
[bookmark: _Hlk47552872]3GPP TSG RAN WG1 #110 R1-2206031
Toulouse, France, August 22nd – 26th, 2022
Source:	vivo
Title:	Discussions on AI/ML framework
Agenda Item:	9.2.1
Document for:	Discussion and Decision
Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]At RAN1 #109e, some agreements and conclusions have been made as following [1]:
	Agreement
· Use 3gpp channel models (TR 38.901) as the baseline for evaluations.
· Note: Companies may submit additional results based on other dataset than generated by 3GPP channel models
Working Assumption
Include the following into a working list of terminologies to be used for RAN1 AI/ML air interface SI discussion.
The description of the terminologies may be further refined as the study progresses.
New terminologies may be added as the study progresses.
It is FFS which subset of terminologies to capture into the TR.

	Terminology
	Description

	Data collection
	A process of collecting data by the network nodes, management entity, or UE for the purpose of AI/ML model training, data analytics and inference

	AI/ML Model
	A data driven algorithm that applies AI/ML techniques to generate a set of outputs based on a set of inputs.

	AI/ML model training
	A process to train an AI/ML Model by learning the input/output relationship in a data driven manner and obtain the trained AI/ML Model for inference

	AI/ML Inference
	A process of using a trained AI/ML model to produce a set of outputs based on a set of inputs

	AI/ML model validation
	A subprocess of training, to evaluate the quality of an AI/ML model using a dataset different from one used for model training, that helps selecting model parameters that generalize beyond the dataset used for model training.

	AI/ML model testing
	A subprocess of training, to evaluate the performance of a final AI/ML model using a dataset different from one used for model training and validation. Differently from AI/ML model validation, testing do not assume subsequent tuning of the model.

	Online training
	TBD - need more discussion

	Offline training
	TBD - need more discussion

	On-UE training
	Online/offline training at the UE

	On-network training
	Online/offline training at the network

	UE-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the UE

	Network-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the network

	One-sided (AI/ML) model
	A UE-side (AI/ML) model or a Network-side (AI/ML) model

	Two-sided (AI/ML) model
	A paired AI/ML Model(s) over which joint inference is performed, where joint inference comprises AI/ML Inference whose inference is performed jointly across the UE and the network, i.e, the first part of inference is firstly performed by UE and then the remaining part is performed by gNB, or vice versa.

	Model transfer
	Delivery of an AI/ML model over the air interface, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.

	Model download
	Model transfer from the network to UE

	Model upload
	Model transfer from UE to the network

	Model deployment
	Delivery of a fully developed and tested model runtime image to a target UE/gNB where inference is to be performed.

	Federated learning / federated training
	A machine learning technique that trains an AI/ML model across multiple decentralized edge nodes (e.g., UEs, gNBs) each performing local model training using local data samples. The technique requires multiple model exchanges, but no exchange of local data samples.

	Offline field data
	The data collected from field and used for offline training of the AI/ML model

	Online (field) data
	The data collected from field and used for online training of the AI/ML model

	Model monitoring
	A procedure that monitors the inference performance of the AI/ML model

	Model update
	Retraining or fine tuning of an AI/ML model, via online/offline training, to improve the model inference performance.

	Supervised learning
	A process of training a model from input and its corresponding labels.

	Unsupervised learning
	A process of training a model without labelled data e.g., clustering is a common example of this.

	Semi-supervised learning
	A process of training a model with a mix of labelled data and unlabelled data

	Reinforcement Learning (RL)
	A process of training an AI/ML model from input (a.k.a. state) and a feedback signal (a.k.a. reward) resulting from the model’s output (a.k.a. action) in an environment the model is interacting with.

Conclusion
As indicated in SID, although specific AI/ML algorithms and models may be studied for evaluation purposes, AI/ML algorithms and models are implementation specific and are not expected to be specified.

Observation
Where AI/ML functionality resides depends on specific use cases and sub-use cases.

Conclusion
· RAN1 discussion should focus on network-UE interaction.
· AI/ML functionality mapping within the network (such as gNB, LMF, or OAM) is up to RAN2/3 discussion.
Agreement
Take the following network-UE collaboration levels as one aspect for defining collaboration levels
1.	Level x: No collaboration
2.	Level y: Signaling-based collaboration without model transfer
3.	Level z: Signaling-based collaboration with model transfer
Note: Other aspect(s), for defining collaboration levels is not precluded and will be discussed in later meetings, e.g., with/without model updating, to support training/inference, for defining collaboration levels will be discussed in later meetings
FFS: Clarification is needed for Level x-y boundary

In this contribution, we will further discuss the general aspects of AI/ML framework.
Terminologies
To facilitate RAN1 discussion, some terminologies were discussed and summarized in the working assumption.
Among them, the definitions of online training and offline training are still TBD. To our understanding, the online training requires model training and model inference functionalities to be deployed on the same node, and the model training shall be performed once new training data arrives. The target of online training is to continuously adjust parameters to the environment. It is worth noting that the training data can be outdated data stored at other nodes and can be periodically passed to the node responsible for model training. Thus we think the definitions of online and offline training can be:
Online training: An AI/ML Model training process at a device/node that also performs model inference, which utilizes the received training data to update the model in real-time. The device/node shall use the updated model for model inference.
Offline training: An AI/ML Model training that utilizes the stored data to obtain an AI/ML Model. The model can be used by itself or transferred to other devices/nodes for model inference.
Agree on the following definitions:
· [bookmark: _Hlk111187481]Online training: An AI/ML Model training process at a device/node that also performs model inference, which utilizes the received training data to update the model in real-time. The device/node shall use the updated model for model inference.
· Offline training: An AI/ML Model training that utilizes the stored data to obtain an AI/ML Model. The model can be used by itself or transferred to other devices/nodes for model inference.
Besides, some definitions need to be refined. For the AI/ML model validation, the ‘model parameters’ shall be further clarified as ‘model hyperparameters’, since model parameters usually refers to the coefficients of neurons which are generated automatically during training. Model hyperparameters are selected by hand according to the model validation results.
AI/ML model validation: A subprocess of training, to evaluate the quality of an AI/ML model using a dataset different from one used for model training, that helps selecting model hyperparameters that generalize beyond the dataset used for model training.
Revise the ‘model parameters’ to ‘model hyperparameters’ in the definition of AI/ML model validation.
Another terminology that needs clarification is regarding model testing. There is potential confusion whether this is related to RAN4 testing or not. Our understanding is that the terminology defined here is for RAN1 discussion purpose. For RAN4 testing, the corresponding terminology can be further defined when necessary.
Clarify ‘model testing’ that it is only for RAN1 discussion purpose. RAN4 can further discuss corresponding definition when necessary.
	AI/ML model testing
	A subprocess of training, to evaluate the performance of a final AI/ML model using a dataset different from one used for model training and validation. Differently from AI/ML model validation, testing do not assume subsequent tuning of the model.
Note: above definition is for RAN1 discussion purpose.

The definitions of other terminologies look good and can be captured in the TR.
Capture the terminologies in the working assumption in the TR.

UE capabilities
Computation power at the UE side is growing fast in recent years. Figure 3-1 shows the AI capability of NPU in mobile phones in recent years. The capacity of one typical NPU used in current mobile phone is 22.5T operations (OPs) per second. One OP denotes one addition or one multiplication. From 2017Q1, the capacity of typical NPU in mobile phone is growing very fast year by year. This trend is expected to continue for the coming years.
[image:]
Figure 3-1: The growing capacity of NPU in mobile phone
In this section, we provide some tested results for typical models and UE chipsets. The following aspects are considered.
Model transfer capability. This is the main capability to support collaboration level z. The model transfer is one of the key tools to resolve generalization problem. In the model transfer procedure, UE needs to receive the new AI/ML model transferred from network, decode the information of the new AI/ML model, and then load the new AI/ML model in the chipset.
Model training capability. The model training of one side model can be done by UE using its own collected data, or with the assistance of network. For the two-sided model, the model training needs the cooperation of UE and network.
Data collection capability. There are different ways of data collection, which would have different overheads and latencies. One way is direct collection of data, and another way is collection of processed data or data characteristics.
Latency. One part of latency comes from the inference of AI model, which is unavoidable. If AI models run in other hardware modules, such as NPU, GPU, or FPGA, there is extra latency of data exchange between the AI module and the non-AI module. In the initial test, we focus on the inference latency.
Complexity. Complexities that UE can handle within several milliseconds are another valid metric from UE implementation perspective. It should be noticed that there are quite a lot of different implementations for the same model thus the expected model complexity should be explicitly stated when under comparison.
Power consumption. Power consumption is relevant to user experience. Different modules that are responsible for neural network related operations would have different power consumption, e.g., NPU typically consumes the least while CPU consumes the most. When compared, this should also be clarified.

Model transfer capability
To support collaboration level z, UE should have model transfer capability. Model transfer is one of the key tools to resolve AI/ML generalization problem. Then the AI/ML model, which fits the current wireless environment, can be transferred from the network to UE, to improve the system performance. The model transfer procedure includes the following steps from UE perspective.
· Receive the new AI/ML from the network. Since the signal for transmitting the new AI/ML model is similar to the data signal, UE always has the capability of this step.
· Decode the information of the new AI/ML model. The information of the new AI/ML model has been encoded by the network, to better describe the AI/ML model with lower overhead. Some popular AI/ML frameworks can be used as the encoder and decoder, such as TensorFlow, PyTorch and Caffe. The AI/ML model information decoding can be done in UE baseband chipset or UE AP. Currently, this has been already supported by typical UE AP implementations, for several popular AI/ML frameworks. Other options can also work well. One option is reusing the public format for model description, such as ONNX, and another option is introducing a new format for model description defined by 3GPP.
· Load the new AI/ML model in the chipset. After decoding the AI/ML model information, it is time to load the new AI/ML model and use it in the chipset. Whether the AI/ML model structure is changed or not has a considerable impact on the UE capabilities.
· The AI/ML model structure is not changed. Only model parameters need to be updated in this situation. The new model parameters are sent to the AI/ML module and then just replace the old model parameters. Recompilation may be not needed here. This has been already supported by nowadays typical chipset implementations. The premise is that UE and network have aligned the AI/ML model structure offline or online before usage.
· The AI/ML model structure is changed. Dependent on how much the model structure is changed, recompilation may be needed. Also, the changed model structure should be supported by UE. For example, if UE only supports full-connected layers and convolutional layer, the new AI/ML model can only be made of full-connected layers and convolutional layer.
Based on the above analysis, we have the following proposal on model transfer capability.
The following aspects need to be studied for model transfer capability:
· Whether UE supports model structure update or only model parameter update
· Which AI/ML model description format UE supports.

Model training capability
Model training or model updating is another key tool to fight against the AI/ML generalization problem, in addition to model transfer. It is known that AI/ML is a technology of data and the AI/ML model is memorizing the features of the training set. For some unseen samples with new features, the performance of AI/ML model is unpredictable. By collecting or transferring the unseen samples, the AI/ML model can be updated to adapt to the new environment.
There are mainly three categories of model training as follows.
· Transparent model training using its own collected data. In this category, UE can collect some samples in real network from time to time, considering its power consumption and data service. Then using these collected samples, the one-sided model of UE can be fine-tuned to alleviate the generalization problem.
· Model training for one-sided model with the assistance of other sides. In this category, network can send some assistance information to UE, to assist the AI/ML model training. Network can collect a large number of samples and select some representative samples from them. The number of the selected samples is much smaller, while they represent the main features of the environment nearby. The assistance of other sides will speed up the AI/ML model training.
· [bookmark: _GoBack]Model training for two-sided model with the assistance of other sides. In this category, the training of two-sided model is considered. Taking CSI compression as an example, the encoder of UE can not be trained without the assistance of network, since the loss of encoder output is not available for UE. There are two methods of two-sided model training. One is joint training and the other is separate training. In joint training, the label and the gradient information are exchanged between two sides, with high frequency but a small amount of information in each time. In separate training, the input and the output of the encoder or decoder are exchanged between two sides, with low frequency but a large amount of information in each time.
Since the capability of model training is challenging from UE side. It is expected that the model training would need some offline effort based on computing resources from UE. These offline effort can also be dimentioned from UE capability perspective, e.g., time needed for model traing. Size of dataset would also need to be taken into account for model training.
Based on the above analysis, we have the following proposal on model training capability.
Study the feasibility and necessity of defining model training capability, regarding latency of model training, dataset size for model training, etc.

Data collection capability
Different UE capabilities would be needed for the expected pre-processing, data storage, feature extraction and report for data collection. Some UEs may have the ability to collect a large amount of data while others would be limited. Depending on the reference point definition, some UEs may leave some interfaces for collection in the corresponding reference point while others may not. These should also be discussed in UE capability.
Study ways for UE to report its capability for data collection regarding expected pre-processing, data storage, feature extraction and report for data collection.

Typical UE performance for latency and complexity
Typical physical layer modules have strict requirements for latency. The latency of AI/ML operation should be within several milliseconds, otherwise, the AI model would not be applicable for air interface use cases. Since latency is highly correlated with complexity, they are discussed together in this subsection. For this important issue, we have collected some latency information from the area of image processing. Figure 3-2 shows the inference performance of typical AI models for image and video in typical chipsets. The latency of the AI models in Figure 3-2 is about 0.9ms~5.1ms. The AI models for air interface would be much simpler than the listed AI models and the latency of AI models for air interface will be much smaller. Then AI models for air interface would be likely to meet the latency requirement.

Figure 3-2: The latency of typical AI models for image and video in typical chipsets.
Initial test of typical models for latency on typical chipsets in Figure x shows that the latency for neural network operation latency on UE are within the range of interest for air interface applications.
Study ways for UE to report its capability for latencies with respect to the model inference.
It is known that complex model would achieve better performance than simple model. There will be a tradeoff between complexity and performance. Using a very complex model for a simple task is not befitting. For the use case study, if companies could provide results for complexities and latencies for the models used in the contributions, it is very helpful for aligning the views of UE capabilities.
The complexities of AI models would be easily obtained by the API of AI/ML platform. Floating-point operations per second (FLOPs) could be used the KPI of complexity. The latency could be calculated using the capabilities of hardware and the complexities of AI models. Also, companies are encouraged to provide the latency information of model update and data transfer.
Companies are encouraged to provide results in the following table for complexities and expected latencies (under certain base chipset computation power assumption) or latency requirements (for the target use case) for the models used for each use case.
Table 3-1: Expected complexities of AI models from companies.
	
	Company 1
	Company 2
	Company 3
	…

	AI Model 1
	
	
	
	

	AI Model 2
	
	
	
	

	AI Model 3
	
	
	
	

	…
	
	
	
	

	…
	
	
	
	

	
	
	
	
	

Table 3-2: Expected latencies of AI models from companies.
	
	Company 1
	Company 2
	Company 3
	…

	AI Model 1
	
	
	
	

	AI Model 2
	
	
	
	

	AI Model 3
	
	
	
	

	…
	
	
	
	

	….
	
	
	
	

	
	
	
	
	

Power consumption
Power consumption is one of the key parameters in current chipsets and much work has been done for power saving. If AI models largely increase power consumption, the commercialization of AI algorithm in air interface would be not a good deal.
The actual power consumptions of typical AI models are listed in Table 3-3. From the discussion of power saving, the UE power consumption model for FR1 is shown in Table 3-4, in which the basic unit would be assumed as 5 mA. It is seen that the power consumptions of complex AI models are comparable with typical physical layer operations.
Table 3-3: The actual power consumptions of typical AI models in typical chipsets.	
	
	Electron current (mA)

	AI Model 2 (1.14 GOPs)
	291

	AI Model 4 (11.5 GOPs)
	420

Table 3-4: UE power consumption model for FR1 from the discussion of power saving.
	Power state
	Relative power

	Deep sleep
	1*5 (Optional: 0.5)

	Light sleep
	20*5

	Micro sleep
	45*5

	PDCCH-only
	100*5

	SSB or CSI-RS proc
	100*5

	PDCCH+PDSCH
	300*5

	UL
	250*5 (0dBm)
700*5 (23dBm)

Power consumption for typical neural network operation on typical chipsets are at the same level of power consumption as for SSB or CSI-RS processing or PDCCH decoding.
Performance of model is not directly related to FLOPs, but specifically tuned for models. Even with the similar FLOPs, the performance may be drastically different. For example, as shown in Figure 3-3, the complexity of AI model 1 is 77.2% of AI model 2, and then the expected latency of AI model 1 is 77.2% of AI model 2. However, the actual latency of AI model 1 is 152% of AI model 2 in Chipset 2. For another example, the complexity of AI model 2 is 9.9% of AI model 4, while the power consumption of AI model 2 is 69.3% of AI model 4.

Figure 3-3: The complexity and latency comparison between AI models.
Even with the similar FLOPs, the performance of different models would be different for latency and power consumption.
Since power consumption is so important in this area, enough information of power consumptions for the AI models is very necessary. And then for the AI models used for each use case, companies are encouraged to provide results for power consumptions.
Companies are encouraged to assess power consumptions for the models used for each use case for KPI evaluation and also for defining feasible options for the reported latency/complexity values of AI/ML capabilities.
Quantization level
Float point is usually used in study and initial evaluation. Fixed point is usually used in implementation, where the parameters of AI model are transformed to integer value and the complexity could be reduced. Some kinds of hardware only support fixed point.
For float point or fixed point, there are also different levels of bits used for one number. It is clear that the overhead of 32 bits is twice of 16 bits, and 4 times of 8 bits. Considering the overhead reduction of model transfer, low quantization level would be better than high quantization level. The actual complexities of different quantization levels would be slightly different from the overhead, due to the practical hardware design and AI model structure.

Figure 3-4: The latency ratio of typical AI models of different quantization levels in one typical chipset, compared to CPU-FP32 of AI model 4.

Figure 3-5: The power consumption ratio of typical AI models of different quantization levels in one typical chipset, compared to CPU-FP32 of AI model 4.
Some evaluation results of different quantization levels are shown in Figure 3-4 and 3-5. INT8 denotes integer value with 8 bits, FP16 denotes float point value with 16 bits. The performance of NPU-INT8 is about 1.8 times of NPU-FP16, 4.8~17 times of GPU-FP32, and 4.5~17 times of CPU-FP32. INT8 is suitable for service with high complexity and power consumption, such as photographing and video. FP16 is suitable for service with high accuracy and low power consumption, such as pixel-wise image processing.
Quantization of the model has impacts on latency performance.
Quantization of the model has impacts on power consumption.
Since the quantization level has such large impact on the latency and power consumption of AI model, companies are expected to report the quantization level of the model used for better calibration.
Study UE capability on supported quantization levels.

UE capability design
As discussed above, there will be various kinds of UEs supporting different level of AI models with different latency performance and power consumption. Different UEs with different capabilities should be considered in the same use case. Based on the discussion, we have the following proposal.
Study mechanisms of allowing different UEs with different implementations/capabilities to serve the same use case, e.g., by defining flexible capability exchange mechanisms.
It is also possible that the available resources for AI/ML operations might be time varying, thus it is proposed to study dynamic report of computation resources and latencies.
Study procedures that allow UE to dynamically report its status for computation resources and corresponding computation latencies.

General consideration on lifecycle management
RAN3 has already done some studies for the functionality framework of AI/ML lifecycle management in RAN. The functional framework for RAN intelligence is illustrated in Figure 4-1.
· Data Collection is a function that provides a training dataset to model training and input data to model inference functions. Especially, a data pre-processing procedure may be necessary after data collection, such as channel normalization and channel decomposion.
· Model Training is a function that performs the AI/ML model training, validation, and testing which may generate model performance metrics as part of the model testing procedure. AI/ML model training can be further divided into two phases, i.e., model pre-training based on collected data and model update based on collected field data if the current model does not work well.
· Model Inference is a function that provides AI/ML model inference output (e.g. predictions or decisions). In different sub use cases, the output of model inference could be different.
· Actor is a function that receives the output from the model inference function and triggers or performs corresponding actions. Take AI/ML assisted positioning as an example, the output from the Model Inference function is the intermediate feature, and then Actor performs position estimation according to the intermediate feature.

Figure 4-1: Functional Framework for RAN Intelligence in RAN3.
It has been widely discussed that there are different collaboration levels involved in the study, from purely implementation-based solutions to close collaboration between multiple parties. For different use cases, the appropriate collaboration level would be different. These different collaboration levels would also be different for training stage and inference stage. The unified procedure or framework should facilitate all the collaboration levels deemed necessary.
Study lifecycle management for different collaboration levels case by case.
Based on above functional blocks, an example of lifecycle management procedure is provided in Figure 4-2.

Figure 4-2: An example of lifecycle management procedure.
The main steps are discussed as following.
· Traing data collection and exchange. The training data is collected by UE and then sent to gNB in real network. Or the training data is directly collected by gNB. Data processing procedure may be necessary in this step.
· Model training based on the data. Using the collected training data, the AI/ML model can be trained by gNB. The training can be either online or offline.
· Model deployment. The well trained AI/ML model is deployed or transferred to UE from gNB.
· Model activation. The AI/ML model can be activated by gNB using model ID or other signalling.
· Inference data exchange. This step is needed for two-sided model and can be omitted in one side model.
· Model inference based on the input. Accoring to the input from UE or gNB, the output of AI/ML can be obtained.
· Output report. Inference output is reported to gNB, as well as some model KPIs for performance monitoring purpose.
· Performance monitoring. The performance of the AI/ML model can be monitored by UE itself, and can also be monitored by gNB with the reported model KPIs and the final performance of UE. Model deactivation, model selection and model updating can be used to improve the AI/ML performance.
Based on the analysis of lifecycle management procedure, we have the following proposal.
For lifecycle management, agree on the following aspects for study and specification impact analysis for each of the collaboration levels.
· UE capability
· Traing data collection and exchange
· Model transfer or deployment
· Model selection, activation, and deactivation
· Model inference procedures, including exchanged data and other signalings
· Model performance monitoring and related signaling support
· Model training and updating

Collaboration levels and lifecycle management
Categorization of collaboration levels
In the last meeting, the agreement on collaboration levels is shown as
	Agreement
Take the following network-UE collaboration levels as one aspect for defining collaboration levels
1.	Level x: No collaboration
2.	Level y: Signaling-based collaboration without model transfer
3.	Level z: Signaling-based collaboration with model transfer
Note: Other aspect(s), for defining collaboration levels is not precluded and will be discussed in later meetings, e.g., with/without model updating, to support training/inference, for defining collaboration levels will be discussed in later meetings
FFS: Clarification is needed for Level x-y boundary

The motivation for defining collaboration level at least lies in the following two aspects. A clear understanding of these two aspects is important for the group to conduct the study.
· First, the lifecycle management of different collaboration levels would be different.
· Second, the potential specification impacts would be different.
Based on the two aspects, the use cases or sub use cases of AI/ML can be effectively divided into different collaboration levels, and their lifecycle management procedures and specification impacts can be studied clearly.
From the agreement of RAN1#109e, model updating is one of the aspects for defining collaboration levels, and will be discussed at this time. Model updating is one of the main parts of lifecycle management. Lifecycle management with model updating will be largely different from lifecycle management without model updating, for example, model updating itself, model deployment and performance monitoring. With model updating, the initial AI/ML model is not necessary or its performance requirements are low. Also, to make model updating work, the model updating procedure needs to be specified.
On the other hand, AI/ML inference can be categorized into one-sided models and two-sided models. Compared with one-sided model, two-sided model needs a higher level of collaboration, where the UE model and the gNB model should work together at least. Other than inference, one-sided model and two-sided model have different procedures of lifecycle management, e.g., model deployment, model training, model updating, performance monitoring.
Based on the above considerations, the lifecycle management and specification implied would be drastically different for the cases with and without model updating, as well as one-sided model and two-sided model. Thus, we prefer to have level y further split into two levels.
· Level y-a: Signaling-based collaboration for one side model without model transfer and without model update or with transparent model updating.
· Level y-b: Signaling-based collaboration without model transfer and with specified model updating.
For model transfer, there can also be two different levels. The first level is that network sends updated parameters and does not change the AI/ML model structure. The AI/ML model structure needs to be aligned before model transfer. This has been already supported by nowadays typical chipset implementations. The second level is that network sends AI/ML model parameter and structure information, in which the model structure can be changed. Dependent on how much the model structure is changed, recompilation may be needed.
Then level z would be further split into two levels.
· Level z-m: Signaling-based collaboration with model transfer only to update parameters.
· Level z-n: Signaling-based collaboration with model transfer to update parameters and model structure.
All the listed collaborations are necessary and need to be studied in the SI. The main reasons are discussed in the following.
The requirements of specific sub use cases are different. For example, auto-encoder distributed at two sides might require higher collaboration level than those used at one side.
The requirements of data sharing are different: sharing of information is not possible in some cases. For example, for CSI prediction and beam prediction only UE has the original downlink channel information and other sensor information. Thus the prediction if trained at the network side would need to be transferred from one side to the other side.
The requirements of different learning frameworks are different. Some learning frameworks can not work only in one side and then need a high-level collaboration level. One representative is federated learning, which needs the exchange of parameters/weights of AI/ML model from UE to gNB.
The collaboration levels are proposed to be defined in the following proposal.
Considering the following division of collaboration levels:
· Level x: No collaboration: Fully transparent AI/ML by implementation.
· Level y-a: Signaling-based collaboration for one-sided model without model transfer and without model update or with transparent model updating.
· Level y-b: Signaling-based collaboration without model transfer and with specified model updating.
· Level z-m: Signaling-based collaboration with model transfer only to update parameters.
· Level z-n: Signaling-based collaboration with model transfer to update parameters and model structure.

How does each collaboration level work
In this subsection, how each collaboration level works is discussed.
How does level x work
The AI/ML is fully transparent and is all by implementation. The AI/ML model training, model deployment, model updating and performance monitoring are done by just one side. The other side does not know whether this side is using AI/ML or not. UE vendor is only responsible for AI/ML models on UE, and gNB vendor is only responsible for AI/ML models on gNB. Then only one side model can work in this level.

How does level y-a work
In this level, there is signaling-based collaboration for one-sided model without model transfer and without model update or with transparent model updating. Whether AI/ML is used in UE is known by gNB, and then capability report of AI/ML would be needed. Some assistance information of AI/ML inference can be employed to improve the AI/ML performance.
Since there is no model transfer and non-transparent model updating, AI/ML models need to be trained before production by UE vendor or gNB vendor. Model updating can also be done with collected data in real deployment, without air interface involvement.
For the performance monitoring, the model is managed together by UE and gNB during lifecycle management. AI/ML model can be activated or deactivated by UE or gNB, up to the wireless environments.
Based on the above analysis, level y-a may have better performance than level x since the performance of the model is closely monitored and activated/deactivated based on the monitoring results.
However, since there is no model transfer and flexible model updating, the generalization problem will be one of the main concerns of level y-a. The AI/ML model needs to be suitable for various kinds of wireless environments, different UE or gNB implementations, thus its performance would also be degraded.
Collaboration level y-a performs better than level x.
Collaboration level y-a has generalization issue: The AI/ML model needs to be suitable for various kinds of wireless environments, different UE or gNB implementaions and configurations.

How does level y-b work
In this level, there is signaling-based collaboration without model transfer and with specified model updating. Since specified model updating is supported in this level, two-sided model can be trained by online training or offline training. For two-sided model, there are mainly two options of training.
· One is joint training. The input/output relationship of the two-sided model are learnt jointly by two sides online or offline. During the joint training, the label and the gradient information need to be exchanged, with high frequency but a small amount of information in each time.
· The other is separate training. Model-A and model-B are trained by learning a representation-1 of the input in model-A and reconstructing the output based on a representation-2 in model-B, separately, with necessary interaction. During the separate training, the input and the output of model-A or model-B need to be exchanged, with low frequency but a large amount of information in each time.
In our contribution [2], the detailed procedure of separate training in CSI compression is discussed and the results are provided as following. In setting A, the UE decoder and the gNB decoder have the same model structure. In setting B, the gNB decoder is completely different from the UE decoder, and the unquantization method in the gNB decoder does not match the quantization method in the UE decoder.
Table 5-1. Results for separate training in CSI compression.
	Samples in exchanging dataset
	Joint training with 300000 samples in step1
	600000
	300000
	100000
	50000
	25000
	10000
	5000
	2500
	1000

	Test SGCS in setting A
	0.830
	0.832
	0.827
	0.815
	0.804
	0.793
	0.776
	0.761
	0.733
	0.650

	Test SGCS in setting B
	/
	/
	0.712
	/
	/
	/
	/
	/
	/
	/

[bookmark: _Ref111217210]Large number of samples, i.e., large overhead, are needed for separate training.
Model structure alignment of two-sided model is still needed for separate training. From Table 5-1, it is seen that if the model structure is not aligned, the performance of two-sided model may be worse than expected.
With specified model updating, the AI/ML model will be potentially with finer level of adaptation to radio environment. The generalization problem will be partly solved.
For separate training in level y-b, the data ownership need to be considered. Since data exchange is needed in model updating and two-sided AI/ML, the data privacy and data ownership need to be considered. What kind of data is private, how to protect the data privacy and who is the data owner, need to be further studied.
Level y-b may potentially provide finer level of adaptation to radio environment.
Large amount of effort on specification of training procedures is expected for level y-b.
For separate training, there is data privacy and data ownership issue needing to be considered.

How do level z-m and z-n work
In these two levels, there is signaling-based collaboration with model transfer. In level z-m, network sends updated parameters and does not change the AI/ML model structure. Since only the parameters are changed, recompilation is not needed. In level z-n, network sends AI/ML model parameter and structure information, in which the model structure can be changed. Dependent on how much the model structure is changed, recompilation may be needed.
How to align the AI/ML framework between two sides needs to be studied. Currently, there are plenty of AI/ML frameworks, such as TensorFlow, PyTorch and Caffe. Each AI/ML framework has its own model storage format and can not load the model storage format of other AI/ML frameworks, for example, ‘.h5’ format used for TensorFlow and ‘.pth’ used for PyTorch. How to align the models between different AI/ML frameworks should be considered if the model itself is published to the public.
One straightforward method is that one side reports the supported AI/ML framerwork and the other side chose one. For example, UE reports that TensorFlow and PyTorch are both supported and then the network can choose one of them to describe the AI/ML model.
Another way is to define in 3GPP a common format that is recoganizable by multiple parties. A similar model alignment procedure has been conducted in the video coding community (MPEG and JVET) for evaluation purposes. Observations from JVET shows that conversion to/from ONNX (Open Neural Net Exchange) can be done from various framework. It was agreed to use ONNX format for model description for companies' evaluation of model performance(‘https://jvet-experts.org/ ’).
[image:]
Figure 5-1: The agreement of using ONNX format for model description in JVET.
Another method is to define a new format for model description by 3GPP. This will be more efficient from overhead perspectiva and may potentially be suitable for long term.
There are three options to align the AI/ML framework between two sides:
· Option 1: One side reports the supported AI/ML framework or recoganizable format for model description and the other side chose one.
· Option 2: One public format for model description is used by two sides, such as ONNX.
· Option 3: New format for model description defined by 3GPP and two sides use this new format.
With model transfer, the generalization problem can be fully solved. AI/ML model does not need to be designed for various kinds of wireless environments, different UE or gNB antenna deployments. The AI/ML model only needs to work well in a small area, since new AI/ML model can be transferred when the channel conditions have been largely changed and the old AI/ML model is no longer suitable. If UE moves to a new cell or area, new AI/ML model can be transferred and the overfitting gain can be achieved. If the UE or gNB antenna deployments change. Also, the AI/ML model can be small and simple, and UE only needs to store a small number of AI/ML models, since new AI/ML models can be transferred from gNB easily. Besides, less offline work is needed for AI/ML model alignment for joint or separate training coordination.
To verify this point, we evaluate per-cell (region) model performance. To model a per-cell (region) wireless environment, we utilize a typical ray-tracing channel model [3] in our experiment. The outdoor scenario map [3] is plotted in Figure 5-2. Specifically, we collect the channel from BS3 to UEs in user grid 1 (nearly LoS scenario) and user grid 2 (nearly NLoS scenario) respectively and all channels (~50,000 samples) in one experiment are collected in an area of 100m*35m, which is similar to a cell range. Other parameters with regarding to ray tracing could be referred to the official website [3].
[image:]
Figure 5-2: The outdoor scenario map of the ray-tracing channel model.
The initial results are presented in Table 5-2.
Table 5-2: Results for per-cell (region) model in CSI compression.
	
	SGCS of General model*,**
	SGCS of per-cell model with Transformer structure**
	SGCS of per-cell model with one-layer fully connected structure**

	User grid 1 (LoS)
	0.841
	>0.99
	>0.99

	User grid 2
(NLoS)
	0.795
	>0.99
	>0.99

*General model is trained on channel data (~600,000 samples) collected from 21 cells generated from 38.901 model.
**Other simulation parameters: carrier frequency 3.5GHz, subcarrier spacing 15KHz, 13 subbands (10MHz, 4RBs/subband), 32 gNB antenna ([Mg Ng M N P; Mp Np] = [1 1 8 8 2; 2 8]), 4 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 2 2; 1 2]), horizontal beam sweeping along x-axis, vertical beam sweeping along z-axis, 180bits payload.
Following observations are drawn on per-cell (region) model:
Per-cell (region) model could achieve near-optimal CSI compression performance at the matched area/environment, which obviously surpasses that of general models trained on data collected from a variety of situations.
Even with simple (e.g., one layer fully connected structure) and small scale (e.g., ~200kB size) model, per-cell (region) model could achieve the near optimal gain.
Based on the above analysis, we have the following observation.
Benefits and concerns for level z-m and level z-n:
· Per single cell or multiple cells optimization of AI/ML model.
· Low requirement on generalization performance.
· Simpler and smaller AI/ML model.
· Low storage cost of small number of AI/ML models.
· Less offline work for AI/ML model alignment for joint or separate training coordination.
Since the AI/ML model is transferred from one side to the other side, there may be concerns on the model privacy and model ownership. However, as seen in the above simulation results of the per-cell (region) wireless environment, one layer fully connected structure and small scale (e.g., ~200kB size) model could achive the near optimal gain. With model transfer, the requirement on generalization would be much lower, thus the performance of simple and small AI/ML model may be enough. This problem may no longer exist for majority cases.
In level z-m and level z-n, with the possibility of flexible model updateing procedures, simple and small AI/ML models may dig out most of the gains without stringent requirement on generalization performance. For such simple and small models used, there is no model privacy and model ownership issues.

The summary of collaboration levels
In sum, the comparison of different collaboration levels is summarized in the following table.
Table 5-3: The comparison of different collaboration levels.
	
	Level x
	Level y-a
	Level y-b
	Level z-m and level z-n

	Performance
	Worst in all collaboration levels. Suffers from generalization issue.
	Better than level x. Suffers from generalization issue.
	Better than level y-a. Partly resolve generalization issue.
	Best in all collaboration levels. No generalization issues.

	Overhead on air interface
	No extra overhead.
	Low, with some assistance information of AI/ML inference.
	High, with much assistance information for training, such as a lot of samples.
	Low to mdedium, with the information of AI/ML model.

	Offline work
	Not needed.
	For two-sided models, UE vendor should align with NW vendor offline.
	Model structure alignment of two-sided model may be still needed.
	No need for additional offline work. For level z-m, model structure alignment might be needed.

	Model complexity
	High complexity.
	High complexity.
	High complexity.
	Low complexity.

	Stored model number
	Large number.
	Large number.
	Large number.
	Small number.

	Specification effort
	None
	Signalling enhancement.
	Model training procedure.
	Model transfer procedure.

	Testability
	N.A.
	Legacy procedures can be conducted for one sided model. How to test generalization performance needs discussion.
	For two sided models, the test would be very challenging considering another entity Tesing Equipment involved.
	Testable.

Lifecycle management under different collaboration levels
As analyzed above, the characteristics of model training and model inference for the different collaboration levels are as follows:
Table 5-4: Model Training and Model Inference for the different collaboration levels
	Collaboration Levels
	Model Training
	Model Inference

	Level x
	Conducted at one side only, i.e., network or UE, and is transparent to the other side.
	Conducted at one side only, i.e., network or UE, and is transparent to the other side.

	Level y-a
	Conducted at one side only, but requires additional signaling or procedure enhancements between two sides, potentially with the existing signaling framework.
	Conducted at one side only, but requires additional signaling or procedure enhancements between two sides, potentially with the existing signaling framework.

	Level y-b
	Conducted at one side or both sides of network and UE, with training information exchange between two sides.
	Conducted at one side or both sides of network and UE, and the output of one side can be the input of the other side.

	Level z-m and z-n
	Conducted at one side or both sides of network and UE, with training information exchange between two sides.
	Conducted at one side or both sides of network and UE, and the output of one side can be the input of the other side.

In general, the applicable collaboration levels and corresponding model lifecycle management procedures may be different for different use cases.
In the following, the lifecycle management of different collaboration levels will be analyzed separately.

Lifecycle management under level x
No specification impact is expected for level x.
No specification impact is expected for level x.

Lifecycle management under level y-a
In the following, lifecycle of level y-a is as following analyzed.
· Data collection: Since there is only transparent model updating, data collection is not involved in this level.
· Model deployment: Since model transfer only works in level z-m and level z-n, model deployment on air interface is not supported in this level y-a. The AI/ML model needs to be well pre-trained by UE vendor or g-NB vendor or jointly and deployed to UE or g-NB before usage.
· Online training: Online training is not support with only transparent model updating.
· Model registration/ Model ID: They are not supported in this level, since the model ID of one side model is not supposed to be seen in the other side, without specified model updating. Only support the AI/ML model activation or deactivation.
· Model activation/deactivation/selection: Support model activation and deactivation, not support model selection, since there is no need for model ID in this level.
· Model updating: Model updating is transparent on air interface in this level. Model update can also be done with collected data in real deployment, without air interface involvement.
· Performance monitoring: The model can be managed together by UE and gNB during lifecycle management, since gNB knows whether UE is using AI/ML model or not. The intermediate KPIs of AI/ML model and the final system performance can be both monitored by UE and gNB.
Based on the above analysis, we have the following proposals.
Base on analysis on life cycle management, the expected specification impacts of level y-a are:
· Capability report
· Assistance information for inference
· Signaling-based model management
· Model activation and deactivation
· Performance monitoring

Lifecycle management under level y-b
In the following, lifecycle management of level y-b is analyzed.
· Data collection: To better train the AI/ML model, training data collection is needed in this level. UE can use current CSI reporting, enhanced CSI reporting, or new report format to send the collected data. Large amount of collected data reporting could be specified for better reporting efficiency.
· Model deployment: Not support on air interface, since model transfer only works in level z-m and level z-n. The AI/ML model can be well pre-trained by UE vendor or g-NB vendor or jointly and deployed to UE or g-NB before usage. Or, the AI/ML model is not well pre-trained and updated mainly by online training.
· Model training: This is the key point of this level. There are different training options. The expected effort for level y-b mainly lies in this aspect.
· Joint training: Support. To use two-sided model, UE vendor and gNB vendor do not need to align the model offline before usage. The model can be trained online or offline by exchanging the label and the gradient information, with high frequency but a small amount of information in each time.
· Separate training: Support. To use two-sided model, UE vendor and gNB vendor do not need to align the model offline before usage. The model can be trained online or offline by exchanging the input and the output of encoder or decoder, with low frequency but a large amount of information in each time.
· Model registration/ Model ID: Support in this level, since model ID is necessary during model updating to distinguish the old model and the new updated model. UE can send the model registration signaling to gNB and then gNB responds with a model ID.
· Model activation/deactivation/selection: Support in this level, since the model can be selected or switched using model ID.
· Model updating: Support on air interface, since model training is supported. Two-sided model can be updated using joint training or separate training. One side model can be updated with data collected in real network and with assistance information of other 3GPP entities.
· Performance monitoring: Similar to level y-a.
Based on the above analysis, we have the following proposals.
Expected specification impacts of level y-b are:
· Data collection assistance
· Model registration and model switching
· Model updating procedures, including separate training or joint training
· Other necessary aspects in level y-a

Lifecycle management under level z-m and level z-n
In the following, lifecycle management of level z-m and level z-n is analyzed.
· Data collection: Similar to level y-b.
· Model transfer: It is supported over air interface and it is the key differentiation of level z-m and level z-n with others. The AI/ML model can be pre-trained before usage. There are two options of model transfer as follows.
· Level z-m: Network sends updated parameters and does not change the AI/ML model structure. The AI/ML model structure needs to be aligned before model transfer. This has been already supported by nowadays typical chipset implementations.
· Level z-n: Network sends AI/ML model parameter and structure information. Here the model structure can be changed. Dependent on how much the model structure is changed, recompilation may be needed.
· Model activation/deactivation/selection: Similar to level y-b.
· Performance monitoring: Similar to level y-a. Since network knows the AI/ML model information, the performance of AI/ML model can be monitored better with more details.
Based on the above analysis, we have the following proposals.
Expected specification impacts of level z are:
· Model transfer
· Other necessary parts in level y-a and level y-b, except specified model update procedures
In Appendix B, model updating graunularities for different collaboration levels have been analyzed. Based on the preliminary analysis, we propose:
Study lifecycle management for different granularities of model training and update.

Consideration on data collection.
One of the key elements for AI/ML evolution is large amount of data to extract useful features. To have an effective model trained for real-world problems, quite a few aspects need to be taken into account.
The quality of datasets needs to be considered. The only criteria to determine whether a specific dataset satisfies the expectations is whether the real-world problem can be effectively resolved. The following table shows some initial evaluation results for different scenarios for CSI compression. It can be seen that for a target scenario InH, if the training dataset is only constructed by the data collected from UMi, then the performance of the model would be poor. It is also true the other way around. If the dataset is properly adjusted to include more data from InH, then the performance would be much better for the target scenarios. If the representativeness is not good enough the performance of the trained model would not be useful for the target scenarios.
Table 6-1: The impact of different data constructions for CSI compression
[image:]
Dataset construction would influence the performance of trained models.
Study how to construct a representative dataset (including matching between training and inference) for real-world problems for each use case/sub use case.
One of the possible ways to have a representative dataset is to collect real-world data and mix the data with pre-defined synthetic dataset. Such mixture of dataset can be used to train a model with good generalization performance. To collect data from real world, there are several ways as below. These different ways of data collection would have different overheads and latencies.
· Direct collection of data.
· The data is collected at one entity and then exchanged between multiple entities.
· Overhead of this collection would be large since size of the raw data would be huge. Sometimes direct collection of data would be of very high cost, if possible. Rewarding in actors for reinforcement learning can also be viewed as direct collection of data. Overhead of such data collection would be relatively small.
· Latency of this way of data collection can be small if the data is collected in real time very few samples interval.
· Collection of processed data or data characteristics.
· For example, distribution information for the channel can be collected and exchanged between entities. Based on the characteristics, the data is re-generated at different entities.
· Overhead of the collection can be small but may cause performance degradation if not properly designed.
· Latency of this way of data collection would be dependent on how many samples are needed for the compression.
Study different ways of dataset construction from overhead and latency perspective.
Aligned understanding between two sides would be needed to use the collected data. For example whether the CSI-RS channel information is in frequency domain or time domain, or whether some de-noise function is needed or not. Dependent on how far the specification of AI/ML over air interface can go, it may be allowed to have several ways of pre-processing for the collected data for one sub use case, or only one fixed preprocessing is allowed. If fixed reference input is specified, the data collection may focus on those reference point where the specification is defined. But if for a specific use case, different preprocessings are allowed, it would be necessary to be aligned on how the data is preprocessed and where the reference point is for the data collection. The detailed formats for the reference point should be clarified.
Study how to align the reference point for data collection between different parties.
The interactions between data collection and data training would also need to be considered. It is possible that dataset is constructed first by synthetic data mixed with some real-world data. Then after validating the model in the real-world and based on the validation performance, more data can be collected. The model is finetuned further with the newly collected data. Based on further iterations, the models can be further finetuned. Further data collection is also possible if more data is collected.
When deployed for use, the model performance can always be monitored, based on monitoring, more data/failure analytics can be ollected for learning from the analytics.
[image:]
Figure 6-1: Iterative procedures for data collection and data training.
Study data collection requirements in different stages of the model generation and finetuning.
For different use cases, the entities involved in the data collection would be different. The collected data would need to be transferred to those entities responsible for training. Thus properly choosing the involved entities could save the effort of moving data from/to different entities. Currently, UEs, gNBs, LMF, NWDAF, OAM are all possible options. Some of the interactions between these entities may go beyond the scope of RAN1. But common understanding of what these interactions are like may well impact RAN1 discussion on the framework and use cases.
Study options for interactions between different entities for data collection, e.g., the interactions between UE, gNB, LMF, NWDAF, etc. Send LS to RAN3 and SA to ask the feasibility of these options.

Common evaluation methodologies for three use cases
In this section, common evaluation methodologies for all use cases are discussed, including field data, intermediate results, generalization performance, ONNX and simulation calibration.
Field data
Field data is collected from practical wireless systems and include the actual wireless features. Since AI models in commercial products should match the practical wireless environment, field data is necessary for the commercial stage. For study purposes, field data can provide rough performance gain of AI/ML. On the other hand, there are some factors which are not considered in simulation data but are involved in field data, for example, the path moving in CSI prediction. If there are field data collected for performance tests, it can also be used as a reference as long as the conditions for data collection are clearly documented and the statistics of the data are clearly analyzed.
The field data test results can be used as a reference if they are justified and well documented.
[bookmark: _Hlk111228048]Furthermore, to evaluate real world performances and extract the potential gains provided by AI/ML, map-based hybrid channel model in 38.901 can also be considered to construct dataset for training and testing. The map can be based on open data set as in [3] or based on company proposed ones which mimic the actual deployment scenarios.
Support to use map-based hybrid channel model in 38.901 as one of the optional channel models in EVM table, where the map can be generated based on open data set or based on per-company proposed ones.

Evaluation methodology
To align the performance gain for each sub use case between different companies, simulation calibration is important and should be done in the evaluation stage. Dataset is one aspect that influences the aligned understanding on the performance of AI/ML over air interface. If the dataset for AI/ML model training is different for different companies, it would be impossible for companies to be aligned on the performance of AI/ML. There are two ways on the table for companies to be aligned on this issue:
Alt1: Provide details as much as possible for the generation of datasets.
Alt2: Directly provide publicly accessible dataset for training and testing.
It is preferable to go with Alt1+Alt2 since this would resolve the misalignment between companies to the largest extent.
For better simulation calibration, our datasets of each use case have been uploaded in [4]-[7].
It is encouraged for companies to provide publicly accessible datasets for training and testing for cross-checking purposes. Our datasets of each use case have been uploaded in [4]-[7].
Yet another aspect is model training and design aspect. If companies have different structures of models or different ways of training, the AI/ML performance would also be different. AI model should thus also be calibrated. Several levels of AI model alignment could be considered.
· At least for the baseline performance calibration, a simple and fixed model could be used for each sub use case. The full-connected network is one of the simplest AI models that could be used for this purpose. Companies could align on the hyper-parameters used for the fully connected models.
· For the second level, selected and recommended models for evaluations for applied areas could be collected from company inputs. The provided models include both model structures and ways of training.
· For the third level, companies could directly provide the model itself in a typical file format together with above mentioned publicly accessible dataset. Other companies could use the model and dataset together to cross-check the performance. For example, the above mentioned ONNX is an option.
It is encouraged for companies to provide model description files in pre-defined file format for cross-checking purposes (e.g. ONNX). With the help of ONNX and the corresponding dataset, all companies can choose their own tools (e.g. TensorFlow or PyTorch) to verify the performances.

AI model size
AI model size is also another important aspect that influences evaluation performances. An upper limit for the evaluation should be set thus companies can compare the performance in a fair way.
Consider setting up an upper limit for model size for a fair comparison between companies. 1~10Mega parameters size can be considered.

Initial consideration on RAN4 aspects
For RAN4 tests on AI/ML over air interface, there would be two general principles.
· Focus on performance/functionality of model inference test. AI/Model training is done offline before test is conducted. No model training and model update during the test.
· Different methodologies need to be considered for one- and two-sided models
Non-AI algorithms are based on communication theories and then have strong physical meanings. Their performances on communication systems are robust and predictable to some extent.
AI/ML algorithms are based on machine learning and have weak physical meanings. They could work very well on scenarios similar to the scenario that generates training data. But if the scenarios for test is different from the scenario where the training data is generated, the performance would degrade. The channel conditions of real environment are complex and diversified. It is necessary in RAN4 to discuss whether and how to test the generalization performance of AI/ML algorithms.
Discussion is needed on whether and how to test generalization performance, e.g., how to guarantee a model tested is effective in real deployment.
For UE side only AI/ML model test framework, AI/ML inference is similar to the legacy UE internal algorithm. Then similar test procedure could be used in this case. Candidate sub-use cases are CSI prediction combined with legacy codebook, spatial domain beam prediction, and temporal beam prediction.
Two-sided AI/ML model test framework is very challenging from a test feasibility perspective. Candidate sub-use cases are CSI compression using two-sided model, and joint CSI prediction and CSI compression. It should be discussed how TE could be involved considering different collaboration levels. could TE/UE train the paired AI/ML model. Separated training or joint training is used to train the two-sided model, but model training and model updating are not preferred in RAN4 test. Would it be feasible for TE to implement a paired model emulating gNB side model, especially would it be feasible to be used to verify performance in practical NW to some extent? These issues should be fully discussed in RAN4.
Paired model for TE/UE is challenging for RAN4 test for two-sided AI/ML model.

Conclusions
1. Agree on the following definitions:
· Online training: An AI/ML Model training process at a device/node that also performs model inference, which utilizes the received training data to update the model in real-time. The device/node shall use the updated model for model inference.
· Offline training: An AI/ML Model training that utilizes the stored data to obtain an AI/ML Model. The model can be used by itself or transferred to other devices/nodes for model inference.
Revise the ‘model parameters’ to ‘model hyperparameters’ in the definition of AI/ML model validation.
Clarify ‘model testing’ that it is only for RAN1 discussion purpose. RAN4 can further discuss corresponding definition when necessary.
Capture the terminologies in the working assumption in the TR.
The following aspects need to be studied for model transfer capability:
· Whether UE supports model structure update or only model parameter update
· Which AI/ML model description format UE supports.
Study the feasibility and necessity of defining model training capability, regarding latency of model training, dataset size for model training, etc.
Study ways for UE to report its capability for data collection regarding expected pre-processing, data storage, feature extraction and report for data collection.
1. Initial test of typical models for latency on typical chipsets in Figure x shows that the latency for neural network operation latency on UE are within the range of interest for air interface applications.
Study ways for UE to report its capability for latencies with respect to the model inference.
Companies are encouraged to provide results in the following table for complexities and expected latencies (under certain base chipset computation power assumption) or latency requirements (for the target use case) for the models used for each use case.
Power consumption for typical neural network operation on typical chipsets are at the same level of power consumption as for SSB or CSI-RS processing or PDCCH decoding.
Even with the similar FLOPs, the performance of different models would be different for latency and power consumption.
Companies are encouraged to assess power consumptions for the models used for each use case for KPI evaluation and also for defining feasible options for the reported latency/complexity values of AI/ML capabilities.
Quantization of the model has impacts on latency performance.
Quantization of the model has impacts on power consumption.
Study UE capability on supported quantization levels.
Study mechanisms of allowing different UEs with different implementations/capabilities to serve the same use case, e.g., by defining flexible capability exchange mechanisms.
Study procedures that allow UE to dynamically report its status for computation resources and corresponding computation latencies.
Study lifecycle management for different collaboration levels case by case.
For lifecycle management, agree on the following aspects for study and specification impact analysis for each of the collaboration levels.
· UE capability
· Traing data collection and exchange
· Model transfer or deployment
· Model selection, activation, and deactivation
· Model inference procedures, including exchanged data and other signalings
· Model performance monitoring and related signaling support
· Model training and updating
Considering the following division of collaboration levels:
· Level x: No collaboration: Fully transparent AI/ML by implementation.
· Level y-a: Signaling-based collaboration for one-sided model without model transfer and without model update or with transparent model updating.
· Level y-b: Signaling-based collaboration without model transfer and with specified model updating.
· Level z-m: Signaling-based collaboration with model transfer only to update parameters.
· Level z-n: Signaling-based collaboration with model transfer to update parameters and model structure.
Collaboration level y-a performs better than level x.
Collaboration level y-a has generalization issue: The AI/ML model needs to be suitable for various kinds of wireless environments, different UE or gNB implementaions and configurations.
Large number of samples, i.e., large overhead, are needed for separate training.
Model structure alignment of two-sided model is still needed for separate training. From Table 5-1, it is seen that if the model structure is not aligned, the performance of two-sided model may be worse than expected.
Level y-b may potentially provide finer level of adaptation to radio environment.
Large amount of effort on specification of training procedures is expected for level y-b.
For separate training, there is data privacy and data ownership issue needing to be considered.
There are three options to align the AI/ML framework between two sides:
· Option 1: One side reports the supported AI/ML framework or recoganizable format for model description and the other side chose one.
· Option 2: One public format for model description is used by two sides, such as ONNX.
· Option 3: New format for model description defined by 3GPP and two sides use this new format.
Per-cell (region) model could achieve near-optimal CSI compression performance at the matched area/environment, which obviously surpasses that of general models trained on data collected from a variety of situations.
Even with simple (e.g., one layer fully connected structure) and small scale (e.g., ~200kB size) model, per-cell (region) model could achieve the near optimal gain.
Benefits and concerns for level z-m and level z-n:
· Per single cell or multiple cells optimization of AI/ML model.
· Low requirement on generalization performance.
· Simpler and smaller AI/ML model.
· Low storage cost of small number of AI/ML models.
· Less offline work for AI/ML model alignment for joint or separate training coordination.
In level z-m and level z-n, with the possibility of flexible model updateing procedures, simple and small AI/ML models may dig out most of the gains without stringent requirement on generalization performance. For such simple and small models used, there is no model privacy and model ownership issues.
No specification impact is expected for level x.
Base on analysis on life cycle management, the expected specification impacts of level y-a are:
· Capability report
· Assistance information for inference
· Signaling-based model management
· Model activation and deactivation
· Performance monitoring
Expected specification impacts of level y-b are:
· Data collection assistance
· Model registration and model switching
· Model updating procedures, including separate training or joint training
· Other necessary aspects in level y-a
Expected specification impacts of level z are:
· Model transfer
· Other necessary parts in level y-a and level y-b, except specified model update procedures
Study lifecycle management for different granularities of model training and update.
Dataset construction would influence the performance of trained models.
Study how to construct a representative dataset (including matching between training and inference) for real-world problems for each use case/sub use case.
Study different ways of dataset construction from overhead and latency perspective.
Study how to align the reference point for data collection between different parties.
Study data collection requirements in different stages of the model generation and finetuning.
Study options for interactions between different entities for data collection, e.g., the interactions between UE, gNB, LMF, NWDAF, etc. Send LS to RAN3 and SA to ask the feasibility of these options.
The field data test results can be used as a reference if they are justified and well documented.
Support to use map-based hybrid channel model in 38.901 as one of the optional channel models in EVM table, where the map can be generated based on open data set or based on per-company proposed ones.
It is encouraged for companies to provide publicly accessible datasets for training and testing for cross-checking purposes. Our datasets of each use case have been uploaded in [4]-[7].
It is encouraged for companies to provide model description files in pre-defined file format for cross-checking purposes (e.g. ONNX). With the help of ONNX and the corresponding dataset, all companies can choose their own tools (e.g. TensorFlow or PyTorch) to verify the performances.
Consider setting up an upper limit for model size for a fair comparison between companies. 1~10Mega parameters size can be considered.
Discussion is needed on whether and how to test generalization performance, e.g., how to guarantee a model tested is effective in real deployment.
Paired model for TE/UE is challenging for RAN4 test for two-sided AI/ML model.

References
[bookmark: _Ref111205469]3GPP “Session notes for 9.2 (Study on AI/ ML for NR air interface)” TSG RAN WG1 #109-e, May 9-15, 2022.
[bookmark: _Ref101427648]vivo, R1-2206032, “Evaluation on AI/ML for CSI feedback enhancement”, RAN1 #110, August 22-26, 2022.
A. Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications,” in Proc. of The Information Theory and Applications Workshop (ITA), San Diego, CA, Feb. 2019. Codes and instructions available at ‘https://deepmimo.net/’.
[bookmark: _Ref102033778]vivo, “Dataset for AI CSI feedback”, https://commonbox.vivo.xyz/s/VkhgUFG2hhd.
[bookmark: _Ref102074620]vivo, “Dataset For AI CSI Prediction”, https://commonbox.vivo.xyz/s/1qv4tjQ5efk.
vivo, “Dataset for beam management”, https://commonbox.vivo.xyz/s/gMEadbdyFtd.
vivo, “Dataset for AI Positioning”, https://commonbox.vivo.xyz/s/UQnWAcqp2DL.

Appendix A: Exemplary model lifecycle management procedure
An example of the model lifecycle management procedure is shown in Figure A-1.

Figure A-1: model lifecycle management procedure
Step 1: The Data Collection function provide essential input data to Model Training;
Step 2: The Model Training function performs the AI/ML model training, validation, and testing after data preparation;
Step 3: If the Model Inference locates at UE side, the UE shall provide the AI related capability to Model Training;
Step 4: The Model Training function sends the trained, validated, and tested AI/ML model to the Model Inference function;
Step 5: The Data Collection function provide essential input data to Model Inference;
Step 6: The Model Inference performs data preparation and provides AI/ML model inference output;
Step 7: If the Actor and the Model Inference are not in the same location, the Model Inference sends the output to Actor;
Step 8: The Actor may feedback the essential information that can be used by the Model Training to monitor the performance of the AI/ML Model and the feedback can be transferred via Data Collection;
Step 9: The Model Inference may feedback model performance that can be used by the Model Training to monitor the performance of the AI/ML Model and the feedback can be transferred via Data Collection;
Note: Steps 8 and 9 are not strictly in order of sequence.
Step 10: The Data Collection function provide essential input data to Model Training for model fine-tuning;
Step 11: The Model Training function performs the model fine-tuning, validation, and testing after data preparation;
Step 12: The Model Training function sends the updated, validated, and tested AI/ML model to the Model Inference function. The Model Training may also release the deployed model for some reasons, e.g., the model fine-tuning failed.

Appendix B: Model updating graunularities for different collaboration levels
One of the key issues for lifecycle management is how often the model needs to be updated. In this section, we have some preliminary analysis on the granularities of model update.
In most cases, the parametric model defines a distribution and we simply use the principle of maximum likelihood. This means we use the cross-entropy between the training data and the model’s predictions as the cost function, as described

where is the input data vector, is the known data vector (or label), is the coefficient vector or the weight vector, acquired by the training procedure, all in a given AI neural network.
It is worthwhile noting that, the training set associated with any input pair of can be expressed as

In such a procedure, accordingly, the AI model can be trained by means of the off-line training manner under the condition of the statistic wireless channel model and can be considered as a universal AI model for any UE or gNB uses.
However, the channel factors influenced by gNB are comparatively stable, while the channel factors influenced by UE are unpredictable, with respect to the antenna direction and location. In addition, the channel model utilized for performance evaluation mainly refers to TR 38.901, where the long-term channel factors such as receive antenna field patterns (i.e., AoA and ZoA), receive antenna location vector, transmit antenna field patterns (i.e., AoD and ZoD), and transmit antenna location vector update statically, while the short-term channel factors such as Doppler frequency update dynamically. Consequently, therefore, a universal AI model purely trained by a statistic wireless channel model may be not feasible in terms of the complexity of neural network and the overall AI-based system performance. Somewhat UE assistance mechanism in addition to cell-based training model may be necessary.
Thanks to the unique wireless channel behaviors, we believe that the training set can be possibly divided into training subsets relying on the long-term statistic channel parameters. If we assume that the -th subset is associated with the parameter of , the training set can be represented as

where can be seen as the assisted parameter vector, , and the -th training subset can be expressed as
;			for	 .
If the subset and subset are completely independent, i.e., , for , and the distribution associated with the parameter of is approximated as

Then, the cross-entropy between the training data and the model’s predictions can be

If the parameter vector of is given, the cross-entropy in the training procedure for the parametric model with the pre-known can be individually represented as
 Eq. 1
where , and is the total number of training models.
It is worthwhile noting that, the AI models can be trained by means of offline manner and utilized by each UE accordingly. This does imply that each AI-model can be seen as a sub model, and the K sub models form a cell-specific AI model which can be operated by all the UEs if connected with the corresponding gNB.
As one specific example, by geographically dividing the network area, AI models associated with different areas can be distinguished and the related tasks associated with AI models would be limited. This results in the improvement of the accuracy and effectiveness of the AI model, and the reduction of the complexity of AI neural networks. To achieve the above purpose, the network may perform regional division of geographic coordinates through a zone identification (i.e., Zone-ID). The network determines the network coverage area related to the maximum communication range according to the geographic location of the gNB, which is further divided into multi-zones represented by Zone-ID. As illustrated in Figure B-1, the size of each zone with is configurable according to the use-cases and the deployed scenarios, where is the zone length and is the zone width. During the AI model training procedure, the training dataset can be distinguished by the Zone-ID in the network coverage area. Therefore, the trained AI model behaves the characteristics of the zone indicated by Zone-ID.
Therefore, the training procedure for the parametric model with the pre-known parameter, , can be individually trained as formulated in Eq. 1, where is the Zone-ID within the maximum communication range .
It is worthwhile noting that this type of AI model training process can be completed by either the UE or by the network.
[image:]
Figure B-1: Schematic diagram of distinguishing AI models based on geographic information
By dividing different orientations of the network, alternatively, AI models associated with different orientations from gNB can be distinguished and the related tasks associated with AI models can be limited. This also results in the improvement of the accuracy and effectiveness of the AI model and the reduction of the complexity of AI neural networks.
As illustrated in Figure B-1, the area covered by the network is divided into orientations (or azimuths), and each orientation forms a pie-shaped directional sub area, denoted by , where is the ID of the gNB and is the subregion-orientated index. Optionally, the widths of the pie-shaped sub regions formed by the orientation of each sub region could be the same or different and determined by high-level configuration. More specifically, each sub region orientation can be regarded as an orientated beam (i.e., directional beamforming), where the orientated beam width is . During the AI model training procedure, if the gNB or UE can roughly acquire the geographic location of the UE or the AoA/DoA associated with the gNB, the AI training dataset can be distinguished by the orientation of each sub region. In such a case, the gNB or UE only uses the data related to the orientation of the sub region to train the AI model, which behaves the orientation features.
Therefore, the training procedure for the parametric model with the pre-known parameter, , can be individually trained as formulated in Eq. 1, where is the subregion-orientated index within the maximum communication range .
It is worthwhile noting that this type of AI model training process can be completed by either the UE or by the network as well.
[image:]
Figure B-2: Schematic diagram of distinguishing AI models based on direction information

Appendix C: Introduction of ONNX
ONNX (Open Neural Net Exchange, ‘https://onnx.ai/’) aims to support a common intermediate representation for AI models transmission for both deep learning and machine learning. It is developed as a common data format but not an AI framework or a development tool, so it can be compatible with any AI framework including tensorFlow, pytorch and so on. In the design of ONNX, model structure and weights are sequenced by Protobuf. It defines an extensible computation graph with nodes with operators and handles all weights as inputs or outputs. It also defines the standard data types.
In ONNX, the computation graph is composed of some nodes and each node has several inputs and outputs. All the tensors are identified by its name. The same input name of node A and output name of node B means node A and B are connected. All weights are also identified by their names and corresponding to some nodes as inputs or outputs. Then the computation graph is constructed with the input name and the output name of each node.
With the help of ONNX, All developers can choose their own tools to develop their models and load other models in different framework. And now, ONNX is supported in many frameworks, tools and even some hardwares officially. Since ONNX does not impose restriction on operators, the same construct or function can be transformed to different combinations of nodes for different developers. All developers can have their specific transition code, which means it can be enhanced further to support other destinations like security.
The latency (ms) of typical AI models for image and video in typical chipsets

Chipset 1	
AI Model 1 	
(0.88 GTOPs)	AI Model 2 	
(1.14 GTOPs)	AI Model 3 	
(4.39 GTOPs)	AI Model 4	
 (11.5 GTOPs)	1.1001100110011	1.1299435028248588	2.0491803278688527	1.8214936247723132	Chipset 2	
AI Model 1 	
(0.88 GTOPs)	AI Model 2 	
(1.14 GTOPs)	AI Model 3 	
(4.39 GTOPs)	AI Model 4	
 (11.5 GTOPs)	1.3698630136986301	0.90009000900090008	3.3003300330033003	2.6315789473684208	Chipset 3	
AI Model 1 	
(0.88 GTOPs)	AI Model 2 	
(1.14 GTOPs)	AI Model 3 	
(4.39 GTOPs)	AI Model 4	
 (11.5 GTOPs)	1.5105740181268883	1.5105740181268883	3.3670033670033668	5.1020408163265305	
The latency (ms)

The complexity and latency comparison between AI models

AI Model 1 (0.88 GTOPs)	
Complexity	Latency in Chipset 2	Latency in Chipset 3	0.77200000000000002	1.522	1	AI Model 2 (1.14 GTOPs)	
Complexity	Latency in Chipset 2	Latency in Chipset 3	1	1	1	

The latency ratio of typical AI models of different quantization levels

NPU-INT8	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	0.02	5.9171597633136092E-2	NPU-FP16	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	3.2051282051282048E-2	0.11764705882352941	GPU-FP32	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	9.6153846153846159E-2	1	CPU-FP32	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	9.0090090090090086E-2	1	
The latency ratio

The power consumption ratio of typical AI models of different quantization

NPU-INT8	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	2.0593080724876441E-3	1.029654036243822E-2	NPU-FP16	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	6.1779242174629318E-3	3.130148270181219E-2	GPU-FP32	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	1.9769357495881382E-2	0.23929159802306421	CPU-FP32	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	0.10378912685337727	1	
The power consumption ratio

image1.png

image2.emf
Data CollectionModel Training Model Inference ActorTraining DataInference DataOutputModel Deployment/UpdateModel PerformanceFeedbackFeedback

Microsoft_Visio_Drawing.vsdx
Data Collection
Model Training
Model Inference
Actor
Training Data
Inference Data
Output
Model Deployment/
Update
Model Performance
Feedback
Feedback

image3.emf
gNBUE2. Model training based on the data1. Training data collection and exchange4. Model activation5. Inference data exchange6. Model inference based on the input7. Output report- Inference output- model KPI8. Performance monitoring- Model deactivation - Model selection- Model updating 3. Model deployment

Microsoft_Visio_Drawing1.vsdx
gNB
UE
2. Model training based on the data
1. Training data collection and exchange

4. Model activation
5. Inference data exchange
6. Model inference based on the input

7. Output report
- Inference output
- model KPI

8. Performance monitoring
- Model deactivation
- Model selection
- Model updating

3. Model deployment

image4.png

image5.png

image6.png

image7.png

image8.emf
Data CollectionModel TrainingModel Inference3. AI Capability2. Model training based on the input9. Performance feedback4. Model deployment11. Model fine-tuning12. Model update/releaseActor6. Model inference based on the input8. Feedback1. Input data exchange5. Input data exchange10. Input data exchange7. Output

Microsoft_Visio_Drawing2.vsdx
Data Collection
Model Training
Model Inference

3. AI Capability
2. Model training based on the input

9. Performance feedback
4. Model deployment
11. Model fine-tuning

12. Model update/release
Actor
6. Model inference based on the input

8. Feedback
1. Input data exchange
5. Input data exchange
10. Input data exchange

7. Output

image9.emf
TrainingZonegNB-nUE

image10.emf
gNB-nDirectionalSub-area,

