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Introduction
In RANP#94e, the SID of artificial intelligence (AI)/machine learning (ML) for NR air interface has been established in [1] and AI for beam management was captured as below under RAN1’s working scope.
	Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 


In the 109e meeting we presented our views on beam management enhancement for NR with the use of AI/ML in R1-2203730. In this tdoc we further elaborate our proposals based on the agreement made in the 109e meeting.
AI/ML for beam management enhancement
AI/ML allows prediction/selection of beam at both gNB and UE based on the model obtained through training with historical data. This availability of beam information suggested by AI/ML benefits the reduction of system overhead and latency. In this section, we are going to present four specific schemes on beam prediction with AI/ML model as well as their performances.
Beam prediction at gNB based on UE location and direction
UE movement brings rapid beam switching of gNB to maintain an acceptable link quality for UE, and the mobility makes this issue more severe in mmWave. However, if defining a beam adjustment interval as time duration with the signal-to-interference-plus-noise ratio (SINR) of UE above a predetermined-thresholds, in which the gNB beam can be maintained without switching and using beams that has maximum beam adjustment interval can cause less beam switching in the presence of UE’s mobility [2]. 
Having this definition, in beam prediction with AI/ML for moving UE, the training of AI/ML model is proposed to be based on UE locations, moving direction and associated beam that is selected to maintain UE’s link quality with maximum beam adjust interval or minimum switching, and the training data can be generated by extracting suitable beam selections based on history data or by simulation. 
After model training, feeding the trained AI/ML model with UE’s actual location and direction, a predicted beam pattern will be generated. Therefore, the procedure of beam measurement in conventional beam switching can be saved, which leads to less complexity of beam management obviously. For example, a reduced measurement of SSB/CSI-RS.
In the following, some simulations on this proposed UE location and moving direction based AI/ML training for beam management are performed. It is assumed that UE moves randomly at a speed of 0.5 m/s shown in Figure 1. Taking the first 50 beam adjustments as an example, the corresponding time instance of the current beam adjustment index during the random moving can be shown in Figure 2. For a small section of the moving trace of the desired UE from 174 seconds to 190 seconds, the blue curve shows that the beam is adjusted 9 times. Whereas if we use the AI to select the best beam, the red curve shows that the beam is adjusted only 3 times. This means that using AI to assist beam selection at the gNB, the beam adjustment interval is increased meaning that over same period of UE’s movement, the number of beam adjustment is reduced. 
We noticed that although the output of AI/ML model can be beam index but there are different criteria of the predicted beam in BM-case1 and BM-case2 as proposed by different companies, such as high probability of best beam, beam dwelling time, etc. In our case, the output of the beam is related for the maximum beam dwelling time, i.e., for the UE’s position and direction using this predicted beam gives the longest beam dwelling time and thus the lowest number of beam switching events along the UE’s movement.  


[image: ]
Figure 1. Random locations of UE
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Figure 2. Number of beam adjustments and intervals for UE

Observation 1 : Different AI/ML models are trained based on different objective functions. The output of TX/RX beam ID might indicate a performance criteria.   
Proposal 1 : In output of AI/ML, indicate the evaluate criteria associated with the predicted beam ID in BM-case1 and BM-case2 for example TX beam ID for maximum dwelling time, TX/RX beam ID for maximum RSRP, etc.
Beam prediction at gNB based on UE’s measurement report
As mentioned before, mobility will bring frequent beam failure in mmWave. When beam failure happens, beam failure recovery process, similar to that in beam establishment, is executed by RSRP measurement of a set of reference signals corresponding to a set of beams. Frequent measurement of this set of beams incurs high power consumption at UE.
However, by using AI/ML model with beam measurements in previous time slots as the input, a set of candidate beams with higher probabilities of being the best beams in next time slot can be predicted. Then, through informing UE a subset of candidate beams by aperiodic CSI-RS resource set, UE can make measurements only on this subset of candidate beams which have higher probabilities to be selected.
In Figure 3, we draw the number of beam measurements over different η, where η denotes the sum probabilities of a subset with candidate beams. As time increasing, the trained AI/ML model becomes more accurate in predicting the subset of candidate beams with high probability of being best beam. With less candidate beams to track in the beam management process, the complexity of beam measurement is also reduced significantly.
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Figure 3. Number of beam measurements over time

Observation 2 : The complexity of beam measurement can be reduced if a subset of candidate beams can be predicted by AI/ML model.
Proposal 2 : BM-case2: AI/ML output  a set of Tx and/or Rx beams for a sum probability of being the best beams higher than a threshold.
Beam prediction at gNB using low frequency information
Considering beam prediction for high frequency with mmWave as an example for illustration. Usually, mmWave antennas are deployed on existing low-frequency BSs in non-standalone (NSA) architectures. Field experiments in [3] had demonstrated that low-frequency and mmWave channels share similar spatial features including AoDs and AoAs in NSA architectures, which provides the feasibility of using low-frequency information to reduce the training overhead of mmWave. 
Since low-frequency information with periodically estimated CSI captures the major channel changes of UE due to mobility while the mmWave information with optimal transmitting beam indices obtained by conventional beam sweeping captures the fast variation of beam selection, combining low-frequency information with multi pieces of prior CSI and mmWave information with multi prior optimal beam indices together for AI/ML model training, optimal mmWave beam can be predicted accurately by the trained AI/ML model.
Next, we give some simulations on the proposed scheme. Defining the received power ratio as the power of predicted beam over the ideal beam, and fixing Rician K factor with the power ratio of the LOS path to other paths at 8dB, UE speed at 8-12 m/s and 25-30 m/s for stationary and non-stationary scenario respectively, we evaluated the impact of low-frequency CSI length on the received power ratio in Figure 4, where the low-frequency CSI length represents the number of prior CSI measurement results used to choose the beam index. It can be seen from the figure that, with four pieces of prior CSI, a good prediction of the beam in mmWave can be provided.
[image: ]
Figure 4. Beam power ratio with prediction method

Observation 3 : Beam prediction in mmWave can be assisted by CSI information at low frequency.
Proposal 3 : Support BM-case3: Beam prediction for higher frequency band (e.g., a band in FR2) based on measurement results of lower frequency band(s) (e.g., a band in FR1).
Beam prediction at UE 
Considering input the selected beams at UE side over a period as a beam set into AI/ML model, beam prediction can also be performed at UE side to reduce measurement in beam maintenance. For an AI/ML model training at gNB, the interested training area is normally within the coverage of the gNB. Whereas the mobile area of UE can be very large with very diversified propagation environments. Training a universal AI/ML model valid for all areas of UE becomes difficult and might lead to very complicated AI/ML model. Besides, the inference at UE side will also incur huge processing load. This inspires us to consider taking beam prediction at UE side using light AI/ML models over different areas.
As we all know, UE’s propagation environment is created by the illumination of gNB beams on UE’s surrounding scatterers. It is observed in [4] that, the movement of UE can bring significant changes of UE beam while relatively small changes of gNB beam. In a typical environment as shown in Figure 5, there is a situation where the Rx beam at UE side changes rapidly whereas the Tx beam at gNB doesn’t change significantly as in Figure 6. 
[image: 屏幕剪辑]
Figure 5. Environment of measurement campaign [3]

[image: 屏幕剪辑]
Figure 6. Instantaneous best-beam directions among all beam pairs measured on the moving route

This means we can categorize UE’s propagation environment based on the Tx beam of gNB and train the AI/ML model for each propagation environment. For example, in the simulations, we portioned the area into different zones based on the mostly used beam index at gNB in Figure 7. By using AI/ML model for a given zone, the RSRP and error are simulated over time in Figure 8. It can be seen that the beam and measured RSRP (simulated using MATLAB toolbox [5]) at UE side are predicted with average accuracy of 59.5% (using 4 measurements to predict one future beam). 


Figure 7. Zone classification

[image: ]
Figure 8. UE beam prediction accuracy with RSRP

Figure 9 shows the root mean squared error (RMSE) of beam direction using models in different zones for a given zone. The results infer that UE should switch to different AI/ML models based on its specific propagation environment for accuracy. The propagation environment can be correlated to UE reports on gNB beam measurements. Then, gNB can inform UE to use different models corresponding to different propagation environment, where the model to be used at UE side can be obtained by executing a preloaded model at UE or by distributing a model from gNB to UE in connected state.

Figure 9. RMSE of beam direction (degree) prediction of using models in different zones


Observation 4 : Different models should be used at UE in different propagation environment for accurate predictions. Training a model for a large area composing diversified propagation characters such as LOS/NLOS is difficult, it is practical to use different AI/ML models for different small areas.
Proposal 4 [bookmark: _Hlk68181041]: Propagation environment based AI/ML model selections can be considered at gNB.
Proposal 5 : Support gNB signaling to UE in order to activate different AI/ML models at UE for beam prediction.
Conclusions
Finally, allow us to repeat our proposals to draw attention.
Proposal 1 :  In output of AI/ML, iIndicate the evaluate criteria associated with the predicted beam ID in BM-case1 and BM-case2 for example TX beam ID for maximum dwelling time, TX/RX beam ID for maximum RSRP, etc.
Proposal 2 : BM-case2: AI/ML output  a set of Tx and/or Rx beams for a sum probability of being the best beams higher than a threshold.
Proposal 3 : Support BM-case3: Beam prediction for higher frequency band (e.g., a band in FR2) based on measurement results of lower frequency band(s) (e.g., a band in FR1).
Proposal 4 : Support beam prediction at gNB by using multi pieces of prior CSI information at low frequency for model training.
Proposal 5 : Support gNB signaling to UE in order to active different AI/ML models for beam prediction.
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Correct models in different zones	2.5417000000000001	29.603000000000002	22.612300000000001	22.307500000000001	With misused models	7.2011000000000003	52.921700000000001	43.748800000000003	39.319000000000003	
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