponding to another deployment scenario. Companies are expected to report the differences between the two deployment scenarios (e.g., change of clutter parameters), and the impact to the positioning accuracy.

[bookmark: _Toc111221767]For model generalization KPI, companies are expected to report the model generalization aspect in model training, model testing, and its impact to positioning accuracy.

Evaluation results and discussion
In this section, we present initial evaluation results for a few cases. The intention of all evaluated use cases is to improve network-based positioning using ML models for the InF-DH deployment scenario. 
[bookmark: _Ref111145012]AI/ML assisted positioning using LoS classification and time of arrival estimation
In this section, AI/ML assisted positioning is evaluated.
Specifically, we investigate the performance of deploying an identical AI/ML model to all 18 TRPs in the InF-DH deployment scenario. The TRPs use the AI/ML model to estimate the following quantities from UL SRS:
· Classification of whether the link is a LoS or NLoS link.
· Estimated time of arrival (ToA) of the signal from the UE to the TRP.
We assume all TRPs listen to the SRS transmitted from the UE with a configuration of  and  over the 100 MHz BWP. Each TRP is equipped with a (M, N, P, Mg, Ng) = (1, 1, 2, 1, 1) antenna. Our study indicates that for the small hall and the layout of 18 TRPs, this smaller gNB antenna array than that agreed ((M, N, P, Mg, Ng) = (4, 4, 2, 1, 1)) is adequate for producing position estimation. The smaller antenna array at TRP also reduces the size of input to ML model to 1/16, hence allowing a much lower complexity for the ML solution (including model training, inference, monitoring, and update).
The received signals are correlated with the SRS sequence to obtain estimates of the frequency domain channel responses. The collated frequency responses are converted to the time domain channel impulses and truncated after the first 256 samples. The input to each AI/ML model for a UE is hence a 256x2 complex array.
Each TRP processes the received CIR samples independently and forwards the AI/ML model outputs (LoS/NLoS classification and ToA estimate) to a centralized positioning node (e.g., the LMF), see Figure 1.
The LoS/NLoS classifications and ToA estimates collected at the centralized node are used to determine the UE position. In this section, we assume legacy positioning algorithms are retained at the centralized node such that we can isolate and investigate the gains of TRP AI/ML models alone.

[image: ]
[bookmark: _Ref110505552]Figure 1 AI/ML assisted positioning where UL CIR based LoS classification and TOA estimation using AI/ML is deployed to all TRPs. During deployment, each TRP uses a same ML model and process the received CIR samples independently and forward its outputs to the centralized node for estimating the position of the target UE.

For the FR1 scenario of carrier frequency 3.5 GHz, the two environment clutter settings of the InF-DH deployment scenario have very different LoS probabilities as listed in Table 1. To investigate the LoS classification performance meaningfully, we need a test environment with both LoS and NLoS link realizations. Hence, in this section, we consider the clutter parameters of {40%, 2m, 2m} for the InF-DH deployment scenario.
[bookmark: _Ref110581322]Table 1 LoS probabilities of different InF-DH environment settings.
	Environment clutter setting
	LoS Probability

	{40%, 2m, 2m}
	0.449

	{60%, 6m, 2m}
	0.008



Note that, other than the parameters explicitly described above, for all other simulation assumptions, the evaluation follows the agreed assumptions for FR1, and use the baseline assumptions wherever applicable (e.g., UE antenna height=1.5m, gNB antenna height=8m).  Furthermore, the evaluation does not consider the impact from UE/gNB implementation imperfections (i.e., assume: zero network synchronization error; zero UE/gNB RX and TX timing error; no clock drift).

We generated two datasets for this experiment.
· Dataset 1, which consists of two parts:
· A first part with 108,000 link CIRs between randomly selected UE positions and randomly selected TRPs, which are used for training and validation with a train/validate split ratio of 9/1.
· A second part with 4,000 randomly selected UE positions and the corresponding CIRs to all 18 TRPs, resulting in a total of 72,000 link CIRs for the test dataset. This part is never used for training/validation and is used only for final test evaluation.
· Dataset 2:
· 4,000 randomly selected UE positions and the corresponding CIRs to all 18 TRPs, resulting in a total of 72,000 link CIRs for the test dataset. This dataset is never used for training/validation and is used only for final test evaluation.
· This second dataset is generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first dataset. Thus Dataset 2 can be understood as a test dataset with different UE locations and different clutter layout (while keeping the same clutter parameters (density, height, size)) than those of the training dataset (Dataset 1). The purpose of this second dataset is to evaluate the generalizability of the ML models.
In Figure 2 (a) and Figure 2 (c), we compare the excess delays of NLoS links to BS#0 (with 2D coordinate [-50, -20] with respect to the center of InF hall) in the first and the second datasets, respectively. Similarly, in Figure 2 (b) and Figure 2 (d), we compare the excess delays of NLoS links to BS#10 (with 2D coordinate [10, 0] with respect to the center of InF hall) in the first and the second datasets, respectively. It can be observed that the two test datasets contain very different propagation and spatial conditions. Here the small hall (L=120m x W=60m) is assumed, and the center of the hall is assigned coordinate [0, 0].

[image: ][image: ]
(a) to BS#0 in the 1st dataset					(b) to BS#10 in the 1st dataset
[image: ][image: ]
(c) to BS#0 in the 2nd dataset					(d) to BS#10 in the 2nd dataset
[bookmark: _Ref110513736]Figure 2 Excess delays to BS#0 or BS#10 in the first test dataset or the second test dataset (‘jet’ color map is shown: darker blue points have smaller excess delays than lighter yellow/red points).

For this initial investigation, we deploy a simple ML model to all the TRPs. The first three layers are complex 1D convolutions (“complex conv1D”) with 4, 8 and 16 channels and kernel size of 3. Each complex conv1D layer is followed by a cReLU activation function [8] 

and a layer that performs maxpool1D of kernel size 2 and stride size 2 on the real and imag parts separately. After these convolutional layers, the channels are flattened and fed into three fully connected layers of output size of 64, 32 and 1, respectively. The first fully connected layer is followed by a ceLU activation function

The second fully connected layer is followed by a cReLU activation function. The last fully connected layer is followed by a ReLU on the imag part only:

The model has 33,429 complex parameters and takes 343,227 FLOPs to perform model inference. As usual, the number of parameters is dominated by the fully connected layers and the computational complexity is dominated by the convolutional layers.
The real part of the single output from the network is used as the logit for LoS classification and the imag part is used as the ToA estimate. The ML model is trained with a loss function that weights between the binary cross entropy of classification and the mean squared error (MSE) of the LoS link ToA estimates:

where 
·  is a batch of  ground truth LoS labels.
· t is a batch of ground truth ToA values.
·  is the complex network outputs for the batch.
·  computes the binary cross entropy between the label and the logit.
·  is a tunable weight on the relative contributions of the binary cross-entropy and the MSE of the LoS links.
Network parameters are updated by the Adam algorithm with default parameters and a learning rate schedule that gradually reduces from 1E-4 to 1E-5 over 300 training epochs.

[image: ]
Figure 3 Architecture of the ML model used for AI/ML assisted positioning.

Overall, the main features of the ML method are summarized in Table 2 below.
Table 2 Key features of the ML method for LoS classification and time of arrival estimation.
	ML model input
	Time domain CIR, obtained from SRS
256x2 complex array

	ML model output
	(1). LoS/NLoS classification
(2). ToA estimate 

	Model complexity: 

	Model size
	6 layers: 3 Conv1D layers, 3 Dense layers

	
	Number of parameters in the ML model
	33,429 complex parameters

	Computation complexity for model inference: number of FLOPs
	343,227 FLOPs

	Number of ML models obtained from training
	One.
The same ML model is deployed at each TRP

	Number of ML models deployed for inference
	18
One ML model per TRP

	Function for position estimation of the target UE
	Legacy method: UTDOA




Performance of conventional positioning solutions
Since the links in the dataset have a LoS probability of 0.45, a dummy LoS classifier can achieve an accuracy of 0.55. Both existing non-ML methods and ML methods can generate much more accurate LoS classification than the dummy. Examining the CDF of the received powers for the LoS and NLoS links, one can devise a baseline LoS classification solution by comparing the received power to a threshold. Using such a baseline classification algorithm, a LoS classification accuracy of 70% can be achieved. Applying conventional signal processing algorithm, the LoS classification accuracy can be improved to 80%. 
The positioning error distribution of the conventional solution is shown in Figure 4. It can be observed that the positioning errors of 50% UEs are no more than 0.13 m. However, the conventional solution sometimes delivers positions that may be very off. For instance, at 90%tile, the positioning error is 9.27 m. The UE positioning errors for other agreed reporting percentiles are listed in Table 3. The results in Figure 4 and Table 3 are the baseline performance for the evaluation, which are generated by using legacy methods to produce input (LoS classification and ToA) for UL-TDOA.
[image: ]
[bookmark: _Ref110846542]Figure 4 Baseline results for comparison. Positioning error distributions using conventional non-ML solutions


[bookmark: _Ref110847737]Table 3 Baseline results for comparison. UE positioning errors obtained using conventional non-ML solutions to produce input (LoS classification and ToA) for UL-TDOA.
	CDF Percentile (%)
	UE horizontal position error [m]

	50
	0.13

	67
	1.83

	80
	4.82

	90
	9.27



LoS classification and ToA estimation performance of the AI/ML solution
For the LoS classification output, the simple AI/ML model achieves 95.2% accuracy on the first test dataset. The false positive (i.e., incorrectly classify a NLoS link as LoS) and false negative (i.e., incorrectly classify a LoS link as NLoS) probabilities are 3.9% and 5.8% respectively. 
These probabilities seem rather good, but it should be noted that they are on a per link basis. The LoS classification and ToA estimates are to be fed into a conventional positioning algorithm (UL-TDOA in this evaluation), which will then take the reported LoS links to perform conventional triangularization error minimization. Hence, the probability of having false positives in any of the 18 LoS/ToA reports to the centralized node can play a far more determining role on the positioning accuracy of the UE. At the default LoS logit decision boundary, it turns out the probability of having false positives in any of the 18 LoS/ToA reports for a UE is at 32.5%. 
One can bias the LoS logit decision boundary to reduce false positive probabilities. With such biasing, one can reduce the probability of having false positives in any of the 18 LoS/ToA reports for a UE to 2.4%. At this revised decision boundary, the LoS accuracy is reduced to 90.1% but false positive probability is reduced to less than 0.3%.
For the LoS links, the ML model has a ToA RMSE of 0.40 m. Since the model is not trained to minimize NLoS ToA errors, the ToA RMSE for all links is at 10.60 m. The complete CDFs of the ML ToA estimate errors expressed in meters are shown in Figure 5. It can be observed that the 90%-tile distance errors is 0.41 m for the LoS links and 3.63 m for all links. The other agreed reporting percentiles are listed in Table 4.
Based on the evaluation results, we have the following observation.

[bookmark: _Toc111221758]A single simple ML model can be deployed to all TRPs to generate reliable LoS classification and ToA estimates in the InF-DH environment with {40%, 2m, 2m} clutter parameters.

[image: ]
[bookmark: _Ref110521416]Figure 5 ML model ToA estimation error (expressed in meters) distributions for the LoS and all links from the first test dataset.

[bookmark: _Ref110524683]Table 4 ToA estimation errors for the first test dataset at different percentiles.
	CDF Percentile (%)
	LoS ToA error [m]
	ToA error of all links [m]

	50
	0.12
	0.35

	67
	0.18
	0.88

	80
	0.26
	1.79

	90
	0.41
	3.63



Positioning performance of using AI/ML generated inputs with conventional UL-TDOA positioning solutions
The LoS classifications and ToA estimates generated by the independent TRPs are collected to a centralized node (e.g., LMF). The centralized node then retained only those reported as LoS links. The retained ToA estimates are then fed into a triangularization error minimizer to determine the UE position. 
Since the centralized node trusts the LoS reports from the TRPs completely, positioning performance can be compromised if there are false positives in these reports. However, depending on the loss functions adopted by the positioning error minimizer, the positioning computation accuracy can be affected by such false positives quite differently.

Positioning based on positioning error minimizer with L2 loss functions
As discussed in the previous section, at the default LoS logit decision boundary, the probability of having false positives in any of the 18 LoS/ToA reports for a UE is at 32.5%. When these reports are fed into the conventional positioning solution described in the above using L2 loss functions, the distribution of positioning error is shown in Figure 6. If can be observed that, while the 90%tile ToA estimation error of the LoS links is 0.41 m, the 90%tile UE position error has risen to 3.12 m. This confirms the significant impact of having false positive classification errors on the final positioning performance.
Such sensitivity to false positive LoS classification can be gleaned from the L2 loss function definition (i.e., sum of squared errors). Such loss functions force the positioning error minimizer to reduce the errors on all reported LoS samples. As a result, the minimizer tends to move the estimates toward the outliers excessively, which compromises the positioning accuracy negatively even when the ToA estimate quality is good.

[image: ]
[bookmark: _Ref110606797]Figure 6 First tentative positioning error distributions for using AI/ML outputs with conventional L2 error minimizing positioning solutions on the first test dataset.

As discussed in the last section, it is possible to bias the LoS logit decision boundary to reduce false positive probabilities. With such biasing, one can reduce the probability of having false positives in any of the 18 LoS/ToA reports for a UE to 2.4%. Using these LoS classification reports from the TRPs with the conventional positioning solution described in the above, the distribution of positioning error is shown in Figure 7. It can be observed that the 90%tile UE position error has been reduced to 0.48 m, which is at similar range as the 90%tile ToA estimation errors.

[bookmark: _Toc111221759]LoS classification false positives can cause significant degradation to conventional UL-TDOA positioning solutions using L2 loss functions minimization even with reliable ToA estimates. Performance can be improved by biasing the LoS logit decision boundary with domain knowledge. Alternatively, preferential weighting between the two classes of classification errors/entropy can be introduced into the training loss function.

[image: ]
[bookmark: _Ref110607477]Figure 7 Second tentative positioning error distributions for using AI/ML outputs with conventional L2 error minimizing positioning solutions on the first test dataset with biased LoS classification reports.

It is noted that the exiting IE LOS-NLOS-Indicator in LPP (see TS 37.3755 v17.1.0) provide the option to report soft value, i.e., the likelihood of a LOS propagation path. Thus this study points out that future studies can consider building a ML model that generates soft values (or both hard and soft values) for LoS indication, which provides more information to the positioning error minimizer and helps to improve positioning accuracy. 
LOS-NLOS-Indicator-r17 ::= SEQUENCE {
	indicator-r17			CHOICE {
			soft-r17				INTEGER (0..10),
			hard-r17				BOOLEAN
			},
	...
}
	LOS-NLOS-Indicator field descriptions

	indicator
This field provides information on the likelihood of a Line-of-Sight propagation path from the source to the receiver and has the following choices:
-	soft: This field specifies the likelihood of a LOS propagation path in the range between 0 and 1 with 0.1 steps resolution. Value '0' indicates NLOS and values '1' through '10' provide an estimate of the propability for a LOS propagation path between source and receiver.
Scale factor 0.1; range 0 to 1.
-	hard: This field specifies whether the propagation path between source and receiver is estimated to be LOS (true) or NLOS (false).




Positioning based on positioning error minimizer with L1 loss functions
Instead of biasing the LoS classification, a more robust L1 loss function (i.e., sum of absolute values of errors) can be used at the centralized node for positioning computation. In Figure 8, we provide the distribution of positioning errors when unbiased LoS classification reports are used by the centralized node. It can be observed that the positioning accuracy is greatly improved over that shown in Figure 6 with the same unbiased LoS classification reports. Moreover, the accuracy outperforms even that shown in Figure 7 with heavily biased LoS classification reports. That is, the L1 loss function allows the minimizer to ignore outliers and achieve greater positioning accuracy. The 90%tile UE position error is reduced to 0.37 m. The other agreed reporting percentiles are listed in Table 5.
As stated previously, the unbiased LoS classification reports have a false positive probability of 3.9%. It is, of course, possible to use biased LoS classification reports with such L1 loss functions. However, the improvement in positioning accuracy with such classification biasing is rather small given that the L1 loss minimization is robust to outliers and the false positive probability is quite low as well. We observed at most 2% reduction to the 90%tile positioning error with such LoS classification biasing.
As can be observed from Figure 8 and Table 5,  the ML assisted UE positioning method significantly outperforms the baseline (i.e., existing non-ML positioning method), especially for CDF>50%. Thus, ML assisted positioning method is valuable for substantially improving the UE positioning accuracy for the difficult cases where existing methods tend to fail.

[bookmark: _Toc111221760]Conventional UL-TDOA positioning solutions using L1 loss function minimization can achieve high positioning accuracy even in the presence of false positive LoS classification reports.

[bookmark: _Toc111221761]Reliable positioning performance can be achieved by deploying an identical simple AI/ML model to operate independently at different TRPs in the InF-DH environment with {40%, 2m, 2m} clutter parameters. Simple conventional UL-TDOA positioning solutions at the centralized node can be retained to process the reports generated by the TRPs.

[bookmark: _Toc111221762]AI/ML-assisted positioning can substantially improve the UE positioning accuracy for the difficult cases where existing methods tend to fail.
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[bookmark: _Ref110779942][bookmark: _Ref111057168]Figure 8 Final positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on the first test dataset.

[bookmark: _Ref110607563]Table 5 UE positioning errors for the first test dataset at different percentiles.
	CDF Percentile (%)
	ML based, UE horizontal position error [m]
	Baseline: Non-ML based, UE horizontal position error [m] (copied from Table 3)

	50
	0.14
	0.13

	67
	0.19
	1.83

	80
	0.25
	4.82

	90
	0.37
	9.27




Verification of model generalizability
To verify whether the AI/ML model generalizes to different propagation and spatial consistency conditions, the second test dataset with different 3GPP channel model seeds are tested against the ML model trained using the first dataset generated with different 3GPP channel model seeds. As described earlier, the second dataset mimics testing a ML model trained with one set of UE locations in one clutter environment, but deployed to a different set of UE locations in a different clutter environment.
For the LoS classification, we found the model achieves 95.3% accuracy on the second test dataset at the default LoS logit decision boundary. At the biased decision boundary, the accuracy on the second test dataset is 91.5% and the false positive probability is at 2.6%.
For the LoS links, the ML model has a ToA RMSE of 0.39 m. Considering all links, the ToA RMSE is 10.6 m. The complete CDFs of the ML ToA estimate errors expressed in meters are shown in Figure 9. It can be observed that the 90%-tile distance errors are around 0.38 m for the LoS links and to 3.68 m for all links. The other agreed reporting percentiles are listed in Table 6.

[image: ]
[bookmark: _Ref110523918]Figure 9 AI/ML model ToA estimation error (expressed into meters) distributions for the LoS and all links from the second test dataset.

[bookmark: _Ref110525097]Table 6 ToA estimation errors for the second test dataset at different percentiles.
	Percentile
	LoS ToA error [m]
	ToA error [m]

	50
	0.11
	0.36

	67
	0.17
	0.92

	80
	0.25
	1.86

	90
	0.38
	3.68



The positioning performance of using the LoS/ToA estimates generated from the second dataset is shown in Figure 10. It can be observed that the 90%tile UE position error is 0.36 m, which is at similar range as the 90%tile positioning error computed for the first test dataset. The other agreed reporting percentiles are listed in Table 7. 
Considering that the ML performance on Dataset 2 is almost the same as that of Dataset 1 (see Table 7), the trained ML model has robust generalization property. We speculate that this robustness come from the design goal of the ML model, i.e., ML prediction of LoS classification and ToA using CIR is not significantly affected by the change of deployment environment. Further testing of the model in other environments (e.g., different hall size or clutter parameter) can be carried out to verify.

[bookmark: _Toc111221763]A single simple AI/ML model deployed to all TRPs for LoS classification and ToA estimation can generalize to different InF-DH {40%, 2m, 2m} environment realizations. Reliable positioning performance is achieved irrespective of environment change.
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[bookmark: _Ref110780738]Figure 10 Final positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on the second test dataset.

[bookmark: _Ref110610527]Table 7 UE positioning errors for the second test dataset at different percentiles. Performance with the first test dataset is included for comparison
	CDF Percentile (%)
	Dataset 2, UE horizontal position error [m]
	Dataset 1, UE horizontal position error [m], copied from Table 5

	50
	0.14
	0.14

	67
	0.19
	0.19

	80
	0.25
	0.25

	90
	0.36
	0.37


Direct AI/ML positioning with fingerprinting 
In this section, direct AI/ML positioning is evaluated.
The evaluation results provide a positioning accuracy comparison between two methods:
(1). the baseline method (legacy UL-TDOA positioning algorithm based on geometric calculations) and 
(2). fingerprinting based machine learning method, i.e., a direct AI/ML positioning method. 
ML model input and output
In this evaluation, the ML model take as input the uplink time-of-arrival (ToA) report from each of the 18 TRPs deployed in the indoor factory hall. The model output is the estimated horizontal location of the target UE. This scheme is illustrated in Figure 11 below.

[image: ]
[bookmark: _Ref111220961]Figure 11 Direct AI/ML positioning where the ML takes UL ToA reports from all TRPs and output the location of the target UE directly

To have a fair comparison, a common input for both conventional and ML-based methods is assumed. Specifically, uplink time-of-arrival (ToA) measurements are obtained at network side and then used for positioning the UE. The ToA was estimated from SRS transmission and UL measurement. For a given UE, the set of ToAs are obtained from 18 transmission-reception-points (TRPs) according to the agreed BS layout in a small hall (L=120m x W=60m). The input of 18 ToA values are fed to the position estimator (conventional or ML based), where the ToA is represented as integer-values in time units of sampling duration (8.138ns)). 
Regarding simulation assumptions, they are the same as described at Subsection 4.1, except here the more challenging clutter setting is assumed: {60%, 6m, 2m}.

[bookmark: _Ref110337218]Data generation for ML training and performance verification
For ML training and testing, the dataset is generated using a system simulator with the agreed parameter settings. In one drop, 1000 UEs are generated simultaneously and randomly distributed in the entire hall. With 12 of such drops, measurement dataset of 12,000 data-points were generated for ML training and performance testing. Each datapoint is one set of measurement values for a UE, which is composed of 18 ToA values as measured by the 18 TRPs. Among them, 6000 data-points were used for ML training and validation, while the other 6000 data-points were used for performance evaluation for comparing the positioning performance between the two methods. 
The data-generation keeps the propagation seeds constant to maintain spatial consistency between the drops while applying randomization on UE positions and noise/interference from one drop to another drop. In other words, the full dataset is also equivalent to a single UE drop with 12,000 UEs generated simultaneously. 
Figure 12 illustrates spatial distribution of data-points generated for positioning performance evaluation, the central block of the figure indicated the positions of UEs simulated, where the upper and right bars indicated their statistical density in bins at x and y axis, respectively.   
It could be observed that the spatial distribution of the UEs in the data set nicely approximate equal distribution over the space, matching the expectation of the simulation setup.

[image: ]
[bookmark: _Ref110336121][bookmark: _Ref110336116]Figure 12 Spatial distribution of data-points generated for positioning performance evaluation

ML based fingerprinting
The ML neural-network employed for direct ML positioning is composed of 11 layers total, as illustrated in Figure 13. It contains four sequentially connected residual network layers, where each residual network layer is composed of 2 fully connected layers.  Furthermore, 3 fully connected layers are used outside of the residual network layers. There are 600 neurons at each layer. It is worth mentioning that further tuning of the neural network structure is possible in order to reduce the complexity and enhance the positioning accuracy. This could be carried out in future study or a realistic engineering project.
[image: ]
[bookmark: _Ref111218636]Figure 13 High-level structure of the ML model used for directly generating the UE position.

The neural network was trained using the supervised learning with stochastic gradient feedback. The loss function (or cost function) is mean-squared-errors.  It is assumed that the training data have been labeled with ground truth (i.e., exact horizonal location of the UE), so that the ground truth can be used in building the loss function.  The training used layer-normalization, dropout for regularization, and Adaptive Moment Estimation (Adam) optimizer.

Overall, the main features of the direct ML positioning method are summarized below.
Table  Key features of the direct ML positioning method
	ML model input
	18 ToA values for a target UE, where each value is an integer in time units of sampling duration (8.138ns). One ToA value is obtained from each TRP based on its SRS reception

	ML model output
	Horizontal position of the target UE

	Model complexity: 

	Model size
	11 Dense layers; 600 neuros per layer

	
	Number of parameters in the ML model
	around 3 million

	Number of ML models obtained from training
	One

	Number of ML models deployed for inference
	One




Performance results of legacy method (UL-TDOA) and ML based fingerprinting
In this subsection, performance results in terms of horizonal positioning accuracy are provided for both the legacy method and the ML based method.
[bookmark: _Hlk111064854]Figure 14 presents the performance comparison in terms of cumulative probability function (CDF) and percentiles at (50%, 67%, 80%, 90%, and 99%) for horizontal positioning errors for both conventional and ML methods, given the simulated ToA measurement data described at Subsection 4.2.1. It is observed the ML method outperforms the legacy method with a large performance improvement. 

[bookmark: _Toc111221764]With Direct AI/ML positioning, the ML method outperforms the legacy method with a large performance improvement. 


[image: ]

[bookmark: _Ref110337053]Figure 14 CDF and percentiles of horizontal positioning errors between legacy and ML methods
[bookmark: _Ref110604636][bookmark: _Ref111220114]
For easy comparison in percentiles, Table 9 is provided to show the performance achieved by the ML method, as compared to the conventional method (UL-TDOA).
Table 9 Percentiles of horizontal errors for ML vs conventional (UL-TDOA) positioning methods
[image: ]

In addition to statistical analysis above, to further observe the positioning accuracy distribution over the space, Figure 15 and Figure 16 are provided to visualize the horizontal errors over the space by legacy method and ML method, respectively. The colors of UE dots at the figures, with a reference to the colored bars, indicate the horizontal error magnitudes of positioning, at the given locations of the UEs.
It is observable that the errors are less evenly distributed over spaces with legacy method than that of ML method, visually. For UEs located relatively further away from TRPs (i.e., at the edges of the factory hall), the position estimation errors tend to have a higher value, while this does not seem to happen to the ML method, when comparing Figure 15 and Figure 16. 

[image: ]
[bookmark: _Ref110338136]Figure 15 Spatial distribution of positioning errors (horizontal in meters) with legacy method
[image: ]
[bookmark: _Ref110338138]Figure 16 Spatial distribution of positioning errors (horizontal in meters) with ML method

Investigation of the generalization capability of the ML method
To investigate the issue of model generalization capability, this subsection provides an example of training the ML network by dataset of one scene while performing ML inference at another scene, where different scenes have different clutter landscape though of the same clutter parameter (density=60%, height=6m, size=2m). Such landscape difference could rise due to different indoor factory sites or movement of clutter at the same indoor factory site.
Figure 17 illustrates the comparison results on performance with legacy method or ML method for different scenes, where the ML network was trained with dataset generated from scene1. Both ML1 and ML2 curves use the same ML network trained by dataset obtained at scene1. The difference is that ML1 curve is obtained by ML inference in scene1, while ML2 curve is for ML inference in scene2.
· The curves with a legend of Conventional1 or ML1 indicates positioning horizontal error CDF for legacy method or ML method (in color blue and orange, respectively), when the position estimation is for UEs at scene1. Thus for ML1 curve, the training dataset and the test dataset are both from the same scene. 
· The curves with a legend of Conventional2 or ML2 (in color green and red, respectively) shows the performances of horizontal position estimation error for UEs at scene2. Thus, for ML2 curve, the training dataset and test datasets are from different scenes. 
It is obvious from the curves that the legacy method (UL-TDOA here) is quite robust over different scenes (i.e., different clutter layout but with same clutter statistics). In contrast, the ML inference has substantial performance degradation if the training dataset is not obtained from exactly the same scene as the testing dataset, even though the two scenes share the same statistical attributes. 
This comparison demonstrates the necessity of examining the generalization capability of an ML network, so that it can achieve the desired accuracy when the environment landscape changes.  In other words, this investigation points out that ML based fingerprinting method needs to consider appropriate applicable scenarios or extending its generalization capability with adaptive-updating schemes.

[bookmark: _Toc111221765]Direst AI/ML positioning should carefully consider the model generalization issue before deploying the ML model.

[image: ]
[bookmark: _Ref110420181]Figure 17 An example performance (cumulative-density-function of horizontal positioning errors) of applying ML inference for another scene while keeping the clutter parameter the same


Conclusion
Based on the extensive evaluation and analysis, we made the following observations: 
Observation 1	A single simple ML model can be deployed to all TRPs to generate reliable LoS classification and ToA estimates in the InF-DH environment with {40%, 2m, 2m} clutter parameters.
Observation 2	LoS classification false positives can cause significant degradation to conventional UL-TDOA positioning solutions using L2 loss functions minimization even with reliable ToA estimates. Performance can be improved by biasing the LoS logit decision boundary with domain knowledge. Alternatively, preferential weighting between the two classes of classification errors/entropy can be introduced into the training loss function.
Observation 3	Conventional UL-TDOA positioning solutions using L1 loss function minimization can achieve high positioning accuracy even in the presence of false positive LoS classification reports.
Observation 4	Reliable positioning performance can be achieved by deploying an identical simple AI/ML model to operate independently at different TRPs in the InF-DH environment with {40%, 2m, 2m} clutter parameters. Simple conventional UL-TDOA positioning solutions at the centralized node can be retained to process the reports generated by the TRPs.
Observation 5	AI/ML-assisted positioning can substantially improve the UE positioning accuracy for the difficult cases where existing methods tend to fail.
Observation 6	A single simple AI/ML model deployed to all TRPs for LoS classification and ToA estimation can generalize to different InF-DH {40%, 2m, 2m} environment realizations. Reliable positioning performance is achieved irrespective of environment change.
Observation 7	With Direct AI/ML positioning, the ML method outperforms the legacy method with a large performance improvement.
Observation 8	Direst AI/ML positioning should carefully consider the model generalization issue before deploying the ML model.


Based on the discussion in the previous sections we propose the following:
Proposal 1	For evaluation of AI/ML based positioning, model complexity is reported via the AI/ML model size and number of AI/ML parameters. The model size includes the total number of layers, and the type of each layer. The number of AI/ML parameters include the total number of parameters used in model inference.
Proposal 2	For model generalization KPI, companies are expected to report the model generalization aspect in model training, model testing, and its impact to positioning accuracy.
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[bookmark: _Ref109630790]Appendix A. Selected Agreements from RAN1#109e

In RAN1#109e meeting for the AI PHY SI, the following agreements were made for AI 9.2.4.1 (Evaluation on AI/ML for positioning accuracy enhancement) [6]
	Agreement
The IIoT indoor factory (InF) scenario is a prioritized scenario for evaluation of AI/ML based positioning. 

Agreement
For evaluation of AI/ML based positioning, at least the InF-DH sub-scenario is prioritized in the InF deployment scenario for FR1 and FR2.

Agreement
For InF-DH channel, the prioritized clutter parameters {density, height, size} are:
· {60%, 6m, 2m};
· {40%, 2m, 2m}. 
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.

Agreement
For evaluation of AI/ML based positioning, reuse the common scenario parameters defined in Table 6-1 of TR 38.857.

Agreement
For evaluation of InF-DH scenario, the parameters are modified from TR 38.857 Table 6.1-1 as shown in the table below.
· The parameters in the table are applicable to InF-DH at least. If another InF sub-scenario is prioritized in addition to InF-DH, some parameters in the table below may be updated.

Agreement
For AI/ML-based positioning evaluation, the baseline performance to compare against is that of existing Rel-16/Rel-17 positioning methods.
· As a starting point, each participating company report the specific existing positioning method (e.g., DL-TDOA, Multi-RTT) used as comparison.

Agreement
For all scenarios and use cases, the main KPI is the CDF percentiles of horizonal accuracy.
· Companies can optionally report vertical accuracy.

Agreement
The CDF percentiles to analyse are: {50%, 67%, 80%, 90%}.
· 90% is the baseline. {50%, 67% 80%} are optional.

Agreement
Target positioning requirements for horizonal accuracy and vertical accuracy are not defined for AI/ML-based positioning evaluation.

Agreement
For evaluation of AI/ML based positioning, the KPI include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity

Agreement
Synthetic dataset generated according to the statistical channel models in TR38.901 is used for model training, validation, and testing.

Agreement
The dataset is generated by a system level simulator based on 3GPP simulation methodology.

Agreement
As a starting point, the training, validation and testing dataset are from the same large-scale and small-scale propagation parameters setting. Subsequent evaluation can study the performance when the training dataset and testing dataset are from different settings.

Agreement
For AI/ML-based positioning evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.

Agreement
The entry “UE horizontal drop procedure” in the simulation parameter table for InF is updated to the following.
	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.


 
Agreement
The entries “UE antenna height” and “gNB antenna height” in the simulation parameter table for InF is updated to the following.
	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2= for scenario 2 (InF-DH) 

	…
	…

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,), 8}.


 
Agreement
If spatial consistency is enabled for the evaluation, companies model at least one of: large scale parameters, small scale parameters and absolute time of arrival, where
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901
 
Agreement
If spatial consistency is enabled for the evaluation of AI/ML based positioning, the baseline evaluation does not incorporate spatially consistent UT/BS mobility modelling (Section 7.6.3.2 of TR 38.901).
-         It is optional to implement spatially consistent UT/BS mobility modelling (Section 7.6.3.2 of TR 38.901).
 
Agreement
For evaluation of AI/ML based positioning, companies are encouraged to evaluate the model generalization.
· FFS: the metrics for evaluating the model generalization (e.g., model performance based on agreed KPIs under different settings)

Agreement
Companies are encouraged to provide evaluation results for:
· Direct AI/ML positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· AI/ML assisted positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· details of the output of the AI/ML model inference, how the AI/ML model output is used to obtain the UE’s location

Agreement
When reporting evaluation results with direct AI/ML positioning and/or AI/ML assisted positioning, proponent company is expected to describe if a one-sided model or a two-sided model is used.
· If one-sided model (i.e., UE-side model or network-side model), the proponent company report which side the model inference is performed (e.g. UE, network), and any details specific to the side that performs the AI/ML model inference.
· If two-sided model, the proponent company report which side (e.g., UE, network) performs the first part of interference, and which side (e.g., network, UE) performs the remaining part of the inference.
 
Agreement
For evaluation of AI/ML based positioning, the computational complexity can be reported via the metric of floating point operations (FLOPs).
· Note: For AI/ML assisted methods, computational complexity for the AI/ML model is only one component of the overall complexity for estimating the UE’s location.
· Note: Other metrics to measure the computational complexity are not precluded.
 
Agreement
For evaluation of AI/ML based positioning, details of the training dataset generation are to be reported by proponent company. The report may include (in addition to other selected settings, if applicable):
· The size of training dataset, for example, the total number of UEs in the evaluation area for generating training dataset;
· The distribution of UE location for generating the training dataset may be one of the following:
· Option 1: grid distribution, i.e., one training data is collected at the center of one small square grid, where, for example, the width of the square grid can be 0.25/0.5/1.0 m.
· Option 2: uniform distribution, i.e., the UE location is randomly and uniformly distributed in the evaluation area. 





The following agreements were made for AI 9.2.4.2 (Other aspects on AI/ML for positioning accuracy enhancement) [6].
	Agreement
Study further on sub use cases and potential specification impact of AI/ML for positioning accuracy enhancement considering various identified collaboration levels.
· Companies are encouraged to identify positioning specific aspects on collaboration levels if any in agenda 9.2.4.2.
· Note1: terminology, notation and common framework of Network-UE collaboration levels are to be discussed in agenda 9.2.1 and expected to be applicable to AI/ML for positioning accuracy enhancement. 
· Note2: not every collaboration level may be applicable to an AI/ML approach for a sub use case

Agreement
For further study, at least the following aspects of AI/ML for positioning accuracy enhancement are considered.
· Direct AI/ML positioning: the output of AI/ML model inference is UE location
· E.g., fingerprinting based on channel observation as the input of AI/ML model 
· FFS the details of channel observation as the input of AI/ML model, e.g. CIR, RSRP and/or other types of channel observation
· FFS: applicable scenario(s) and AI/ML model generalization aspect(s)
· AI/ML assisted positioning: the output of AI/ML model inference is new measurement and/or enhancement of existing measurement
· E.g., LOS/NLOS identification, timing and/or angle of measurement, likelihood of measurement
· FFS the details of input and output for corresponding AI/ML model(s)
· FFS: applicable scenario(s) and AI/ML model generalization aspect(s)
· Companies are encouraged to clarify all details/aspects of their proposed AI/ML approaches/sub use case(s) of AI/ML for positioning accuracy enhancement 

Agreement
Companies are encouraged to study and provide inputs on potential specification impact at least for the following aspects of AI/ML approaches for sub use cases of AI/ML for positioning accuracy enhancement.
· AI/ML model training
· training data type/size
· training data source determination (e.g., UE/PRU/TRP)
· assistance signalling and procedure for training data collection
· AI/ML model indication/configuration
· assistance signalling and procedure (e.g., for model configuration, model activation/deactivation, model recovery/termination, model selection)
· AI/ML model monitoring and update
· assistance signalling and procedure (e.g., for model performance monitoring, model update/tuning)
· AI/ML model inference input
· report/feedback of model input for inference (e.g., UE feedback as input for network side model inference)
· model input acquisition and pre-processing
· type/definition of model input
· AI/ML model inference output
· report/feedback of model inference output
· post-processing of model inference output
· UE capability for AI/ML model(s) (e.g., for model training, model inference and model monitoring)
· Other aspects are not precluded
· Note: not all aspects may apply to an AI/ML approach in a sub use case
· Note2: the definitions of common AI/ML model terminologies are to be discussed in agenda 9.2.1
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