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[bookmark: _Hlk102058846]Introduction
In RAN#94-e [1], the study item for AI/ML has been approved for NR Air Interface. In this contribution, we discuss evaluation methodology, KPI and target scenarios for AI/ML beam management and provide preliminary evaluation results for AI/ML aided beam prediction.      
Discussions
Evaluation methodology
For AI/ML, need of specification enhancements should be well justified with appropriate baseline and KPIs with proper target scenarios. In addition, complex specification enhancements should be avoided unless benefits are justified. In this section, we provide our views on evaluation methodologies including baseline, KPIs and Target scenarios for AI/ML aided beam management.
Baseline 
To correctly evaluate benefits from AI/ML algorithms for beam management, a correct baseline should be established. In RAN1#109-e [5], the following agreements have been made for baseline performance:
	Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.
Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.  



As shown in the above, the agreements were only focusing on relationship between beam selection and beam measurement and there was no discussion on levels of inter-node coordination and information exchange. In our view, discussing levels of inter-node coordination and information exchange is the most important aspect for evaluation as different levels of coordination and information exchange generally provide different levels of performance benefits. In RAN#93-e [2] and RAN#94-e [3], the following levels of inter-node coordination and information exchange were provided during the discussion.
	0a) No collaboration framework: AI/ML algorithms purely implementation based and not requiring air-interface changes.

0b) No collaboration framework with modified Air-Interface catering to efficient implementation-based AI/ML algorithms.

1) Inter-node assistance to improve the respective nodes’ AI/ML algorithms. This would apply to UEs getting assistance from gNBs (for training, adaptation, etc.) and vice-versa. This level does not require model exchange between network nodes. 

2) Joint ML operation between UEs and gNBs. This level requires AI/ML model instruction or exchange between network nodes.



It should be noted that legacy beam management with Rel-17 without AI/ML algorithms is not an appropriate baseline as implementation-based AI/ML operation is available for UE and gNB implementations. On the other hand, implementation based AI/ML algorithm (level 0a)) could be an appropriate baseline to accurately evaluate the benefits of AI/ML with specification enhancements as implementation based AI/ML algorithm shows actual achievable performance without specification enhancements. 
Observation 1: Legacy beam management with Rel-17 without AI/ML algorithms is not an appropriate baseline as implementation-based AI/ML operation is available for UE and gNB implementations.
Proposal 1: ‘No collaboration framework: AI/ML algorithms purely implementation based and not requiring air-interface changes’ could be an appropriate baseline to accurately evaluate the benefits of AI/ML with specification enhancements.
KPIs
In RAN1#109-e [5], the following agreement has been made on possible KPI options: 
	Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”

· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 

· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 

· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.


o   Other KPIs are not precluded and can be reported by companies, for example:
§  Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
§  Latency reduction:
§  (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
·       where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
·       where M is the total number of beams
§  Power consumption reduction: FFS on details



For KPIs, the following aspects should be considered to accurately evaluate benefits for AI/ML beam aided management.
· System performance related KPIs 
· Although beam prediction accuracy related KPIs (e.g., Avg. L1-RSRP difference) provide brief information on beam selection, beam prediction accuracy related KPIs do not provide overall insight on actual benefits considering the following aspects:
· Impact on system performance
· Obviously, a best beam with X% better L1-RSRP does not imply that system performance is enhanced with X%. The performance benefit could be smaller or larger based on channel characteristics of the selected beam. Having said that, specification enhancements should be justified based on actual system performance benefits such as throughputs not based on beam related KPIs such as L1-RSRP difference.
· Overhead for RS transmission and UE reporting
· One of the main benefits for spatial domain prediction is reducing RS overheads to support exhaustive searching for all beams. In addition, AI/ML based beam prediction can reduce required UE reporting overheads by predicting an optimized beam not deciding an optimized beam based on UE reporting. As beam prediction related KPIs only show L1-RSRP difference or beam selection probability, there’s no way to reflect the reduced overhead for RS transmission and UE reporting via spatial domain prediction.
· UE throughput considering RS overhead reduction 
· For system performance related KPIs, Avg. and 5% UE throughput should be used for evaluation. Other KPIs such as RS overhead reduction does not provide actual insight. For example, Y% RS overhead reduction does not mean Y% performance gain and actual performance can be worse if the gain from RS overhead reduction is smaller than the performance loss from beam selection.
· Beam information related KPIs
· As discussed, beam information related KPI is not a measure to evaluate actual performance benefits from AI/ML based beam prediction, however, beam information related KPI can be used as a temporal measure to have an insight as beam information related KPI requires less computational overhead for evaluation.
· Average L1-RSRP difference of Top-1 predicted beam
· Difference between estimated L1-RSRP and actual L1-RSRP could be a good option to identify potential benefits of AI/ML aided beam prediction. 
· Beam prediction accuracy (%) with margin for Top-1 beam
· Comparison of optimal beam selection accuracy of a baseline and an enhanced feature is a simple and effective method to identify potential benefits of AI/ML aided beam management. However, 1 dB margin may be too limited and other values should be considered as well.  
· Other KPIs
· Other KPIs such as reporting overhead reduction, latency reduction and power consumption. In our view, reporting overhead and latency aspects should be considered in evaluation of system performance not as independent KPIs. In addition, system performance and beam prediction accuracy related KPIs should be prioritized than other possible KPIs. 

Observation 2: Beam information related KPI is not a measure to evaluate actual performance benefits from AI/ML based beam prediction, however, beam information related KPI can be used as a temporal measure to have an insight as beam information related KPI requires less computational overhead for evaluation.
Observation 3: Specification enhancements should be justified based on actual system performance benefits such as throughputs not based on beam related KPIs such as L1-RSRP difference.
Proposal 2: Support system performance related KPIs as mandatory KPIs.
· Support Avg. and 5% UE tput for system performance KPIs.
Proposal 3: Support beam information related KPIs as optional for temporal measures.
· Support average L1-RSRP difference of Top-1 predicted beam.
· Support beam prediction accuracy (%) with multiple candidate margins (including 1 dB and other possible values) for Top-1 beam.
Proposal 4: Reporting overhead and latency aspects should be considered in evaluation of system performance not as independent KPIs.
Proposal 5: Prioritize system performance related KPIs and beam information related KPIs than other KPIs.

Evaluation assumptions
This section provides our views on evaluation assumptions based on the agreed evaluation assumptions in RAN1#109-e [5].
· UE distribution
· To evaluate the performance benefits, considering various cases are crucial. Evaluating smaller number of UEs (e.g., 1) would be easier for evaluation, however, it does not accurately reflect various cases. In our view, 10 UEs can be a mandatory value and 20 UEs can be used as optional. 
· For spatial domain beam prediction, two options were discussed for UE distribution. The first option was to support 80% indoor UEs and 20% outdoor UEs as defined in TR38.901 and the second option was to support 100% outdoor UEs. For time domain prediction, evaluation 100% outdoor UEs could be a reasonable option as baseline UE mobility assumption is 30km/h, however, applying 100% outdoor UEs for 3km/h is not a reasonable evaluation assumption. 
· Traffic model
· For beam information related KPIs, no traffic model is needed to be defined as UE is measuring reference signals not decoding actual PDSCHs.
· For system performance related KPIs, FTP traffic should be used to reflect practical traffics for the evaluation. 

Proposal 6: For UE distribution, support the following evaluation assumptions:
· 10 UEs per cell as a mandatory value and 20 UEs per cell as an optional value.
· 80% outdoor UEs and 20% indoor UEs for spatial domain beam prediction as defined in TR 38.901 (Option 1).
Proposal 7: For traffic model, support the following evaluation assumptions:
· For beam information related KPIs, no traffic model is needed to be defined as UE is only measuring reference signals not decoding actual PDSCHs.
· For system performance related KPIs, FTP traffic should be used to reflect practical traffics for the evaluation. 
Evaluation results
In this section, we provide evaluation results of beam prediction based on partial RSRP measurements. Out of 115 beams per sector,50%/66% of the RSRP measurements are missing. The missing RSRP measurements are to be estimated using the available 50%/33% of received RSRP values. Table 1 shows Root Mean Square Error (RMSE) for estimated RSRP values when compared to the actual values. 
Table 1: Root Mean Square Error (RMSE) between AIML-estimated RSRPs and actual RSRPs
	Scenario
	50% Missing
	66% Missing

	100 % Outdoor UEs
	0.4273 dB
	0.7425 dB

	80% Indoor UEs
	0.2888 dB
	0.5543 dB



As the % of missing RSRP measurement increases, RSRP estimation is evaluated by using a smaller number of input RSRP values which results in a higher estimation error.
In addition, Figures 1 and 2 provide accuracy of AIML-based, optimal beam selection, and baseline (beam selection based on available beams only without RSRP estimation) for two deployment scenarios (i.e., 100% Outdoor UEs, 80% Indoor UEs) with the following definition:
· Optimal: An optimal beam with a highest RSRP value based on actual RSRP values of the whole 115 beams.
· AIML-based: A beam with a highest RSRP value based on estimated RSRP values by AI/ML of the whole 115 beams.
· Baseline: A beam with a highest RSRP value based on measured RSRP values of the 50%/33% of 115 beams.
· [bookmark: _Hlk111134000]In this evaluation, we introduced error margin to observe meaningful accuracy of AIML-based beam selection. Based on the error margin, the best beam selected by AI was counted as misdetection only when the RSRP of the selected beam differs from the optimal beam obtained from actual RSRP values by a value greater than the error margin. In Figures 1 and 2, AIML-based beam selection achieves more than 95% selection accuracy when error margin is larger than 0.5 dB by consuming 50% or 33% of the measurement overhead of the exhaustive measurement and it also shows better accuracy when the error margin is low. In addition, AIML-based RSRP estimation always outperforms the baseline, especially when less RSRP measurements are available.
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Figure 1: Accuracy of AI based optimal beam selection with error margin (80% Indoor UEs)
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[bookmark: _Hlk111134308]Figure 2: Accuracy of AI based optimal beam selection with error margin (100% Outdoor UEs)

[bookmark: _Hlk111134375]Observation 4: AI aided beam selection achieves more than 95% selection accuracy when error margin is larger than 0.5 dB by consuming 50%/33% of the measurement overhead for the exhaustive measurement.
Observation 5: AIML-based RSRP estimation always outperforms the baseline especially when less RSRP measurements are available as it achieves a higher selection accuracy by 35% when error margin is 0.5 dB.
Proposal 8: Further study benefits of AI/ML aided beam prediction. 
Summary
In this contribution, we discuss evaluation methodology, KPI and target scenarios for AI/ML beam management and provide preliminary evaluation results for AI/ML aided beam prediction. From the discussions, we made the following observations and proposals:
Observation 1: Legacy beam management with Rel-17 without AI/ML algorithms is not an appropriate baseline as implementation-based AI/ML operation is available for UE and gNB implementations.
Observation 2: Beam information related KPI is not a measure to evaluate actual performance benefits from AI/ML based beam prediction, however, beam information related KPI can be used as a temporal measure to have an insight as beam information related KPI requires less computational overhead for evaluation.
Observation 3: Specification enhancements should be justified based on actual system performance benefits such as throughputs not based on beam related KPIs such as L1-RSRP difference.
Observation 4: AI aided beam selection achieves more than 95% selection accuracy when error margin is larger than 0.5 dB by consuming 50%/33% of the measurement overhead for the exhaustive measurement.
Observation 5: AIML-based RSRP estimation always outperforms the baseline especially when less RSRP measurements are available as it achieves a higher selection accuracy by 35% when error margin is 0.5 dB.
Proposal 1: ‘No collaboration framework: AI/ML algorithms purely implementation based and not requiring air-interface changes’ could be an appropriate baseline to accurately evaluate the benefits of AI/ML with specification enhancements.
Proposal 2: Support system performance related KPIs as mandatory KPIs.
· Support Avg. and 5% UE tput for system performance KPIs.
Proposal 3: Support beam information related KPIs as optional for temporal measures.
· Support average L1-RSRP difference of Top-1 predicted beam.
· Support beam prediction accuracy (%) with multiple candidate margins (including 1 dB and other possible values) for Top-1 beam.
Proposal 4: Reporting overhead and latency aspects should be considered in evaluation of system performance not as independent KPIs.
Proposal 5: Prioritize system performance related KPIs and beam information related KPIs than other KPIs.
Proposal 6: For UE distribution, support the following evaluation assumptions:
· 10 UEs per cell as a mandatory value and 20 UEs per cell as an optional value.
· 80% outdoor UEs and 20% indoor UEs for spatial domain beam prediction as defined in TR 38.901 (Option 1).
Proposal 7: For traffic model, support the following evaluation assumptions:
· For beam information related KPIs, no traffic model is needed to be defined as UE is only measuring reference signals not decoding actual PDSCHs.
· For system performance related KPIs, FTP traffic should be used to reflect practical traffics for the evaluation. 
Proposal 8: Further study benefits of AI/ML aided beam prediction. 
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Appendix
Evaluation assumptions
	Parameter
	 Values

	Carrier Frequency
	30 GHz

	Bandwidth
	80 MHz

	Subcarrier Spacing
	120 kHz 

	Deployment
	2-tier model with wrap-around (7 sites, 3 sectors/cells per site) with ISD = 200 m

	Channel model
	5G-UMa (TR 38.901)

	UE Model Parameters 

	UE Noise Figure
	10 dB

	UE Antenna Configuration
	(M, N, P, Mg, Ng) = (1, 4, 2, 1, 1), dH = 0.5λ

	UE Dropping
	· 100% Outdoor UEs
· 80% Indoor UEs

	UE Antenna Height
	1.5 m

	gNB Model Parameters 

	gNB TX power
	23 dBm

	gNB Antenna Configuration
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ

	gNB Antenna Radiation Pattern
	3-sector (120 degrees apart from each other)

	gNB Antenna Height
	25 m



AI/ML parameters
	Data Description

	Complete Dataset Description (RSRP_Actual)
	Each sample includes 115 RSRP measurements for beams from one sector to one UE

	Input Dataset Description
(RSRP_Input)
	Each sample includes 50%/33% of the RSRP measurements from complete dataset

	Output Dataset Description
(RSRP_Estimate)
	The complete set of RSRP measurements after estimating the missing 50%/66% of the RSRP measurements from the input dataset

	Beams Description
	115 beams per sector per TRP. Beams are generated from the combination of beams at 23 azimuth angles and 5 elevations angles

	Number of Samples
	22,050 Samples

	Size of Training (Testing) Set
	80% (20%) of the dataset 

	Validation
	5-fold cross-validation

	ML Model Parameters

	Model Description
	A regression model to estimate each of the missing RSRP measurements given the available RSRP measurements in the input dataset  

	Model Parameters
	Linear regression model with bias, linear terms, pure quadratic terms, and interaction quadratic terms 

	Evaluation
	· Actual Best Beam per sample = argmax(RSRP_Actual)
· Estimated Best Beam per sample = argmax(RSRP_Estimate)
· RSRP_Loss = |RSRP_Actual(Actual Best Beam) – RSRP_Actual(Estimated Best Beam)|
· When (RSRP_Loss > Error Margin), this is counted as best beam misdectection
· Accuracy = (Number of Samples - Number of Best Beam Misdetections) / Number of Samples 
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