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[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In the RAN1 #109-e meeting [1], it was agreed that the IIoT indoor factory (InF) scenario is a prioritized scenario for the evaluation of AI/ML based positioning. For the further evaluation companies reached an agreement that at least two types of sub use cases including direct AI/ML positioning and AI/ML assisted positioning for positioning accuracy enhancement are considered and the evaluation results as shown in below are encouraged to be provided.
	Agreement
Companies are encouraged to provide evaluation results for:
· Direct AI/ML positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· AI/ML assisted positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· details of the output of the AI/ML model inference, how the AI/ML model output is used to obtain the UE’s location


In our companion contribution [2], we have proposed the following two specific techniques belonging to the two types of agreed sub use cases, respectively:
· Direct AI/ML positioning
· AI/ML-based fingerprint positioning
· AI/ML assisted positioning
· AI/ML-based LOS/NLOS Identification
In the remainder of this contribution, the above sub use cases are discussed and evaluation results are presented. The evaluation methodology, KPIs, and also evaluation results are presented for both sub use cases.
Evaluation methodology of the agreed use cases
[bookmark: _Ref110539387]Direct AI/ML positioning
Generic fingerprint positioning mechanism
Traditional positioning algorithms such as TDoA and AoA are based on LOS channels, and are no longer applicable in environments where NLOS paths dominate. In these scenarios, the number of gNBs that have LOS channels with the UE is relatively small. As a result, the precision of the traditional positioning algorithm cannot meet the requirements of high-accuracy positioning applications. At the same time, existing research shows that, based on a large amount of channel data, a mapping relationship between channel features and location coordinates can be established by using an AI/ML method. This method, namely AI/ML-based fingerprint positioning, can achieve reliable accuracy under heavy NLOS conditions, where the positioning accuracy of traditional methods may be > 10m@90%. We are therefore making the following proposal: 

Proposal 1 [bookmark: _Ref111139695]: AI/ML-based fingerprint positioning should be adopted for the evaluation of the direct AI/ML positioning accuracy enhancements under heavy NLOS conditions in Rel-18.
Figure 1 gives an overview about the AI/ML-based fingerprint positioning process. It exploits that each UE position can be associated with a unique channel characteristic (i.e. the fingerprint). The AI/ML model can learn this relationship for a given environment and then use it to determine the UE coordinates based on the measured channel characteristics. 
	[image: ]


[bookmark: _Ref100767732]Figure 1 AI/ML-based fingerprint positioning process
Spatial consistency
In the RAN1 #109-e meeting [1], companies reached consensus that spatial consistency modeling is important for evaluating the feasibility of AI/ML-based fingerprint positioning, with the agreement as follows:
	Agreement
If spatial consistency is enabled for the evaluation, companies model at least one of: large scale parameters, small scale parameters and absolute time of arrival, where
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901


It should be noted that spatial consistency is required for channel modelling in the AI/ML-based fingerprint positioning. With spatial consistency, at the same drop of the simulation, two UEs with close locations will have similar channel characteristics. Spatial consistency also reflects the real channel characteristics in deployment, therefore it should be represented in channel modeling at large scale parameters, small scale parameters and absolute time of arrival for dataset generation. This is important for dataset generation used in AI/ML-based fingerprint positioning under heavy NLOS conditions. For modeling the spatial consistency, we adopt 2D-filtering method described as illustrated in Figure 2.
[image: ]
[bookmark: _Ref110520268]Figure 2 2D-filtering spatial consistency modelling according to 3GPP TR 38.901
In 3GPP, a spatial correlation of the small scale fading is introduced in the channel generation. Its procedure is given in TR 38.901 [3], where cluster-specific random variables are simulated spatially consistently for drop-based simulations. To generate spatially consistent random variables at specific coordinates (x, y) using the 2D-filtering method (which is illustrated in Figure 2), the following steps are taken:
· Step 1: Divide the simulation area into correlated grids of custom length and width (usually set to be smaller than correlation distances);
· Step 2: Generate independent and identically distributed random variables for each vertex of one correlated grid; 
· Step 3: Deliver the generated random variables to the exponential decaying filter in the two dimensional horizontal plane, which is used for spatially consistent LSP (Large Scale Parameters) generation in current 3GPP 3D channel model (see [3]). Then the random variables at each grid are correlated following the exponential function with respect to correlation distances in the two dimensional horizontal plane.
· Step 4: Determine which grid the UE coordinate (x, y) belongs to, and generate the UE’s channel with the random variables of this grid. The employed model for AI/ML-based fingerprint positioning uses a neural network structure with a Residual-Network architecture. The input to the AI/ML model are the Channel Impulse Responses (CIR) of the links between the UE and the 18 BSs that are used in the simulation, and the output is the estimated UE coordinate.
Based on above discussion, the following proposal is made:
Proposal 2 [bookmark: _Ref111139711]: For evaluation on AI/ML-based fingerprint positioning, spatial consistency should be modeled at large scale parameters, small scale parameters and absolute time of arrival as the baseline, where
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901).
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901 
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901
Implementation details
The implementation details for our evaluation on AI/ML-based fingerprint positioning are summarized in Table 1. The model structure for our implementation is ResNet. The CIR is adopted as the model input for both training and inference, and both of the label for training and the output of model inference are the UE coordinates. Accordingly, the pre-processing is to obtain the CIR from the measured channel vector/matrix.
[bookmark: _Ref100767651]Table 1 Model generation and KPIs for AI/ML-based fingerprint positioning.
	AI/ML-based fingerprint Positioning

	Model
	ResNet

	Input
	CIR

	Label
	UE coordinates (Ground-truth)

	Output
	UE coordinates


[bookmark: _Ref101865042]The details of the CIR to describe the time-domain channel between one gNB and one UE have not been discussed yet but it is obvious that each CIR would be associated with a certain overhead. Furthermore, it has not been evaluated yet, how many CIRs and gNBs actually are required to obtain unique fingerprint information that unambiguously can be mapped to the UE location. This is very different from the legacy approach, where a large number of gNBs should be ensured to always have a sufficient number of LOS paths.
According to companies’ contributions from the last meeting, the CIR is a popular AI/ML model input for the fingerprint positioning case. In our view, it would be helpful for aligning and calibrating the AI/ML model implementation as well as the simulation results across companies, if the preferred solutions are similar with each other and for example have the same input. But we are also open to optionally take other inputs or to take pre-processing into consideration.
We are therefore making the following proposal: 
Proposal 3 [bookmark: _Ref111139728][bookmark: _Ref102171111]: For comparison of evaluation on AI/ML-based fingerprint positioning evaluation results, support the channel impulse response (CIR) as the model inputs. 
According to the defined scenario assumptions in the Appendix, the dataset is generated from the simulation platform used for the AI/ML-based fingerprint positioning sub use case. 
	Agreement
For evaluation of AI/ML based positioning, details of the training dataset generation are to be reported by proponent company. The report may include (in addition to other selected settings, if applicable):
· The size of training dataset, for example, the total number of UEs in the evaluation area for generating training dataset;
· The distribution of UE location for generating the training dataset may be one of the following:
· Option 1: grid distribution, i.e., one training data is collected at the center of one small square grid, where, for example, the width of the square grid can be 0.25/0.5/1.0 m.
· Option 2: uniform distribution, i.e., the UE location is randomly and uniformly distributed in the evaluation area. 


In both of the training and inference dataset, UE samples are uniformly distributed in each drop, as UE coordinates randomly and uniformly distributed in the evaluation area is more consistent with the actual deployment of positioning inference. While for grid-based UE distribution, the size of the grid needs more discussions to avoid a too low/too high resolution, to achieve a trade-off between too small/too big dataset sizes. Accordingly, the following proposal is provided:
Proposal 4 [bookmark: _Ref111139746]: For the training dataset generation of AI/ML-based positioning, support uniform UE distribution.
Baseline for comparison
	Agreement
For AI/ML-based positioning evaluation, the baseline performance to compare against is that of existing Rel-16/Rel-17 positioning methods.
· As a starting point, each participating company report the specific existing positioning method (e.g., DL-TDOA, Multi-RTT) used as comparison.


As agreed in the RAN1 #109-e meeting, as the baseline for performance evaluations of AI/ML-based fingerprint positioning in NLOS dominated scenarios, we adopt the positioning accuracy achieved by the traditional UL-TDoA positioning method without LOS detection in Rel-17 as proposed in [4]. 
In the baseline method, the NLOS paths are not removed. In NLOS dominated scenarios, there are hardly at least three LOS paths available at the same time for calculation of the position. This will result in the issue that stronger NLOS paths are mistaken as LOS paths, which leads to poor accuracy. Even if NLOS paths would be identified and removed, then, since the evaluation is under heavy NLOS conditions, there may not be enough number of LOS paths available in most cases. Therefore, under heavy NLOS conditions, the positioning accuracy of the baseline is expected to be significantly low. Based on above discussion, the following proposal is made:
Proposal 5 [bookmark: _Ref111139983]: For evaluation on AI/ML-based fingerprint positioning, support UL-TDoA positioning as a candidate baseline of the legacy non-AI/ML method.
[bookmark: _Ref111038477]Methodology for evaluating generalization
According to companies’ contributions from the last meeting, the AI/ML based fingerprint positioning under heavy NLOS conditions is a popular sub use case for AI/ML based positioning accuracy enhancement. And it would be helpful if companies could formulate some common generalization evaluation methodology for AI/ML based positioning in RAN1. Therefore, the following proposal is made:
Proposal 6 [bookmark: _Ref111139995]: Formulate generalization evaluation criteria based on the specific sub use case. The AI/ML based fingerprint positioning is considered as a starting point.
To further evaluate the robustness of AI/ML-based fingerprint positioning, the methodology and proposals for evaluating the model generalization is given below: 
Table 2 Generalization study of AI/ML-based fingerprint positioning
	Methodology for evaluating the model generalization

	Dimension 1: 
Drops
	Dimension 2: 
Clutter parameters
	Dimension 3: 
Non-ideal assumptions

	Trained and inferred at different drops
	Trained and inferred at different clutter parameters
	Trained w/o & inferred w/ network synchronization error

	Trained and inferred at mixed drops
	Trained and inferred at hybrid clutter parameters
	Trained w/o & inferred w/ UE/gNB Rx and Tx timing error


And as for the 3 proposed dimensions, they are intended for different challenges to the robustness of the AI/ML models:
Dimension 1 is intended for the challenges brought by the disappearing spatial consistency when inference happens in a new drop outside the training dataset;
Dimension 2 is intended for the challenges brought by the disappearing spatial consistency plus the unlearned channel characteristics when inference happens in a new environment different from the training dataset;
Dimension 3 is intended for the challenges brought by the non-ideal assumptions affecting the time-domain channel characteristics when a random synchronization error occurs in channel measurement.
Based on above discussion, the following proposal is made:
Proposal 7 [bookmark: _Ref111140004]: For evaluation of AI/ML-based positioning, RAN1 should formulate the methodology for evaluating the model generalization, and the following dimensions are proposed to be considered as the baseline:
· Dimension 1: various inference dataset from different drops under the same channel parameters;
· Dimension 2: various inference dataset from different channel parameters, including at least {60%, 6m, 2m} and {40%, 2m, 2m} under InF-DH scenario;
· Dimension 3: various inference dataset with non-ideal assumptions, including the network synchronization error and the UE Tx/Rx timing error.
AI/ML-assisted positioning
Generic AI/ML-based LOS/NLOS identification mechanism
By tagging the measurements with LOS/NLOS indicators, the LMF would obtain additional information that can be exploited to improve the positioning accuracy, for example when utilizing the link with a higher LOS probability. NLOS identification has benefits from various aspects as described in [4]:
	NLOS detection is an important method to improve the positioning accuracy. By tagging the measurements with LOS/NLOS indicators, the LMF would have the knowledge of LOS/NLOS status of the measurements. By utilizing the LOS/NLOS measurements correctly, for example utilizing the LOS measurements with higher probability, the positioning accuracy can be improved. In addition, NLOS identification has various benefits from the following aspects:
· Useful for the reference device
· Useful for NLOS dominate scenario
· Useful for Computation complexity
· Useful for calculating the location uncertainty


LOS/NLOS identification is a typical binary classification problem in the AI/ML field and AI/ML models are well suited for extracting different channel characteristics of the LOS or NLOS paths. The Rel-17 mechanisms that have been established for LOS/NLOS identification can therefore be improved significantly with help of AI/ML-based techniques, and especially as shown in this contribution, for a small number of antennas. Based on above discussion, the following proposal is made:
Proposal 8 [bookmark: _Ref111140100]: For AI/ML assisted positioning, AI/ML-based LOS/NLOS identification should be evaluated for positioning accuracy enhancements at least under slight/moderate NLOS scenarios in Rel-18.
Figure 3 shows the TDoA positioning process based on AI/ML-based LOS/NLOS identification. The AI/ML-based LOS/NLOS identification is utilized to remove the NLOS paths from the TOA calculation. It uses the channel’s power delay profile (PDP) as input and calculates a LOS probability. As shown in Table 3, we use a neural network with a convolutional architecture to learn this relationship. This achieves a much better prediction accuracy than traditional methods, especially when the number of antennas is small, as will be observed from our evaluations results in Section 3.2.
	[image: ]


[bookmark: _Ref100767696]Figure 3 Positioning process based on LOS/NLOS identification
The whole processing flow is illustrated in Figure 4 below. After the channel estimation procedure based on the reference signal, the frequency-domain channel is transformed with an IFFT into the time domain. The amplitude of the time-domain signal is then squared to obtain the PDPs which are then normalized on all antennas on the receiver side. The normalized PDPs are used as the input to the AI/ML model in which the LOS probability is inferred. Afterwards the NLOS components are removed and the LOS components are utilized to calculate the coordinates. The TDoA algorithm is then performed at the LMF which requires the identified LOS links from at least three gNBs.
	[image: ]


[bookmark: _Ref100767705]Figure 4 Pre-processing and positioning based on AI/ML-based LOS/NLOS identification in TDoA positioning
Implementation details
The implementation details for the evaluation on AI/ML-based LOS/NLOS identification are summarized in Table 3. The model structure for our implementation is CNN. The normalized PDP is selected to be the model input for both training and inference, and the label for training are ideal LOS/NLOS identifications and the output of model inference are LOS/NLOS probabilities. Accordingly, the pre-processing is to obtain the PDP from the measured channel vector/matrix.
[bookmark: _Ref100767668]Table 3 Model generation and KPIs for LOS/NLOS identification.
	LOS/NLOS identification

	Model
	CNN

	Input
	Normalized PDP

	Label
	Ideal LOS/NLOS identification

	Output
	LOS/NLOS probability


Based on the description given above, the following proposal is made:
Proposal 9 [bookmark: _Ref102171087][bookmark: _Ref111140242]: For comparison of evaluation on AI/ML-based LOS/NLOS identification, support the power delay profile (PDP) as the model inputs.
Baseline for comparison
The baseline algorithm for performance comparison with AI/ML-based LOS/NLOS identification could be considered to be aligned across companies for comparison. We select the traditional algorithm as proposed in [5]:
	LOS/NLOS identification algorithm
Check the energy consistency of the first path across different antenna elements within a polarization.
Check the phase consistency of the first path across different antenna elements in both vertical and horizontal direction within a polarization.
If both energy and phase consistency meet the energy/phase consistency, it would be identified as a LOS path, otherwise, it would be identified as a NLOS path.
Different confidence level of LOS/NLOS label may additionally be reported depending on the degree of the consistency.


[bookmark: _Ref102171295]Based on above discussion, the following proposal is made:
Proposal 10 : For evaluation of the AI/ML-based LOS/NLOS identification, the achievable positioning accuracy should be compared with the performance of an existing traditional algorithm based on Rel-17 without using AI/ML.
Evaluation Results
[bookmark: _Ref102060291]Performance evaluations of AI/ML-based fingerprint positioning
Dataset description
As agreed in the RAN1 #109-e meeting, the dataset is generated from the simulation platform according to the defined scenario assumptions in the Appendix with FR1 settings. And the dataset composition for AI/ML-based fingerprint positioning is summarized in Table 4. The dataset used for evaluation is generated with spatial consistency modeling based on the 2D-filtering method described in Section 2.1, and modeled at channel modeling parameters including large scale parameters, small scale parameters and the absolute time of arrival. The training dataset consists of 25000 samples, where 1 sample denotes CIRs transmitted by 1 UE and received by all of the 18 gNBs in the deployment with different number of ports for each gNB.
[bookmark: _Ref101469032]Table 4 Dataset description for AI/ML-based fingerprint positioning
	Dataset
	AI/ML-based fingerprint Positioning

	Spatial Consistency
	Generated according to Section 7.6.3.1 and 7.6.9 of TR 38.901
Using 2D-filtering method described in Section 2.1

	UE Distribution
	uniform distribution

	Training dataset size
	25000 samples

	Inference dataset size
	5000 samples

	1sample：1UE * 18BSs * the number of receiving ports


Simulation results
As shown in Table 5, under both heavy NLOS conditions with clutter parameters of {60%, 6m, 2m}, regardless whether 32 or 4 BS receiving ports are used, the positioning accuracy error @90% of the baseline UL-TDoA solution in Rel-17 are more than 10 m, while the positioning accuracy error of the AI/ML-based fingerprint positioning solution is around 0.5 m. It’s shown in our results that the results for 32 antennas are similar with 4 antennas with our current pre-processing and AI/ML algorithm. This is because our algorithm’s design does not take spatial domain’s resolution into consideration at this stage. It shall be noted that performance, if deemed necessary, can be further improved for larger antenna numbers with updated AI/ML models. It can be observed that already with a small antenna number, which is now widely adopted in the commercial RF modules for indoor deployment, the AI/ML scheme already provides remarkable sub-meter level precision.
Also as shown in Table 5, under both heavy (with clutter parameters of {60%, 6m, 2m}) and moderate (with clutter parameters of {40%, 2m, 2m}) NLOS conditions with 4 receiving antennas, the positioning accuracy error @90% of the baseline UL-TDoA solution in Rel-17 is more than 10 m, while the positioning accuracy error of the AI/ML-based fingerprint positioning solution is around 0.5 m. It is shown in our results that under moderate NLOS conditions the accuracy is now around 0.1 meter worse than for heavy NLOS conditions, which results from the fact that the heavy NLOS provides more diverse channel profiles in the fingerprint pool, which is beneficial for learning.
[bookmark: _Ref100767594]Table 5 Performance of AI/ML-based fingerprint positioning under heavy NLOS conditions.
	BS receiving antennas
	Positioning
	Positioning Accuracy @90%

	Clutter parameters: 60%, 6m, 2m

	32
	UL-TDoA in Rel-17 without LOS detection
	> 10 m

	
	AI/ML-based fingerprint
	0.5m

	4
	UL-TDoA in Rel-17 without LOS detection
	> 10 m

	
	AI/ML-based fingerprint
	0.492 m

	Clutter parameters: 40%, 2m, 2m

	4
	UL-TDoA in Rel-17 without LOS detection
	> 10 m

	
	AI/ML-based fingerprint
	0.606 m


Observation 1 [bookmark: _Ref101791354][bookmark: _Ref102043780][bookmark: _Ref102060776]: From the evaluation results, it is observed that AI/ML-based fingerprint positioning provides reliable positioning accuracy under a small number of receiving ports.
Observation 2 [bookmark: _Ref111140324]: From the evaluation results, it is observed that AI/ML-based fingerprint positioning provides reliable positioning accuracy under both heavy and moderate NLOS conditions.
The complexity related KPIs for the AI/ML model applied in our evaluations for 4 BS receiving antennas is shown in Table 6.
[bookmark: _Ref100767612]Table 6 Model complexity of AI/ML-based fingerprint positioning.
	Model complexity

	Model size (in terms of Number of Parameters)
	34 K

	FLoating point OPerations (FLOPs)
	10 M


Generalization studies
In this section, the dataset composition and the performance results for a series of robustness studies according to the methodology proposed in Section 2.1.5 for AI/ML-based fingerprint positioning are presented.
Dimension 1: various inference dataset from different drops under the same channel parameters.
Dimension 1 is intended for the challenges brought by the disappearing spatial consistency when inference happens in a new drop outside the training dataset. 
[bookmark: _Ref101887060]Table 7 Dataset composition for generalization studies and evaluation results
	Generalization studies

	Test scenario
	Training dataset parameters and size
	Inference dataset parameters and size
	Positioning Accuracy @90%/m

	Test scenario 1
	Clutter paras:{60%, 6m, 2m}
Drop1 25000 samples
	Clutter paras:{60%, 6m, 2m}
Drop2 5000 samples
	>10

	Test scenario 2
	Clutter paras:{60%, 6m, 2m}
5 Drops
25000 (5000/drop) samples
	Clutter paras:{60%, 6m, 2m}
Drop 2 (outside of the trained Drops) 5000 samples
	8.04

	Test scenario 3
	
	Clutter paras:{60%, 6m, 2m}
Drop 1 (inside the trained Drops) 5000 samples
	1.28

	Test scenario 4
	Clutter paras:{60%, 6m, 2m}
Drop1 & 2
25000 (12500/drop) samples
	Clutter paras:{60%, 6m, 2m}
Drop 1 5000 samples
	0.69

	1sample：1UE * 18BSs * 4 receiving ports


[bookmark: _Ref110882906][bookmark: _Ref101888779][bookmark: _Ref101897960][image: ]
Figure 5 CDF curves of positioning accuracy under Test scenarios 2 to 4
From the results shown in the Table 7 and Figure 5 above, we can make the following observations:
Observation 3 [bookmark: _Ref111140334]: From Test scenario 1, 3, and 4, when the inference dataset and the training dataset are from different drops, AI/ML-based fingerprint positioning model provides poor generalization performance. But when the mixed training dataset consists of samples from the same drop of the inference dataset, the generalization performance is improved. 
Observation 4 [bookmark: _Ref111140341]: From the evaluation results of Test scenario 1 and 2, enriching composition of training dataset can improve unknown drop’s positioning accuracy.
Observation 5 [bookmark: _Ref111140350]: From the evaluation results of Test scenario 3 and 4, the positioning performance for a drop improves when the amount/ratio of data samples from that drop in the mixed training dataset increases. 
Dimension 2: various inference dataset from different channel parameters, including at least {60%, 6m, 2m} and {40%, 2m, 2m} under InF-DH scenario.
Dimension 2 is intended for the challenges brought by the disappearing spatial consistency plus the unlearned channel characteristics when inference happens in a new environment different from the training dataset.
[bookmark: _Ref110882924]Table 8 Dataset composition for generalization studies and evaluation results
	Generalization studies

	Test scenario
	Training dataset parameters and size
	Inference dataset parameters and size
	Positioning Accuracy @90%/m

	Test scenario 5
	Clutter paras:{40%, 2m, 2m}
Drop 1
25000 samples
	Clutter paras:{60%, 6m, 2m}
Drop 1 5000 samples
	>10

	1sample：1UE * 18BSs * 4 receiving ports


From the results shown in the Table 8 above, we can make the following observation: 
Observation 6 [bookmark: _Ref111140362]: From the evaluation results of Test scenario 5, when the channel parameters of the inference dataset and the training dataset are different, AI/ML-based fingerprint positioning model provides poor generalization performance.
[bookmark: _Ref110882959]Table 9 Dataset composition for generalization studies and evaluation results
	Generalization studies

	Test scenario
	Training dataset parameters and size
	Inference dataset parameters and size
	Positioning Accuracy @90%/m

	Test scenario 6
	Clutter paras:{60%, 6m, 2m}
Drop 1 
12500 samples
+
Clutter paras:{40%, 2m, 2m}
Drop 1
12500 samples
	Clutter paras:{60%, 6m, 2m}
Drop 1 5000 samples
	0.86

	Test scenario 7
	
	Clutter paras:{40%, 2m, 2m}
Drop 1 5000 samples
	0.88

	Test scenario 8
	
	Clutter paras:{60%, 6m, 2m}
Drop 2 5000 samples
	>10

	Test scenario 9
	
	Clutter paras:{40%, 2m, 2m}
Drop 2 5000 samples
	>10

	1sample：1UE * 18BSs * 4 receiving ports


[image: ]
[bookmark: _Ref110882970]Figure 6 CDF curves of Positioning Accuracy under Test scenarios 6 to 9
From the results shown in the Table 9 and Figure 6 above, we can make the following observation:
Observation 7 [bookmark: _Ref111140395]: From the evaluation results of Test scenario 6 to 9, when the mixed training dataset consists of samples from the same drop and with the same channel parameters of the inference dataset, the positioning performance is improved and reaches the sub-meter level. But when inferred at a different drop, the generalization performance is still poor.
In addition to mixing the datasets, performance gain brought by fine-tuning is also studied in this paper. In Test scenario 10, the model trained in Test scenario 8 is fine-tuned with 1000 samples in Drop 2 with {60%, 6m, 2m} setting. And then the fine-tuned model is inferred in the inference dataset in Drop 2 with {60%, 6m, 2m} setting. And in Test scenario 11, the performance of training dataset consisting of these 1000 samples from the same drop of the inference dataset alone, is also evaluated.
[bookmark: _Ref110882996]Table 10 Dataset composition for generalization studies and evaluation results
	Generalization studies

	Test scenario
	Training dataset parameters and size
	Inference dataset parameters and size
	Positioning Accuracy @90%/m

	Test scenario 10
	The model trained in Test scenario 8
+
Fine-tuned with
Clutter paras:{60%, 6m, 2m}
Drop 2 1000 samples
	Clutter paras:{60%, 6m, 2m}
Drop 2 5000 samples
	3.2

	Test scenario 11
	Clutter paras:{60%, 6m, 2m}
Drop 2 1000 samples
	Clutter paras:{60%, 6m, 2m}
Drop 2 5000 samples
	5.26

	1sample：1UE * 18BSs * 4 receiving ports


[bookmark: _Ref110882981][image: ]
Figure 7 CDF curves of Positioning Accuracy under Test scenarios 8, 10 and 11
From the results shown in the Table 10 and Figure 7 above, we can make the following observations:
Observation 8 [bookmark: _Ref111140411]: From the evaluation results of Test scenario 8 and 10, on top of the dataset with large amount of samples from a different drop, fine-tuned with a relatively small amount of samples from the same drop of the inference dataset will also be helpful to improve the generalization performance.
Observation 9 [bookmark: _Ref111140419]: From the evaluation results of Test scenario 10 and 11, as compared to the training dataset only consisting of a relatively small amount of samples from the same drop of the inference dataset, the training dataset additionally including large amount of samples from a different drop is also beneficial to improve the generalization performance.
Dimension 3: various inference dataset with non-ideal assumptions, including the network synchronization error and the UE Tx/Rx timing error.
Dimension 3 is intended for the challenges brought by the non-ideal assumptions affecting the time-domain channel characteristics when a random synchronization error occurs in channel measurement.
For Test scenario 12 and 13, the timing errors and network synchronization error are modelled according to TR 38.857, which means that both UE Tx/Rx timing error and the network synchronization error are modelled as one truncated Gaussian distribution with zero mean and standard deviation of  ns, with a truncated range as . 
[bookmark: _Ref110883026]Table 11 Dataset composition for generalization studies and evaluation results
	Generalization studies

	Test scenario
	Training dataset parameters and size
	Inference dataset parameters and size
	Positioning Accuracy @90%/m

	Test scenario 12
	Clutter paras:{60%, 6m, 2m}
Without timing error
Drop 1 25000 samples
	Clutter paras:{60%, 6m, 2m}
With UE timing error@=10ns
Drop 1 5000 samples
	3.12

	Test scenario 13
	Clutter paras:{60%, 6m, 2m}
Without network synchronization error
Drop 1 25000 samples
	Clutter paras:{60%, 6m, 2m}
With network synchronization error@=50ns
Drop 1 5000 samples
	15.49

	1sample：1UE * 18BSs * 4 receiving ports


As a clarification, the UE Tx/Rx timing error is generated randomly for each UE drop but is fixed for all gNBs linked with this UE, while the network synchronization errors are independent and identically distributed among 18 gNBs and generated randomly for each UE dropping.
[image: ]
[bookmark: _Ref110883036]Figure 8 CDF curves of Positioning Accuracy under Test scenarios 12 and 13
From the results shown in the Table 11 and Figure 8 above, we can make the following observations:
Observation 10 [bookmark: _Ref111140428]: From the evaluation results of baseline and Test scenario 12 and 13, when the added UE Tx/Rx timing error are randomly distributed with  10 ns or the added network synchronization error randomly distributed with  50ns, AI/ML-based fingerprint positioning model provides poor generalization performance without special consideration of the non-ideal factors.
In order to further evaluate the robustness of AI/ML-based fingerprint positioning, some typical standard deviation values of modeling UE Tx/Rx timing error and the network synchronization error are needed for obtaining comparable results among companies. Therefore, the following proposal is made:
Proposal 11 [bookmark: _Ref111140268]: For evaluation on AI/ML-based fingerprint positioning, it is suggested to agree on aligned deviation values to model the UE Tx/Rx timing error and the network synchronization error, at least including:
·  10 ns for the UE Tx/Rx timing error
·  50 ns for the network synchronization error
Performance evaluations of AI/ML-based LOS/NLOS identification
Dataset description
As agreed in the RAN1 #109-e meeting, the dataset is generated from the simulation platform for the AI/ML-based LOS/NLOS identification sub use case according to the defined scenario assumptions in the Appendix with FR1 settings and the evaluation is conducted under clutter parameters of {40%, 2m, 2m}. The dataset is composed as summarized in Table 12. Note that only a relatively small training dataset size is needed for the AI/ML model applied for this sub use case. And the training dataset consists of 18000 samples, where 1 sample denotes 1 PDP value of the reference signal transmitted by 1 UE and received by 1 gNB in the deployment with different number of receiving ports by each gNB.

[bookmark: _Ref101468957]Table 12 Dataset description for LOS/NLOS identification.
	Dataset
	LOS/NLOS Identification

	Training dataset size
	1000UEs*18BSs*BS selected receiving ports

	Inference dataset size
	500UEs*18BSs*BS selected receiving ports


Simulation Results
As shown in Table 13, when BS receiving ports is 32, the selected baseline LOS/NLOS identification solution has already achieved a good performance. But when the gNB is configured with a small number of antenna ports (which is reflected by 4 selected receiving ports in the evaluation), the baseline method provides a greatly degraded positioning accuracy error of more than 6m @90%. In contrast, the accuracy of the AI/ML-based LOS/NLOS identification solution with 4 gNB receiving ports can achieve 0.35m. The reason is that for a small number of antennas, the traditional method cannot provide enough resolution to correctly identify with a high probability on whether a path is LOS or NLOS. Therefore, for the widely deployed commercial RF modules with small antenna ports for indoor deployment, using AI/ML-based LOS/NLOS identification solution is meaningful.
[bookmark: _Ref100767510]Table 13 Performance of LOS/NLOS Identification.
	BS receiving ports
	LOS ID method
	Positioning Accuracy @90%

	Clutter parameters: 40%, 2m, 2m

	32
	Baseline LOS ID
	0.484m

	4
	Baseline LOS ID
	6.447m

	4
	AI/ML LOS ID
	0.353m


[bookmark: _Ref101791089]From the results shown in the table above, we can make the following observation:
Observation 11 [bookmark: _Ref111140436]: From the evaluation results, it is observed that for a small number of gNB antennas, AI/ML-based LOS/NLOS identification could significantly improve the positioning accuracy.
The complexity of the AI/ML model for 4 BS receiving antennas applied is shown in Table 14. It can be seen that AI/ML model only needs very few parameters and does not process tremendous FLOPs compared to the models used in other use cases, e.g., fingerprint positioning as given in Table 6. However, still the performance improvement compared to the baseline is significant.
[bookmark: _Ref100767573]Table 14 Model complexity of LOS/NLOS Identification.
	Model complexity

	Model size (in terms of Number of Parameters)
	582

	FLoating point OPerations (FLOPs)
	192 K


Observation 12 [bookmark: _Ref102171329]: For AI/ML-based LOS/NLOS identification evaluation, the applied model only needs very small number of parameters and does not require tremendous FLOPs.
Conclusion
The contribution mainly discusses evaluations on each potential enhancement for positioning accuracy improvements, based on which the following proposals and observations are made:
Proposal 1: AI/ML-based fingerprint positioning should be adopted for the evaluation of the direct AI/ML positioning accuracy enhancements under heavy NLOS conditions in Rel-18.
Proposal 2: For evaluation on AI/ML-based fingerprint positioning, spatial consistency should be modeled at large scale parameters, small scale parameters and absolute time of arrival as the baseline, where
· [bookmark: _GoBack]the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901).
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901 
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901
Proposal 3: For comparison of evaluation on AI/ML-based fingerprint positioning evaluation results, support the channel impulse response (CIR) as the model inputs.
Proposal 4: For the training dataset generation of AI/ML-based positioning, support uniform UE distribution.
Proposal 5: For evaluation on AI/ML-based fingerprint positioning, support UL-TDoA positioning as a candidate baseline of the legacy non-AI/ML method.
Proposal 6: Formulate generalization evaluation criteria based on the specific sub use case. The AI/ML based fingerprint positioning is considered as a starting point.
Proposal 7: For evaluation of AI/ML-based positioning, RAN1 should formulate the methodology for evaluating the model generalization, and the following dimensions are proposed to be considered as the baseline:
· Dimension 1: various inference dataset from different drops under the same channel parameters;
· Dimension 2: various inference dataset from different channel parameters, including at least {60%, 6m, 2m} and {40%, 2m, 2m} under InF-DH scenario;
· Dimension 3: various inference dataset with non-ideal assumptions, including the network synchronization error and the UE Tx/Rx timing error.
Proposal 8: For AI/ML assisted positioning, AI/ML-based LOS/NLOS identification should be evaluated for positioning accuracy enhancements at least under slight/moderate NLOS scenarios in Rel-18.
Proposal 9: For comparison of evaluation on AI/ML-based LOS/NLOS identification, support the power delay profile (PDP) as the model inputs.
Proposal 10: For evaluation of the AI/ML-based LOS/NLOS identification, the achievable positioning accuracy should be compared with the performance of an existing traditional algorithm based on Rel-17 without using AI/ML.
Proposal 11: For evaluation on AI/ML-based fingerprint positioning, it is suggested to agree on aligned deviation values to model the UE Tx/Rx timing error and the network synchronization error, at least including:
·  10 ns for the UE Tx/Rx timing error
·  50 ns for the network synchronization error
Observation 1: From the evaluation results, it is observed that AI/ML-based fingerprint positioning provides reliable positioning accuracy under a small number of receiving ports.
Observation 2: From the evaluation results, it is observed that AI/ML-based fingerprint positioning provides reliable positioning accuracy under both heavy and moderate NLOS conditions.
Observation 3: From Test scenario 1, 3, and 4, when the inference dataset and the training dataset are from different drops, AI/ML-based fingerprint positioning model provides poor generalization performance. But when the mixed training dataset consists of samples from the same drop of the inference dataset, the generalization performance is improved.
Observation 4: From the evaluation results of Test scenario 1 and 2, enriching composition of training dataset can improve unknown drop’s positioning accuracy.
Observation 5: From the evaluation results of Test scenario 3 and 4, the positioning performance for a drop improves when the amount/ratio of data samples from that drop in the mixed training dataset increases.
Observation 6: From the evaluation results of Test scenario 5, when the channel parameters of the inference dataset and the training dataset are different, AI/ML-based fingerprint positioning model provides poor generalization performance.
Observation 7: From the evaluation results of Test scenario 6 to 9, when the mixed training dataset consists of samples from the same drop and with the same channel parameters of the inference dataset, the positioning performance is improved and reaches the sub-meter level. But when inferred at a different drop, the generalization performance is still poor.
Observation 8: From the evaluation results of Test scenario 8 and 10, on top of the dataset with large amount of samples from a different drop, fine-tuned with a relatively small amount of samples from the same drop of the inference dataset will also be helpful to improve the generalization performance.
Observation 9: From the evaluation results of Test scenario 10 and 11, as compared to the training dataset only consisting of a relatively small amount of samples from the same drop of the inference dataset, the training dataset additionally including large amount of samples from a different drop is also beneficial to improve the generalization performance.
Observation 10: From the evaluation results of baseline and Test scenario 12 and 13, when the added UE Tx/Rx timing error are randomly distributed with  10 ns or the added network synchronization error randomly distributed with  50ns, AI/ML-based fingerprint positioning model provides poor generalization performance without special consideration of the non-ideal factors.
Observation 11: From the evaluation results, it is observed that for a small number of gNB antennas, AI/ML-based LOS/NLOS identification could significantly improve the positioning accuracy.
Observation 12: For AI/ML-based LOS/NLOS identification evaluation, the applied model only needs very small number of parameters and does not require tremendous FLOPs.
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[bookmark: _Ref110862461]Appendix
[bookmark: _Ref110539202][bookmark: _Ref101883423]Simulation assumptions for the evaluated sub use cases:
	
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 
(baseline) 120x60 m
(optional) 300x150 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
-	for the big hall (L=300m x W=150m): D=50m
[image: ]

	
	Room height
	10m

	Total gNB TX power, dBm
	24dBm
	24dBm
EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1
Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1
One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.

	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2=[image: ][image: ] for scenario 2 (InF-DH)  

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,[image: ][image: ]), 8}.

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	High clutter density:
- {40%, 2m, 2m} 
- {60%, 6m, 2m}

	Note 1:	According to Table A.2.1-7 in TR 38.802
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