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1 Introduction
According to discussions in 3GPP RAN1#109-e meeting[1], we have made some progresses on evaluation assumptions for CSI feedback enhancement. In this contribution, we provide our views on further details for evaluation assumptions based on the agreements and previous discussions. In our companion contribution[2], representative sub-use case selection and potential specification impacts are discussed accordingly.
2 Generic issues on evaluation methodology
2.1 System Level Simulation Evaluation
	Agreement:
For the performance evaluation of the AI/ML based CSI feedback enhancement, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, for the calibration purpose on the dataset and/or AI/ML model over companies, consider to align the parameters (e.g., for scenarios/channels) for generating the dataset in the simulation as a starting point.
Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the following table is taken as a baseline of EVM
· Note: the following table captures the common parts of the R16 CSI enhancement EVM table and the R17 CSI enhancement EVM table, while the different parts are FFS.
· Note: the baseline EVM is used to compare the performance with the benchmark release, while the AI/ML related parameters (e.g., dataset construction, generalization verification, and AI/ML related metrics) can be of additional/different assumptions.
· The conclusions for the use cases in the SI should be drawn based on generalization verification over potentially multiple scenarios/configurations.
· FFS: modifications on top of the following table for the purpose of AI/ML related evaluations.

Agreement: 
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the following parameters are taken into the baseline of EVM
· Note: The 2nd column applies if R16 TypeII codebook is selected as baseline, and the 3rd column applies if R17 TypeII codebook is selected as baseline.
· Additional assumptions from R17 TypeII EVM with respect to utilizing angle-delay reciprocity should be considered for the AI/ML based CSI feedback and the baseline scheme if R17 TypeII codebook is selected as baseline
· FFS baseline for potential sub-use cases involving CSI enhancement on time domain
· Note: the baseline EVM is used to compare the performance with the benchmark release, while the AI/ML related parameters (e.g., dataset construction, generalization verification, and AI/ML related metrics) can be of additional/different assumptions.
· The conclusions for the use cases in the SI should be drawn based on generalization verification over potentially multiple scenarios/configurations.
· FFS: modifications on top of the following table for the purpose of AI/ML related evaluations.

Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, for ‘Channel estimation’, ideal DL channel estimation is optionally taken into the baseline of EVM for the purpose of calibration and/or comparing intermediate results (e.g., accuracy of AI/ML output CSI, etc.)
· Note: Eventual performance comparison with the benchmark release and drawing SI conclusions should be based on realistic DL channel estimation.
· FFS: the ideal channel estimation is applied for dataset construction, or performance evaluation/inference.
· FFS: How to model the realistic channel estimation
FFS: Whether ideal channel is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation

Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the ‘Baseline for performance evaluation’ in the baseline of EVM is captured as follows
	BaseBaseline for performance evaluation
	Companies need to report which option is used between
-        Rel-16 TypeII Codebook as the baseline for performance and overhead evaluation.
-        Rel-17 TypeII Codebook as the baseline for performance and overhead evaluation.
-         FFS: Whether Type I Codebook can be optionally considered at least for performance evaluation





The above agreements were made after heated discussions in RAN1#109-e. There are some remaining issues left,
· Issue#1: Whether full buffer traffic model is optionally taken for the purpose of calibration and eventual performance comparison with the benchmark release and drawing SI conclusions. 
· Issue#2: Whether the ideal channel estimation is applied for dataset construction, or performance evaluation / inference
· Issue#3: How to model the realistic channel estimation
· Issue#4: Whether ideal channel is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation
· Issue#5: Whether Type I Codebook can be optionally considered at least for performance evaluation
For the Issue#1, we think that full buffer can be optionally taken into account for calibration purpose. However, FTP traffic models conform to the actual scenarios in terms of traffic. Hence, SI conclusions should be drawn according to evaluation results of FTP traffic models rather than full buffer.
Proposal 1: Full buffer traffic model can be optionally taken for calibration purpose and SI conclusions should be based on evaluation results of FTP traffic models.
For the Issue#2, ideal channel estimation can be applied for dataset construction and the performance evaluation on intermediate results, such as GCS/SGCS. The error modeling methods of realistic channel estimation are diverse among companies according to the discussion in RAN1#109-e, so it may not be helpful for companies to calibrate its intermediate results. Some companies may argue that AI model input should consider channel estimation error, noise and interference in realistic environment. To our understanding, the robustness of AI model to channel estimation error, noise and interference can be verified in terms of model generalization.
Proposal 2: The ideal channel estimation can be applied for dataset construction and intermediate performance evaluation at least for calibration purpose.
Regarding the Issue#3, different error modeling methods of realistic channel estimation were proposed in RAN1#109-e, but no consensus was made. According to the conclusions in previous releases, there is no need to align error modeling of channel estimation, which can be reported per company basis. In our simulation, as shown in appendix, ideal channel is impacted with an error, i.e., H’=H+E(SINR), where E(SINR) is the error matrix as a function of DL SINR, H’ is estimated channel matrix and H is the ideal channel matrix. Furthermore, as discussed above, the ideal channel estimation can be applied for dataset construction at least for calibration purpose. However, for evaluating system level performance, error modeling should be mandatory.
Proposal 3: There is no need to align error modeling method of channel estimation, which can be reported per company basis.
For the Issue#4, if ideal channel is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation, companies can easily identify the performance loss to the ideal channel. To be noted, this doesn’t mandate AI/ML model to utilize ideal channel as the target label for model training, which really depends on each company’s proprietary implementation.
Proposal 4: Ideal channel is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation at least for calibration purpose.  
· Note: It doesn’t mandate AI/ML model to utilize ideal channel as the target label for model training.
Considering the Issue#5, we think it is not necessary to take Type I CB for performance evaluation since the AI CSI should target on improving performance of MU-MIMO. Type I CB can barely achieve performance gain over traditional Type II codebook according to the studies in previous releases. Therefore, we prefer Rel-16 Type II CB or Rel-17 Type II CB should be adopted as the baseline for performance comparison.
Proposal 5: Type I CB is not necessary to be taken as a baseline for performance evaluation.
2.2 Evaluation Metrics
	Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, companies can consider performing intermediate evaluation on AI/ML model performance to derive the intermediate KPI(s) (e.g., accuracy of AI/ML output CSI) for the purpose of AI/ML solution comparison.
Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, Floating point operations (FLOPs) is adopted as part of the ‘Evaluation Metric’, and reported by companies.
Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, AI/ML memory storage in terms of AI/ML model size and number of AI/ML parameters is adopted as part of the ‘Evaluation Metric’, and reported by companies who may select either or both.
· FFS: the format of the AI/ML parameters

Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, as a starting point, take the intermediate KPIs of GCS/SGCS and/or NMSE as part of the ‘Evaluation Metric’ to evaluate the accuracy of the AI/ML output CSI
· For GCS/SGCS, 
· FFS: how to calculate GCS/SGCS for rank>1
· FFS: whether GCS or SGCS is adopted
· FFS other metrics, e.g., equivalent MSE, received SNR, or numerical spectral efficiency gap.

Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, companies to report the GCS/SGCS calculation/extension methods, including:
     Method 1: Average over all layers
o    Note: [image: ] is the [image: ]eigenvector of the target CSI at resource unit i and K is the rank. [image: ]is the [image: ] output vector of the output CSI of resource unit i. [image: ] is the total number of resource units. [image: ] denotes the average operation over multiple samples.
[image: ]
     Method 2: Weighted average over all layers
o    Note: Companies to report the formula (e.g., whether normalization is applied for eigenvalues)
     Method 3: GCS/SGCS is separately calculated for each layer (e.g., for K layers, K GCS/SGCS values are derived respectively, and comparison is performed per layer)
       Other methods are not precluded
       FFS: Further down-selection among the above options or take one/a subset of the above methods as baseline(s).


In order to evaluate and calibrate the performance of AI/ML models among companies, intermediate KPIs have been decided after heated discussions in RAN1#109-e. There are some remaining issues to be discussed,
· Issue#1: Whether GCS or SGCS is to be adopted
· Issue#2: Whether to further down-select among options for GCS/SGCS calculation when rank>1
For the Issue#1, SGCS has a slight advantage for performance comparison. For example, when the gap between the two GCSs is quite small, the square operation of the SGCS will widen the gap between the two and make it more obvious to judge the performance. In addition, the intermediate KPI is for calibration purpose, which doesn’t bring any mandate on the loss function design of model training. In our view, the loss function design is company’s proprietary implementation.
Proposal 6: Sightly prefer SGCS as an intermediate KPI for performance evaluation and calibration.
· Note: The intermediate KPI doesn’t bring any mandate on the loss function design of model training.
In the above agreement, GCS/SGCS calculation methods are proposed for rank>1. From our view, we prefer the Method 3 as a baseline. Method 3 can help us analyze how intermediate performance gains from different layers can actually influence the eventual system throughput. However, Method 1 and Method 2 either puts on the same weight or different weight on different layers, it’s hard to identify the performance gain for each layer. 
Proposal 7: Method 3 can be a baseline GCS/SCGS calculation when rank>1.
2.3 Methodology for Generalization
	Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, study the verification of generalization. Companies are encouraged to report how they verify the generalization of the AI/ML model, including:
· The configuration(s)/ scenario(s) for training dataset, including potentially the mixed training dataset from multiple configurations/scenarios
· The configuration(s) / scenario(s) for testing/inference
· Other details are not precluded


As is known to all, AI/ML model generalization research is necessary due to dynamic wireless channels in reality. The AI/ML may have huge performance loss when the distributions between training dataset and inference data are quite different. In our initial assessments, at least the following options deserve to be further studied as a starting point: 
· Option 1: Model generalization to different scenarios
· Option 1a: Model training is conducted by mixed training datasets from multiple scenarios, and model inference is performed by dataset from a single scenario of the multiple scenarios (e.g. scenarios for model training can be UMa and UMi, and scenario for model inference can be UMa or UMi).
· Option 1b: Model training is conducted by dataset from a single scenario#A, and model inference is performed by dataset from another scenario#B (e.g. scenario#A and scenario#B can be UMa and UMi respectively, or vice versa).
· Option 2: Model generalization to different configurations
· Option 2a: Model training is conducted by mixed training datasets from multiple configurations, and model inference is performed by dataset from a single configuration of the multiple configurations (e.g. configurations for model training can be bandwidths of 10MHz and 20MHz, and configuration for model inference can be 10MHz or 20MHz).
· Option 2b: Model training is conducted by dataset from a single configuration#A, and model inference is performed by dataset from another configuration#B (e.g. configuration#A and configuration#B can be the bandwidth of 10MHz and 20MHz respectively, or vice versa).
Proposal 8: For generalization evaluation, at least further study and evaluate the following options:
· Option 1: Model generalization to different scenarios
· Option 1a: Model training is conducted by mixed training datasets from multiple scenarios, and model inference is performed by dataset from a single scenario of the multiple scenarios (e.g. scenarios for model training can be UMa and UMi, and scenario for model inference can be UMa or UMi).
· Option 1b: Model training is conducted by dataset from a single scenario#A, and model inference is performed by dataset from another scenario#B (e.g. scenario#A and scenario#B can be UMa and UMi respectively, or vice versa).
· Option 2: Model generalization to different configurations
· Option 2a: Model training is conducted by mixed training datasets from multiple configurations, and model inference is performed by dataset from a single configuration of the multiple configurations (e.g. configurations for model training can be bandwidths of 10MHz and 20MHz, and configuration for model inference can be 10MHz or 20MHz).
· Option 2b: Model training is conducted by dataset from a single configuration#A, and model inference is performed by dataset from another configuration#B (e.g. configuration#A and configuration#B can be the bandwidth of 10MHz and 20MHz respectively, or vice versa).
2.4 Evaluation assumptions on selected sub-use case
	Agreement:
For the evaluation of the AI/ML based CSI compression sub-use cases, a two-sided model is considered as a starting point, including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information.
· At least for inference, the CSI generation part is located at the UE side, and the CSI reconstruction part is located at the gNB side.


In RAN1#109-e, AI/ML based CSI compression sub-use case was agreed. For ease of comparison, the data type & data size of the training data input to AI models are encouraged to be discussed, and aligned if possible. In our contribution proposed for RAN1#109-e [3], we provided the model input and model output details for rank=1. In this contribution, we aim at introducing more details when rank>1.
For rank>1, in our initial evaluation, we propose two cases for AI/ML model to compress and recover the sub-band eigenvectors for CSI compression sub-use case. 
· Case 1: Single layer in model input and single layer in model output






For Case 1, we mix the sub-band eigenvectors of multiple layers from multiple UEs as training samples so the total number of training samples is , where  denotes the layer number;  denotes the number of UEs. For testing/inference, the input of AI model is a group of sub-band eigenvectors obtained from the same layer, which can be a three-dimensional tensor whose size is , where 2 denotes real and imaginary parts of each complex channel coefficient;  denotes the number of transmit antenna ports and  denotes the number of sub-bands. Then, the output of AI model is recovered eigenvectors. Essentially, the AI input is still one layer of data and the model structure is the same as rank=1. The detailed AI/ML framework is shown in Figure 1(a). 
[image: ]
Figure 1(a) The input and output of AI/ML models for Case 1
· Case 2: Multiple layers in model input and multiple layers in model output







For Case 2, we generate the sub-band eigenvectors of multiple layers from multiple UEs as training samples so the total number of training sample is , where  denotes the number of UE samples. For testing/inference, the input of AI model is a group of sub-band eigenvectors obtained from  layers, which can be a three-dimensional tensor whose size is , where 2 denotes real and imaginary parts of each complex channel coefficient;  denotes the layer number;  denotes the number of transmit antenna ports and  denotes the number of sub-bands. Then, the output of AI model is recovered eigenvectors. Different from Case 1, the AI input is multiple layers of data and the model structure needs to be changed from rank=1. The detailed AI/ML framework is shown in Figure 1(b). 
[image: ]
Figure 1(b) The input and output of AI/ML models for Case 2 
Proposal 9: In our initial evaluation for rank>1, two cases are proposed for intermediate KPIs and eventual performance evaluation.
· Case 1: Single layer in model input and single layer in model output 
· Case 2: Multiple layers in model input and multiple layers in model output
3 Preliminary Evaluation Results 
We perform a preliminary simulation on spatial-frequency domain CSI compression sub-use case to evaluate the performance of AI models compared with the Rel-16 eTypeII. The detailed simulation assumptions are shown in Table 6-1. In addition, detailed AI model training parameters are listed in the Table 6-2. The system-level channel data is generated from 3000 simulation drops and 210 UEs per simulation drop, which results in 630000 samples in total. Then, the datasets are randomly divided into three parts which are training, validation, and testing datasets with 600000, 10000, and 20000 samples respectively. In our evaluation, ideal sub-band eigenvectors are used as the input of AI models for training, validation and testing. In addition, the parameter number of our AI/ML models ranges from about 9M-11M, and the FLOPs range from about 52M-55M.
3.1 Rank = 1
In this section, we initially evaluate the intermediate KPIs, e.g. GCS/SGCS, between our AI approach and the Rel-16 eType II, the results are shown in the Figure 2(a). From the simulation results, the AI based CSI recovery shows about 3%-4% GCS gains and 7%-8% SGCS gains over the Rel-16 eType II. In order to explore the eventual UPT performance of our AI model, the SLS is performed for the case of up to 4 layers MU scheduling under FTP3 traffic model with 70% RU and the simulation results are shown in the Figure 2(b). There is only less than 1% UPT performance gain can be obtained as Rel-16 eTypeII can already achieve good performance. 
[image: ]   [image: ]
Figure 2(a) Subband-level GCS/SGCS simulation results   Figure 2(b) Average UPT gain with RU=70%
Observation 1: AI based CSI recovery completely outperforms the Rel-16 eType II in GCS/SGCS for rank=1. With the same feedback overhead, AI based CSI recovery can obtain 3%-4% GCS gains and 7%-8% SGCS gains. 
Observation 2: AI can hardly achieve UPT gain for the case of rank=1, where for the rank=1 case of maximum 4 layers MU scheduling under FTP3 with heavy traffic load, AI based CSI recovery only can achieve less than 1% average UPT gain than Rel-16 eTypeII with the same feedback overhead. 
3.2 Rank = 2
In this section, our contribution provides the intermediate and eventual simulation results for Rel-16 eTypeII and AI based CSI recovery. Figure 3 illustrates the comparison of GCS and SGCS between the AI model and Rel-16 Type II codebook under the rank=2 case, in which Figure 3(a) and Figure 3(c) show the average GCS and SGCS performance over the two layers, and then Figure 3(b) and Figure 3(d) provide the performance for each layer. It can be seen that, the 1st layer outperforms the 2nd layer in terms of GCS/SGCS, which may owe to that 1st layer contains most important part of channel information. Moreover, AI outperforms Rel-16 Type II codebook in terms of GCS and SGCS for each layer, indicating higher accuracy of CSI recovery by AI. In addition, Case 1 generally shows better GCS/SGCS performance than Case 2 for each layer. 
[image: ] [image: ]
Figure 3(a) The average GCS simulation results    Figure 3(b) GCS simulation results for each layer
[image: ] [image: ] 
Figure 3(c) The average SGCS simulation results   Figure 3(d) SGCS simulation results for each layer
Observation 3: AI based CSI recovery shows performance gains in average GCS and SGCS over the Rel-16 eType II for rank =2
Observation 4: Case 1(single-layer model input and single-layer model output) can achieve better performance than Case 2(multi-layer model input and multi-layer model output)
To evaluate the eventual performance of AI/ML approaches, we further evaluate average UPT versus feedback overhead under the up to 8 layers MU scheduling and FTP 3 traffic model with 50% and 70% resource utilization (RU). Regarding the GCS/SGCS performance between two cases of AI Transformer, Case1 Transformer is adopted for the eventual throughput simulation. The simulation results are shown in Figure 4(a) and Figure 4(b).
[image: ]   [image: ]
[bookmark: _GoBack]Figure 4(a) Average UPT gain with RU=50%         Figure 4(b) Average UPT gain with RU=70%
Observation 5: For rank=2, with the same feedback overhead, AI based CSI recovery has about 4%-6% average UPT gain over the Rel-16 eType II under the case of 50% RU and 5%-8.5% average UPT gain can be obtained by AI based CSI recovery under the case of 70% RU.
Observation 6: The GCS/SGCS performance for AI/ML-based CSI compression presents positive correlation with the throughput performance.
Observation 7: AI/ML approaches show better throughput performance with heavy traffic load.
Proposal 10: The case of rank>1 should be prioritized in later discussion.
3.3 Generalization 

In this section, our contribution provides some AI generalization results for reference. We simulate AI generalization for different datasets with bandwidths of 10MHz (52RBs) and 20MHz (104RBs). According to the agreement in previous release, 4RBs per sub-band for 10MHz and 8RBs per sub-band for 20MHz are adopted, hence both AI input sizes keep the same for two datasets, which are . Therefore, two generalization simulation cases are designed as follows and the results are shown in Figure 5. Both Case A and Case B can achieve almost no performance loss compared with the cases of training and testing following the same bandwidth configuration.
· Case A: 10M dataset for training/validation and 20M dataset for testing
· Case B: 20M dataset for training/validation and 10M dataset for testing
[image: ]
Figure 5 AI generalization for different bandwidth configurations
Observation 8: AI/ML approaches can achieve good generalization performance on the case of training/validation dataset and testing dataset with different bandwidth configurations.
4 Conclusion
In this contribution, we discuss the evaluations on AI/ML for CSI feedback enhancement. We have the following observations and proposals.
Proposal 1: Full buffer traffic model can be optionally taken for calibration purpose and SI conclusions should be based on evaluation results of FTP traffic models.
Proposal 2: The ideal channel estimation can be applied for dataset construction and intermediate performance evaluation at least for calibration purpose.
Proposal 3: There is no need to align error modeling method of channel estimation, which can be reported per company basis.
Proposal 4: Ideal channel is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation at least for calibration purpose.
· Note: It doesn’t mandate AI/ML model to utilize ideal channel as the target label for model training.
Proposal 5: Type I CB is not necessary to be taken as a baseline for performance evaluation.
Proposal 6: Sightly prefer SGCS as an intermediate KPI for performance evaluation and calibration.
· Note: The intermediate KPI doesn’t bring any mandate on the loss function design of model training.
Proposal 7: Method 3 can be a baseline GCS/SCGS calculation when rank>1.
Proposal 8: For generalization evaluation, at least further study and evaluate the following options:
· Option 1: Model generalization to different scenarios
· Option 1a: Model training is conducted by mixed training datasets from multiple scenarios, and model inference is performed by dataset from a single scenario of the multiple scenarios (e.g. scenarios for model training can be UMa and UMi, and scenario for model inference can be UMa or UMi).
· Option 1b: Model training is conducted by dataset from a single scenario#A, and model inference is performed by dataset from another scenario#B (e.g. scenario#A and scenario#B can be UMa and UMi respectively, or vice versa).
· Option 2: Model generalization to different configurations
· Option 2a: Model training is conducted by mixed training datasets from multiple configurations, and model inference is performed by dataset from a single configuration of the multiple configurations (e.g. configurations for model training can be bandwidths of 10MHz and 20MHz, and configuration for model inference can be 10MHz or 20MHz).
· Option 2b: Model training is conducted by dataset from a single configuration#A, and model inference is performed by dataset from another configuration#B (e.g. configuration#A and configuration#B can be the bandwidth of 10MHz and 20MHz respectively, or vice versa).
Proposal 9: In our initial evaluation for rank>1, two cases are proposed for intermediate KPIs and eventual performance evaluation.
· Case 1: Single layer in model input and single layer in model output 
· Case 2: Multiple layers in model input and multiple layers in model output
Observation 1: AI based CSI recovery completely outperforms the Rel-16 eType II in GCS/SGCS for rank=1. With the same feedback overhead, AI based CSI recovery can obtain 3%-4% GCS gains and 7%-8% SGCS gains. 
Observation 2: AI can hardly achieve UPT gain for the case of rank=1, where for the rank=1 case of maximum 4 layers MU scheduling under FTP3 with heavy traffic load, AI based CSI recovery only can achieve less than 1% average UPT gain than Rel-16 eTypeII with the same feedback overhead. 
Observation 3: AI based CSI recovery shows performance gains in average GCS and SGCS over the Rel-16 eType II for rank =2
Observation 4: Case 1(single-layer model input and single-layer model output) can achieve better performance than Case 2(multi-layer model input and multi-layer model output)
Observation 5: For rank=2, with the same feedback overhead, AI based CSI recovery has about 4%-6% average UPT gain over the Rel-16 eType II under the case of 50% RU and 5%-8.5% average UPT gain can be obtained by AI based CSI recovery under the case of 70% RU. 
Observation 6: The GCS/SGCS performance for AI/ML-based CSI compression presents positive correlation with the throughput performance.
Observation 7: AI/ML approaches show better throughput performance with heavy traffic load.   
Proposal 10: The case of rank>1 should be prioritized in later discussion.
Observation 8: AI/ML approaches can achieve good generalization performance on the case of training/validation dataset and testing dataset with different bandwidth configurations.
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6 Appendix
Table 6-1 SLS assumptions for AI/ML based CSI feedback
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban (Macro only)

	Frequency Range
	FR1 only,  2GHz 

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)

	BS Tx power
	41 dBm for 10MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz

	Simulation bandwidth
	10MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	SU/MU-MIMO with rank adaptation.

	MIMO layers
	Maximum MU 4 layers for max rank=1
Maximum MU 8 layers for max rank=2

	CSI feedback
	Feedback assumption at least for baseline scheme
CSI feedback periodicity (full CSI feedback) :  5 ms,
Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	Overhead
	2 OFDM symbols for PDCCH，type 2 for DMRS(24 REs/PRB/slot)
CSI-RS overhead(32 REs/PRB/5 slot)

	Traffic model
	FTP 3

	Traffic load (Resource utilization)
	RU 50% and 70%

	UE distribution
	80% indoor (3km/h), 20% outdoor (30km/h)

	UE receiver
	MMSE-IRC 

	Feedback assumption
	Realistic

	Channel estimation         
	Realistic 

	Evaluation Metric
	Throughput and CSI feedback overhead 

	Baseline for performance evaluation
	Rel-16 TypeII Codebook 



Table 6-2  Training parameters for AI/ML model
	Parameter
	Value

	Backbone
	Transformer

	Parameter type
	Real value

	Input CSI type
	Eigenvectors of the ideal channel matrix estimated by UE

	Output CSI type     
	Recovered eigenvectors by AI/ML model in gNB

	Data-processing
	Normalization

	Quantization
	Vector quantization

	Training dataset
	600000

	Validation dataset
	10000

	Testing dataset
	20000

	Batch size
	400

	Optimizer
	Adam

	Loss function
	MSE
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