
[bookmark: _GoBack]3GPP TSG-RAN WG1 Meeting #110	  R1-2205890 
Toulouse, France, August 22 – 26, 2022

Agenda Item:	9.2.2.1
Source:	Huawei, HiSilicon
Title:	Evaluation on AI/ML for CSI feedback enhancement 
Document for:	Discussion and Decision

1. [bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In RAN plenary meeting [1], a new SID on AI/ML for air-interface was approved for Rel-18. In RAN1 #109-e meeting [2], evaluation methodology of AI/ML for Channel State Information (CSI) feedback enhancement has been discussed and several agreements of the evaluation methodology have been achieved, which is provided in the Appendix. In this contribution, we will provide further discussions on the evaluations on AI/ML for CSI feedback enhancement, including evaluation methodology and preliminary simulation results.
2. Evaluation methodology
In this section, we will discuss the remaining issues of evaluation methodology for AI/ML-based CSI feedback.
2.1 Generic evaluation methodology
2.1.1 Generalization
In the last RAN1 meeting, the following agreement on the generalization of the AI/ML model has been achieved.
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, study the verification of generalization. Companies are encouraged to report how they verify the generalization of the AI/ML model, including:
· The configuration(s)/ scenario(s) for training dataset, including potentially the mixed training dataset from multiple configurations/scenarios
· The configuration(s)/ scenario(s) for testing/inference
· Other details are not precluded

To verify the generalization of the AI/ML model, the AI/ML model should provide a good performance over various testing scenarios or configurations, so that it can be regarded as a universal solution rather than a scenario-limited solution. This can be achieved from the perspective of training dataset composition, e.g., to make the model adapt to a specific situation, adding the data samples from that situation to the dataset for training may be beneficial; alternatively, it can be achieved from the perspective of retraining/fine-tuning, e.g., for a model which has been trained based on a training dataset which has different characteristics from the target testing dataset, model fine-tuning based on a fine-tuning dataset having similar characteristics with the target testing dataset may also be helpful to adapt to an unseen situation. Having this in mind, the following cases to construct the training dataset and testing dataset should be considered as the methodology for generalization:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from a different Scenario#B/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and Scenario#B/Configuration#B, and then the AI/ML model is tested on dataset from a single Scenario#A/Configuration#A or Scenario#B/Configuration#B from the multiple scenarios/configurations
· Case 4: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is fine-tuned based on the fine-tuning dataset from a different Scenario#B/Configuration#B. After that, the AI/ML model is tested on dataset subject to the same Scenario#B/Configuration#B as the fine-tuning dataset
The Case 1 can be regarded as an upper bound with overfitting gains, while the Case 2 can be regarded as the baseline (possibly of lower bound) for evaluating the performance of the AI/ML model under an unseen situation. Case 3 can provide insights on how to achieve moderate performance from the perspective of training dataset composition which adapts to various situations. Case 4 can provide insights from the perspective of fine-tuning which can also take Case 2 as a baseline.
Proposal 1: To verify the generalization of AI/ML models, the following cases to construct the training dataset and testing dataset should be considered as the methodology for generalization:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from a different Scenario#B/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and Scenario#B/Configuration#B, and then the AI/ML model is tested on dataset from a single Scenario#A/Configuration#A or Scenario#B/Configuration#B from the multiple scenarios/configurations
· Case 4: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is fine-tuned based on the fine-tuning dataset from a different Scenario#B/Configuration#B. After that, the AI/ML model is tested on dataset subject to the same Scenario#B/Configuration#B as the fine-tuning dataset
In addition, to provide highly aligned generalization evaluation observations by SI for drawing conclusions, it is preferred to determine an agreed upon set of scenarios/configurations for justification rather than submitting results over diverse scenarios/configurations. Generalization over scenarios means one AI/ML model should work well in, e.g., dense urban/rural/indoor, different UE speeds, etc., for which the dimensions of the input/output of the AI/ML model keep unchanged but the characteristic of the input/output would vary. Generalization over configurations means one AI/ML model should work well under, e.g., different rank numbers, different bandwidths, etc., for which the dimensions of the input/output of the AI/ML model are different. Some pre-processing may be needed for the AI/ML model to adapt with various input/output dimensions.
During the last meeting, several scenarios (classified by such as channel model, frequency range, numerology, inter-BS distance, outdoor/indoor UE distribution, or UE speed) and several configurations (such as antenna port number, bandwidth, CSI feedback payload, and rank) have been discussed. For CSI feedback based on 3GPP modeling, the most important component of channel characteristic is the cluster and path of the channel; on the other hand, the parameters of frequency range, numerology, inter-BS distance and UE speed don’t impact the cluster and path of the channel. Therefore, the generalization over scenarios can consider channel model (e.g., UMa/UMi/InH) and outdoor/indoor UE distribution (e.g., 10:0/8:2/5:5/2:8/0:10) with high priority. 
For generalization over configurations, Tx antenna port number is fixed from the network perspective while the Tx antenna number is not fixed from the UE perspective. In addition, if the input of AI/ML model is channel matrix, Rx antenna port number should also be considered. For rank number, the input/output dimension is fixed if a unified AI/ML model is trained and applied for each layer to perform individual inference. Therefore, we should consider various bandwidths, CSI feedback payloads and antenna port numbers for the verification of generalization over configurations with high priority.
Proposal 2: For CSI feedback enhancement evaluation, the verification of generalization can be performed by applying a single AI/ML model over at least the following scenarios for inference/testing: 
· Channel models of UMa/UMi/InH 
· Various outdoor/indoor UE distributions for UMa/UMi
Proposal 3: For CSI feedback enhancement evaluation, the verification of generalization can be performed by applying a single AI/ML model over at least the following configurations for inference/testing:
· Various bandwidths
· Various CSI feedback payloads
· Various Tx/Rx antenna port numbers
2.1.2 Intermediate KPIs
In last RAN1 meeting, the following agreement on intermediate KPIs of AI/ML based CSI feedback enhancement has been achieved.
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, as a starting point, take the intermediate KPIs of GCS/SGCS and/or NMSE as part of the ‘Evaluation Metric’ to evaluate the accuracy of the AI/ML output CSI
· For GCS/SGCS, 
· FFS: how to calculate GCS/SGCS for rank>1
· FFS: whether GCS or SGCS is adopted
FFS other metrics, e.g., equivalent MSE, received SNR, or numerical spectral efficiency gap.
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, companies to report the GCS/SGCS calculation/extension methods, including:
     Method 1: Average over all layers
o    Note:  is the eigenvector of the target CSI at resource unit i and K is the rank. is the  output vector of the output CSI of resource unit i.  is the total number of resource units.  denotes the average operation over multiple samples.

     Method 2: Weighted average over all layers
o    Note: Companies to report the formula (e.g., whether normalization is applied for eigenvalues)
     Method 3: GCS/SGCS is separately calculated for each layer (e.g., for K layers, K GCS/SGCS values are derived respectively, and comparison is performed per layer)
       Other methods are not precluded
       FFS: Further down-selection among the above options or take one/a subset of the above methods as baseline(s).

During the last meeting, it has been agreed to adopt GCS/SGCS and NMSE as intermediate KPIs while other metrics such as numerical spectral efficiency gap received SNR are listed as FFS. From our view, the GCS/SGCS denotes the accuracy of the target CSI vector (e.g., eigenvector) and the reconstructed CSI vector which is used for generating the DL precoder; the received SNR resulting from the DL precoder can thus be somehow reflected by GCS/SGCS; similarly, the numerical spectral efficiency is also directly impacted by the DL precoder and can be reflected by GCS/SGCS.
An issue raised during the last meeting for GCS/SGCS is the layer index mismatch problem. In our view, the layer index mismatch problem should be avoided by the design of loss function and training strategy, e.g., using per layer AI/ML model to each layer individually and calculate GCS/SGCS for each layer separately. 
In general, the trends of GCS and SGCS are similar and it doesn’t impact the relative relation between different schemes no matter GCS or SGCS is used. In our view, either GCS or SGCS is acceptable and we slightly prefer GCS.
For rank>1 cases, Method 3 can provide the insights for per layer, e.g., the accuracy of AI/ML based CSI compression has different effects on different layers as observed in Section 3.3.1. In addition, Method 1/2 can be easily calculated from the results of Method 3. Moreover, for Method 1/2, it may be not easy to accurately reflect the impact of cosine similarity to the overall throughput (which is non-linear) by the average operation. Therefore, Method 3 can be considered as the baseline and other methods can be optional reported by companies.
Proposal 4: For CSI feedback enhancement evaluation, between GCS and SGCS, adopt GCS as the intermediate KPI. 
Proposal 5: For rank>1 cases, adopt Method 3, i.e., GCS/SGCS is separately calculated for each layer, as the baseline, while other methods can be optionally reported.
2.1.3 Other remaining issues of generic evaluation methodology
There are some other remaining issues of generic evaluation methodology, such as the input of AI/ML model, AI/ML model for multi-rank, traffic model, channel estimation and AI/ML memory storage. 
Input of AI/ML model
The candidate channel information per sample in the training dataset can be the channel matrix or the eigenvector. Since legacy codebook-based CSI feedback are typically based on eigenvector, it is preferred to use eigenvector as the input for AI/ML-based CSI compression to make the evaluation comparable with the legacy schemes, while the calculation and feedback of RI can reuse the legacy. In addition, the feedback overhead of eigenvector is usually less than the channel matrix under the same port number, and the dimension of eigenvector is independent of the number of UE antennas so that AI/ML model input scalability over the number of UE antennas is not an issue from this perspective. Therefore, eigenvector can be used as the input CSI and target CSI for AI/ML model-based CSI compression.
AI/ML model for multi-rank
How to apply the AI/ML model(s) for the CSI compression of multiple ranks can be discussed for evaluation. In our evaluation, a unified AI/ML model is trained and applied for each layer to perform individual inference, while the calculation of the rank number is based on the legacy approach. Other options can be FFS, for example, separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference, or a unified AI/ML model is trained and applied adaptively for any rank number to perform inference.
Traffic model
For traffic model, following the evaluation assumption of MIMO topic, FTP model 1 with packet size 0.5 Mbytes can be the baseline. In addition, results of full buffer traffic are also meaningful since it can roughly show the performance difference between different schemes and this is useful for the first study of AI/ML in 3GPP.
Channel estimation
For channel estimation, the common method of SLS in most of the previous RAN1 studies is to model the channel estimation error as a function of downlink SINR. This can be reused for CSI feedback enhancement evaluation. Moreover, we think this can be left for companies to achieve and don’t need to be aligned in the EVM.
In addition, ideal channel can be used as target CSI for intermediate KPIs calculation when drawing SI conclusions if necessary.
AI/ML memory storage
For AI/ML memory storage, AI/ML model size and the number of AI/ML model parameters are agreed as the evaluation metric. The format of the AI/ML parameters can be reported by companies, and there seems to be no strong need to align the format in EVM.
Proposal 6: To align with legacy CSI codebook, eigenvector should be supported as the input CSI and the target CSI applied for training/inference under AI/ML-based CSI feedback.
Proposal 7: Further study how to apply the AI/ML model(s) for the scenario with multiple ranks in evaluation of CSI compression.
· Option1: Separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference.
· Option2: A unified AI/ML model is trained and applied for each layer to perform individual inference.
· Option3: A unified AI/ML model is trained and applied for adaptive ranks to perform inference.
Proposal 8: For CSI feedback enhancement evaluation, use FTP model 1 with packet size 0.5 Mbytes as baseline. Results of full buffer traffic are not precluded.
Proposal 9: For CSI feedback enhancement evaluation, how to model the realistic channel estimation is left for companies. 
Proposal 10: Ideal channel can be used as target CSI for intermediate KPIs calculation.
2.2 Specific evaluation methodology for other sub use cases
For sub use cases involving temporal domain, such as AI/ML-based temporal-spatial-frequency domain CSI compression and AI/ML-based CSI prediction, the temporal characteristics of channel should be modeled. Since the period of CSI measurement and CSI feedback is often very short, such as 5ms or 10ms, the distance of UE movement can be neglected for most moderate velocity. Therefore, the temporal characteristics of channel can be model by Doppler shift without any explicit trajectory modeling in consideration of simulation complexity.
Proposal 11: For CSI feedback enhancement evaluation involving temporal domain (e.g., CSI prediction, temporal-spatial-frequency domain CSI compression), use Doppler shift to model the temporal characteristics of the channel.
3. Evaluations for spatial-frequency domain CSI compression
In this section, evaluations for spatial-frequency domain CSI compression will be discussed, including AI/ML model description, evaluation methodology for different training types and evaluation results.
3.1 AI/ML model description
The CSI generation part including an encoder and a quantizer are deployed at the UE side for CSI compression, while the CSI reconstruction part including a decoder and a de-quantizer are deployed at the network side for CSI recovery. The quantizer is used to quantize the output of the encoder which is a floating-point vector to fit the bit width for CSI feedback, while the de-quantizer is used to recover the floating-point vector as the input to the decoder. The AI/ML-based CSI feedback taking into account both spatial and frequency domain channel correlation is named as AI/ML based spatial-frequency compression (AI-SF), which is depicted in Figure 1 (a). In our simulation, Transformer is used as the backbone of both encoder and decoder, shown as Figure 1 (b).
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[bookmark: _Ref100693627][bookmark: _Ref109490264]Figure 1  The structure of AI-SF
· Encoder: The encoder takes the original eigenvectors as the input, and outputs the compressed CSI with smaller size than the original eigenvectors. Specifically, the input of the encoder includes eigenvectors for N subbands, which are formulated as , where  denotes the eigenvector for the n-th subband. Then, the encoder can use multiple Transformer layers to process the eigenvector matrix , and obtains the compressed CSI as a floating-point vector as a result. The compressed CSI can be formulated as , where  represents the function of the encoder. The SVD decomposition is applied as the pre-processing prior to the encoder to derive the original eigenvectors.
· [bookmark: _Hlk100320974]Quantizer: The quantizer at the UE side maps the compressed CSI of a floating-point vector to a quantized bit sequence to fit the bit width for CSI feedback. Various methods of quantization may be adopted, such as scalar quantization, vector quantization (quantizing a vector utilizing its probability density functions), and etc. The quantized CSI feedback can be formulated as , where  represents the function of the quantizer. In our simulation, vector quantization is used.
· De-quantizer: The de-quantizer recovers the compressed CSI from the feedback CSI bit sequence and sends it as the input to the decoder. The de-quantized CSI can be formulated as  where represents the function of the de-quantizer.
· Decoder：The decoder recovers the eigenvectors. Specifically, the decoder can use multiple Transformer layers for CSI reconstruction, which is in alignment with the structure of the encoder. The recovered eigenvectors can be formulated as , where  represents the function of the decoder. 
3.2 Evaluation methodology for different training types
In the last meeting, the potential training types were initially discussed [3]. 4 potential training types are categorized for this meeting with more details provided in our companion contribution [4]. In our understanding, clarifications and alignment on the metrics of the corresponding training types are meaningful to derive the evaluation results in terms of performance and price, which can be used as the inputs for further analysis and comparison. Therefore, the metrics for evaluation of different training types should be discussed from the EVM perspective.
Proposal 12: Companies are encouraged to report the following evaluation metrics for evaluation of the corresponding training types:
· Type1: On-network training with model transfer to UE
· Companies to report the contents of model transfer (structure and/or parameters) and the overhead of model transfer
· Companies to report the metric to evaluate inference compatibility between AI/ML model and UE , e.g., in terms of inference latency
· Type 2: On-UE training with model transfer to network
· Companies to report the contents of model transfer (structure and/or parameters) and the overhead of model transfer
· Companies to report the metric to evaluate inference compatibility between AI/ML model and network, e.g., in terms of inference latency
· Type 3: Joint training across network and UE without model transfer, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained in one forward propagation (FP) & backward propagation (BP) loop with necessary gradients exchange
· Companies to report the interaction approach and overhead between network and UE, e.g., the overhead of the dataset and gradient information exchanged between network and UE
· Type 4: Separate training at network and UE without model transfer, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE and network, respectively, in their own FP & BP loops
· Companies to report the approach and overhead to achieve separate training, e.g., how to interact the dataset between network and UE, and the overhead of the dataset
For Type 1 and Type 2, the overhead of model transfer depends on the design, optimization and quantization of the AI/ML model, e.g., from several Mbytes to hundreds of Mbytes. In our simulation, the size of CSI generation part and CSI reconstruction part are around 150M bytes and 200M bytes with float32 format, respectively. With some optimizations on top of that, e.g., model pruning, the overhead of the model transfer may be reduced; alternatively, adopting an overfitting model to the specific scenario may also benefit the overhead reduction. The inference compatibility may be a more challenging issue for Type 1 and Type 2. The inference latency not only depends on the complexity of AI/ML model, but also depends on the implementation of hardware and software. On one hand, the computing capability of different hardware/software may vary dramatically. Even with same hardware/software, the computing efficiency for different AI/ML models may also largely differ. Based on the experiment of [5], the inference latency running in same hardware/software for different models with same FLOPs may have difference of hundred times. In this situation, an AI/ML model may have a few milliseconds inference latency in the training node, while it may have hundreds of milliseconds inference latency in the other node due to the compatibility issue. We also perform a simple experiment on our own AI/ML operation environment and the results are shown in Table 1. The inference efficiency for Model 1 is 3 times better than Model 2.
[bookmark: _Ref110846759]Table 1 Inference efficiency of same hardware/software for different AI/ML models
	Model
	FLOPs
	Running time per sample
	Computing efficiency (FLOPs per ms)

	Model 1
	3.8G
	31.3ms
	121M

	Model 2
	569M
	14.4ms
	40M


For Type 3, the FP and BP information of the interface between the CSI generation part and the CSI reconstruction part need to be exchanged between network and UE. The FP information is the compressed CSI and the overhead per training sample is same as the CSI feedback payload for inference. The BP information is the gradients of the interface between the CSI generation part and the CSI reconstruction part and the overhead per training batch per epoch depends on the quantization method of the gradient. Take the following assumption as an example: CSI feedback payload is 60bits, number of neurons for the interfacing layers between the CSI generation part and the CSI reconstruction part is 24 and quantized by 3 bits scalar quantization, number of training samples is 300k, batch size is 1000 and number of epoch is 500. Then the overhead of FP and BP information is 60*300k*500+ 300k/1000*24*3*500= 1.1G bytes. In addition, as the dataset between network and UE has to be aligned, the dataset may also need to be shared from one side to the other, and the overhead of the dataset sharing should also be counted, as will be analyzed for Type 4, so the dataset overhead of bytes need to be additionally counted in. Moreover, since the UE-side model and network-side model need to be updated interactively based on the output of each other, the model training process will be split into tremendous iterations of the FP/BP information exchanges. The total training time is calculated as , where  and  denote the FP processing time per batch per epoch at UE and network, respectively.  and  denote the BP processing time per batch per epoch at UE and network, respectively.  and  denote the time of FP information transmission and BP information transmission, respectively.  denotes the number of batches per epoch and  denotes the number of epochs. Such large overhead and training time may be a serious issue especially for air interface interaction if the training is performed based on such huge dataset. On the other hand, for the model fine-tuning with much smaller dataset, e.g., thousands of samples, the needed overhead and training time can be greatly reduced proportionally.
For Type 4, as per the training method provided in our companion contribution [4], the training dataset of the CSI generation part including the input CSI and corresponding labels need to be shared from network to UE. The label is the compressed CSI and the overhead per training sample is same as the CSI feedback payload. The overhead of input CSI depends on the quantization method. For example, if the number of training sample is 300k and the CSI feedback payload is 60 bits, and the input CSI is the eigenvector, the total overhead of training dataset transmission for different quantization methods are shown in Table 2. Based on the results, we can see that the overhead of training dataset can be reduced significantly by using some quantization methods such as Rel-16 TypeII-like codebook generation method but with larger than legacy parameters to achieve higher resolution. For Type 4, the UE-side model training and network-side model training are two independent BP-FP processes, it can be achieved with non-real time manner, so the training time for each side can be calculated separately. The training time for UE-side model can be denoted as  and the training time for network-side model can be denoted as , where  and  are the model training time per epoch at UE and network, respectively. Similarly, for the model fine-tuning, the needed overhead and retraining time for per side can be greatly reduced proportionally.
[bookmark: _Ref110498255][bookmark: _Ref110498250]Table 2 Total overhead of training dataset transmission for different quantization methods
	Quantization method
	Float32
	Rel-16 TypeII CB with paramCombination=6
	Rel-16 TypeII CB with new parameters: L=10, p=0.9, beta=0.31, amplitude: 4 bits, phase: 6 bits

	Size per input, bytes
	3.3k
	35
	127

	Size per label, bytes
	7.5

	Total overhead, bytes
	992M
	13M
	40M

	GCS between quantized eigenvector and ground-truth eigenvector
	1
	0.94
	0.985


Note that, besides Type 3/4, for Type 1 and Type 2, training dataset transmission may also be required if the dataset is collected from the real network. E.g., for Type 1, the network needs the UE to feedback the quantized ground-truth CSI to construct the dataset at network side, while for Type 2, if the training is performed at the UE server, the UE needs to deliver the collected ground-truth CSI to the server. Therefore, it is worth to study how to exchange the measured ground-truth CSI to evaluate the overhead, e.g., compression method or quantization method.
Proposal 13: Companies are encouraged to report the methods of how to feedback measured ground-truth CSI via air interface, e.g., compression method, quantization method, etc.
3.3 Evaluation results
In the evaluation, we use the agreed EVMs, which are provided in the Appendix, in accordance with typical MIMO related setups. The AI/ML specific simulation assumptions are also provided in the Appendix.
3.3.1 CSI compression at spatial-frequency domain 
This section provides the evaluation results of the CSI compression at spatial-frequency domain based on joint training (e.g., Type1/2/3) with ideal quantization of dataset and gradients. In the simulation of this section, 800K training samples are used and the GCS is caculated in the system level simulation with the same dataset as the throughput evaluation. Both rank=1 with fixed rank and rank=2 with rank adaptation are considered, where for rank=2, the AI/ML model is trained using the eigenvectors of layer 1, and applied for inference for each layer separately to derive the compressed CSI per layer.
Figure 2 illustrates the comparison of GCS between AI-SF and Rel-16 Type II codebook under the rank=1 case and the rank=2 case. It can be seen that, AI-SF outperforms Rel-16 Type II codebook in terms of GCS for each rank, indicating higher accuracy of CSI recovery by AI-SF. In addition, the accuracy of the 1st rank outperforms the accuracy of the 2nd rank for both AI-SF and Rel-16 Type II since the sparsity of the 1st rank is sparser than the 2nd rank, so the GCS performance is higher. 
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[bookmark: _Ref100694303]Figure 2  GCS between AI/ML-based output CSI and the target CSI
The system level simulation results of throughput for AI-SF using full buffer traffic are illustrated in Figure 3 and Figure 4. It is illustrated that, with the same overhead of CSI feedback, AI-SF has a performance gain of 7%-10.73% over Rel-16 Type II codebook in terms of the throughput under rank=1, while it has a performance gain of 8.1%-12.6% over Rel-16 Type II codebook under rank=2. On the other hand, Figure 4 shows that, for achieving the same throughput, AI-SF requires less feedback overhead, with an overhead reduction of about 45% for rank = 1 and 50% for rank = 2. 
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[bookmark: _Ref100694317]Figure 3  Throughput gain over Rel-16 Type II codebook for full buffer traffic
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[bookmark: _Ref100694336]Figure 4  Overhead reduction over Rel-16 codebook for full buffer traffic
Observation 1: With the same overhead of CSI feedback and in terms of average throughput, AI/ML-based CSI compression on spatial-frequency domain can provide better performance with around 7%-12% over Rel-16 Type II codebook under full buffer traffic.
Observation 2: For the rank=2 case, the 1st layer achieves higher GCS than that of the 2nd layer as the eigenvectors of the 2nd layer are more sparse, and AI/ML-based CSI compression on spatial-frequency domain can achieve more gains over the Rel-16 Type II on the 2nd layer.
3.3.2 Separate training
This section provides the evaluation results of the separate training scheme (Type 4) for CSI compression at spatial-frequency domain. The detailed procedure of separate training scheme is elaborated in our companion contribution [4]. In the simulation of this section, 300K training samples and 20K testing samples are used.
Table 3 GCS of joint training and separated training
	Case 
	Training type
	Model description of CSI generation part at UE
	Training dataset size
	60bit
	120bit
	240bit

	1
	Joint training
	Transformer
	300K
	0.8474
	0.9196
	0.9548

	2
	Separate training
	Transformer, same structure as Case 1
	300K
	0.8465
	0.9172
	0.9531

	3
	Separate training 
	Transformer, less transformer layers than Case 2
	300K
	0.8461
	0.9161
	0.9515

	4
	Separate training
	Transformer, same structure as Case 3
	100K*
	0.8459
	0.916
	0.9514

	*Note: Training dataset size for the UE part. Training dataset size for the network part is still 300K.


Based on the above results, it can be found that the GCS margin between separate training and joint training is only 0.0009~0.0024 when the UE-side CSI generation part and the network-side CSI generation part have a same structure. When the structure of UE-side CSI generation part changes, the GCS margin increase to 0.0013~0.0035. Further, when the training dataset size of UE-side CSI generation part reduce from 300K to 100K, the GCS margin increase to 0.0015~0.0036. In general, regardless of whether the network and UE have the same structure on the CSI generation part, the performance margin between the separate training and the joint training is <0.4%, which is minor gap.
Observation 3: For AI/ML-based CSI compression on spatial-frequency domain, there is only minor margin (<0.4%) between the GCS of the separate training and the GCS of the joint training even when the UE-side CSI generation part has a different structure with the network-side CSI generation part.
3.3.3 Generalization performance
This section provides the evaluation results of the generalization over scenarios for CSI compression at spatial-frequency domain. 
Table 4 shows the generalization performances on various channel models, and the generalization is verified from the perspective of the dataset composition (Case 1/2/3 of Section 2.1.1) and fine-tuning (Case 4 of Section 2.1.1). The training dataset size for UMa, UMi and InH cases is 300K for each. The mixed dataset contains sub-datasets of UMa, UMi and InH, each of which is of 100K samples. The CSI feedback payload is 240 bits in this section. Besides mixing the dataset, the generalization is also verified with fine-tuning on top of a trained AI/ML model, where the initial AI/ML model is trained based on an InH dataset of 300K samples, and the fine-tuning dataset is of 25K samples. The size of the testing dataset is 60K samples for each of UMa/UMi/InH.
The results show that the characteristics of UMa and UMi are similar, and the AI/ML model trained by UMa/UMi dataset can be used for each other with generalized performance; the AI/ML model trained by UMa/UMi dataset can also be applied for testing at InH scenario with minor loss. On the other hand, the AI/ML model trained by InH dataset provides good performance for the InH scenario but poor performance for the UMa/UMi scenario (Case 2 of Section 2.1.1), since the channel characteristics under InH are less diverse than UMa/UMi, so that more testing samples under the UMa/UMi are unseen for the AI/ML model trained by InH. The AI/ML model trained by the mixed datasets show moderate performance on each of the UMa/UMi/InH testing dataset, but compared with the overfitting dataset (Case 1 of Section 2.1.1), there is still a gap. 
The AI/ML model trained by the dataset of InH shows poor performance if it is directly applied for the testing dataset of UMa. However, after fine-tuned by a dataset of UMa channel, the performance can be improved obviously. This demonstrates the benefit of fine-tuning.
[bookmark: _Ref109657093]Table 4 Generalization performances on channel models
	Testing
	Training

	
	UMa
	UMi
	InH
	Mixed
	InH, fine-tuned with UMa

	UMa
	0.957
	0.954
	0.929
	0.952
	0.944

	UMi
	0.952
	0.952
	0.925
	0.948
	\

	InH
	0.98
	0.979
	0.989
	0.986
	\


Table 5 shows the generalization performances on various indoor/outdoor UE distributions. The size of each training dataset is 300K, and the size of the testing dataset is 60K for each of indoor/outdoor. The results show that AI/ML models trained by any indoor/outdoor UE distribution performs similarly on outdoor testing dataset. On the other hand, with the decrease of the ratio of indoor UEs (i.e., O2I channel samples) in the training dataset, the performance on indoor testing dataset becomes worse. This is because the characteristics of O2I channels are more diverse due to penetration, scattering, etc., than outdoor only.
[bookmark: _Ref109659533]Table 5 Generalization performances on indoor/outdoor UE distribution
	Testing
	Training, Indoor/outdoor ratio

	
	10:0
	8:2
	5:5
	2:8
	0:10

	Indoor (O2I)
	0.951
	0.949
	0.949
	0.944
	0.943

	outdoor
	0.975
	0.974
	0.975
	0.975
	0.974


Observation 4: For an AI/ML model trained under Scenario#A (e.g., InH) dataset but applied to Scenario#B (e.g., Uma/UMi) for inference, its performance may be degraded compared to inference under Scenario#A, but mixing the dataset over the three scenarios for AI/ML model training is helpful to improve the generalization.
Observation 5: For an AI/ML model trained under Scenario#A (e.g., InH) dataset but applied to Scenario#B (e.g., Uma) for inference, its performance can be improved by applying fine-tuning using a relatively small dataset from Scenario#B.
Observation 6: For generalization over indoor/outdoor UE distribution ratios, 
· AI/ML model trained by any indoor/outdoor UE distribution ratio shows similar performance on the outdoor testing dataset. 
· With the decrease of the indoor channel ratio in training dataset, the trained AI/ML model brings decreased performance on the indoor testing dataset.
Figure 5 shows the generalization performances with various number of UE Rx antennas for rank=1. The AI/ML model is trained by the dataset with 4 Rx and tested on dataset with 2 Rx and 4 Rx, separately. The results show that the GCS gain of AI-SF over Rel-16 Type II codebook are similar for 2 Rx and 4 Rx, i.e., good generalization performance can be achieved. It should be noted that this is due to the fact that the characteristics over eigenvectors which are the input of the AI/ML model are similar; if the channel matrix is considered as the input of the AI/ML model, on the other hand, it needs to consider how to handle the scalability of the AI/ML model due to different Rx numbers.
Observation 7: For the AI/ML model with eigenvector as input, it provides similar performance gain over Rel-16 Type II codebook regardless of UE Rx antenna number (4Rx or 2Rx) although the AI/ML model is trained by the dataset with 4 Rx.
[image: ]
[bookmark: _Ref109661540][bookmark: _Ref109661535]Figure 5 Generalization performance on number of UE antennas
4. Evaluations for temporal-spatial-frequency domain CSI compression
In this section, evaluations for temporal-spatial-frequency domain CSI compression will be discussed, including AI/ML model description and evaluation results. 
4.1 AI/ML model description
The AI/ML-based CSI compression can also learn the temporal domain correlation of channels on top of spatial-frequency domain compression, namely AI-SFT, which is depicted in Figure 6. In our simulation, LSTM is chained on top of a Transformer backbone for both the CSI generation part and the CSI reconstruction part. 
As shown in Figure 6, the AI/ML model can store historical information from previous slots and use this information to compress/recover the CSI of the current slot. The historical information from previous slots can be regarded as accumulated CSI information and thus the CSI feedback payload for the current slot can be regarded as delta CSI information on top of the accumulated CSI information. Therefore, compared to AI-SF, the overhead of the CSI feedback under AI-SFT can be further reduced to achieve the same CSI feedback accuracy due to the stored accumulated CSI information. Note that, for each slot, only the eigenvectors of the current slot are the input to the AI/ML model.
[image: ]
[bookmark: _Ref101447403]Figure 6 The procedure of AI-SFT
· Encoder: Similar to AI-SF, the input of the encoder includes eigenvectors for N subbands. Different from AI-SF, the encoder for AI-SFT can store and utilize the accumulated CSI information at encoder for further CSI compression due to the LSTM layers. Specifically, the compressed CSI can be formulated as , where  represents the function of the encoder.  represents the accumulated CSI information at encoder of time t-1 (t = 1,2,3,…), which are already stored by the encoder .
· Quantizer: The quantizer at the UE side maps the compressed CSI of a floating-point vector to a quantized bit sequence. Scalar quantization, vector quantization, etc., can be adopted. In our simulation, vector quantization is used. The quantized CSI feedback can be formulated as  .
· De-Quantizer: The de-quantizer recovers the compressed CSI from the feedback CSI bit sequence and sends it as the input to the decoder. The de-quantized CSI can be formulated as  .
· Decoder: The decoder recovers the eigenvectors for N subbands. Different from AI-SF, the decoder for AI-SFT can store and utilize accumulated CSI information at decoder for CSI reconstruction, where the accumulated CSI information is mostly synchronized with the encoder part. By considering a long observation window, occasionally missing CSI feedbacks (e.g., due to UCI missing) would not impact the whole performance seriously, although the performance of the nearest occasion will be inferior to AI-SF. Specifically, the recovered eigenvectors can be formulated as , where  represents the function of the decoder.  denotes the accumulated CSI information at decoder of time t-1, which are stored by the decoder . Note that, for each slot, only the de-quantized CSI of the current slot () is needed for compression.
4.2 Evaluation methodology
In our simulation, the observation window for storing the accumulated CSI information is assumed as continuous and accumulative, which means the accumulated CSI information for each slot is continuously stored and applied to the next slot, but the compression only applies to the CSI of the current slot but no historical CSI. In addition, we consider the CSI feedback  only involves the (delta) CSI information of the current slot, while no CSI prediction is involved. Therefore, there is no need to provide the observation/prediction window assumptions. Other EVM of temporal-spatial-frequency domain CSI compression are mostly the same as spatial-frequency domain CSI compression. The UE speed in this simulation is assume as same as spatial-frequency domain CSI compression, which is 3km/h for indoor UE and 30km/h for outdoor UE.
Proposal 14: Companies are encouraged to report the EVM for the temporal-spatial-frequency domain CSI compression, e.g., the assumptions of the observation window.
· In our evaluation, the observation window is assumed as accumulative, where the accumulated CSI information for each slot is continuously stored and applied to the next slot.
4.3 Evaluation results
This section provides the evaluation results of the AI-SFT compression scheme, where rank=1 is considered. Figure 7 illustrates the GCS and throughput of AI-SFT with feedback overhead of 60bits, 120bits and 240bits. It can be seen that AI-SFT has improved GCS over Rel-16 Type II codebook, and performance gain of 19%-25% over Rel-16 Type II codebook in terms of the throughput. The AI-SFT also outperforms AI-SF under the same feedback overhead.
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[bookmark: _Ref100694418]Figure 7   GCS and throughput gain of AI-SFT over Rel-16 Type II codebook
Observation 8: From the preliminary results, with the same overhead of CSI feedback and in terms of average throughput, AI/ML-based CSI compression on temporal-spatial-frequency domain can provide around 19%-25% gain over Rel-16 Type II codebook under full buffer traffic and outperforms AI/ML-based CSI compression on spatial-frequency domain.
5. Evaluations for CSI prediction
In this section, evaluations for CSI prediction will be discussed, including AI/ML model description, related EVM and evaluation results. 
5.1 AI/ML model description
The AI/ML-based CSI prediction is used to predict future CSI based on historic CSI. As shown in Figure 8, the input of the CSI predictor includes k historic eigenvectors which are obtained from the k historic CSI-RS, respectively. The output of the CSI predictor is the predicted eigenvector at moment of the nearest future CSI-RS. In our simulation, k is set to 4 and a fully-connected network is used.
[image: ]
[bookmark: _Ref109492202]Figure 8 The structure of AI/ML-based CSI prediction
5.2 Evaluation methodology
In the last meeting, some evaluation results of CSI prediction had been presented. However, the EVM for CSI prediction has not been aligned. If CSI prediction is to be studied in Rel-18, the following aspects should be discussed and aligned.
· AI/ML model operation mode: Whether UE-side model or network-side model is adopt
· CSI type as the input of the AI/ML model: Whether eigenvectors or channel matrix is adopt as the input of the AI/ML model
· Observation window: How many historic CSI measurements are needed as the input of the AI/ML model.
· Prediction window: CSI of how many future slots is outputted by the AI/ML model. In addition, it needs to determine whether the predicted CSI only contains the future CSI reporting slot(s) or also includes other slots not anticipated for CSI reporting.
· Number of reported CSI: If UE-side model is adopt, how many future CSIs the UE need to report; whether to report the predicted CSI only or report the CSI of current slot in together. This is related to the tradeoff between performance and overhead.
· Baseline for CSI prediction: Whether the latest non-predicted CSI is used as baseline, or other non-AI/ML based CSI algorithm is used as baseline.
Proposal 15: If CSI prediction is to be studied in Rel-18, companies are encouraged to report the related evaluation methodology, e.g., AI/ML is network side or UE side, input CSI type, prediction window, observation window, and number of reported CSIs.
5.3 Evaluation results
[bookmark: _Toc100742785]This section provides the evaluation results of CSI prediction. In this simulation, the interval of CSI-RS is 5ms and the UE speed is 30km/h. Table 6 shows that the AI/ML-based CSI prediction can outperform the case without CSI prediction, where the latest non-predicted CSI is used as baseline. For AI/ML-based CSI prediction, GCS is calculated with the output of the AI/ML model (i.e., predicted CSI for the target future slot) and the corresponding ground-truth label of the same target future slot. For baseline, GCS is calculated with the latest non-predicted CSI and the corresponding ground-truth label of the target future slot. From the preliminary results, the CSI prediction provides better GCS performance in contrast to the baseline without prediction.
It is also worth noting that, for AI/ML based CSI prediction, the GCS reflects the accuracy of the predicted CSI and the ground-truth CSI on the predicted slot, but the throughput performance relies also on the scheduling algorithm, e.g., if the scheduled DL slot is close to the target future slot of prediction, the throughput will be consistent with the GCS, while if the scheduled DL slot is far from the target future slot, the throughput will be harmed.
[bookmark: _Ref110936191]Table 6 GCS performance of AI/ML based CSI prediction and no prediction
	
	Without CSI prediction
	AI/ML based CSI prediction

	GCS
	0.887
	0.9328


Observation 9: From the preliminary results, AI/ML-based CSI prediction outperforms the baseline without CSI prediction in terms of GCS.
6. Conclusions
According to the discussion, following proposals and observations are provided:
Proposal 1: To verify the generalization of AI/ML models, the following cases to construct the training dataset and testing dataset should be considered as the methodology for generalization:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from a different Scenario#B/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and Scenario#B/Configuration#B, and then the AI/ML model is tested on dataset from a single Scenario#A/Configuration#A or Scenario#B/Configuration#B from the multiple scenarios/configurations
· Case 4: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is fine-tuned based on the fine-tuning dataset from a different Scenario#B/Configuration#B. After that, the AI/ML model is tested on dataset subject to the same Scenario#B/Configuration#B as the fine-tuning dataset
Proposal 2: For CSI feedback enhancement evaluation, the verification of generalization can be performed by applying a single AI/ML model over at least the following scenarios for inference/testing: 
· Channel models of UMa/UMi/InH 
· Various outdoor/indoor UE distributions for UMa/UMi
Proposal 3: For CSI feedback enhancement evaluation, the verification of generalization can be performed by applying a single AI/ML model over at least the following configurations for inference/testing:
· Various bandwidths
· Various CSI feedback payloads
· Various Tx/Rx antenna port numbers
Proposal 4: For CSI feedback enhancement evaluation, between GCS and SGCS, adopt GCS as the intermediate KPI. 
Proposal 5: For rank>1 cases, adopt Method 3, i.e., GCS/SGCS is separately calculated for each layer, as the baseline, while other methods can be optionally reported.
Proposal 6: To align with legacy CSI codebook, eigenvector should be supported as the input CSI and the target CSI applied for training/inference under AI/ML-based CSI feedback.
Proposal 7: Further study how to apply the AI/ML model(s) for the scenario with multiple ranks in evaluation of CSI compression.
· Option1: Separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference.
· Option2: A unified AI/ML model is trained and applied for each layer to perform individual inference.
· Option3: A unified AI/ML model is trained and applied for adaptive ranks to perform inference.
Proposal 8: For CSI feedback enhancement evaluation, use FTP model 1 with packet size 0.5 Mbytes as baseline. Results of full buffer traffic are not precluded.
Proposal 9: For CSI feedback enhancement evaluation, how to model the realistic channel estimation is left for companies. 
Proposal 10: Ideal channel can be used as target CSI for intermediate KPIs calculation.
Proposal 11: For CSI feedback enhancement evaluation involving temporal domain (e.g., CSI prediction, temporal-spatial-frequency domain CSI compression), use Doppler shift to model the temporal characteristics of the channel.
Proposal 12: Companies are encouraged to report the following evaluation metrics for evaluation of the corresponding training types:
· Type1: On-network training with model transfer to UE
· Companies to report the contents of model transfer (structure and/or parameters) and the overhead of model transfer
· Companies to report the metric to evaluate inference compatibility between AI/ML model and UE , e.g., in terms of inference latency
· Type 2: On-UE training with model transfer to network
· Companies to report the contents of model transfer (structure and/or parameters) and the overhead of model transfer
· Companies to report the metric to evaluate inference compatibility between AI/ML model and network, e.g., in terms of inference latency
· Type 3: Joint training across network and UE without model transfer, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained in one forward propagation (FP) & backward propagation (BP) loop with necessary gradients exchange
· Companies to report the interaction approach and overhead between network and UE, e.g., the overhead of the dataset and gradient information exchanged between network and UE
· Type 4: Separate training at network and UE without model transfer, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE and network, respectively, in their own FP & BP loops
· Companies to report the approach and overhead to achieve separate training, e.g., how to interact the dataset between network and UE, and the overhead of the dataset
Proposal 13: Companies are encouraged to report the methods of how to feedback measured ground-truth CSI via air interface, e.g., compression method, quantization method, etc.
Proposal 14: Companies are encouraged to report the EVM for the temporal-spatial-frequency domain CSI compression, e.g., the assumptions of the observation window.
· In our evaluation, the observation window is assumed as accumulative, where the accumulated CSI information for each slot is continuously stored and applied to the next slot.
Proposal 15: If CSI prediction is to be studied in Rel-18, companies are encouraged to report the related evaluation methodology, e.g., AI/ML is network side or UE side, input CSI type, prediction window, observation window, and number of reported CSIs.

Observation 1: With the same overhead of CSI feedback and in terms of average throughput, AI/ML-based CSI compression on spatial-frequency domain can provide better performance with around 7%-12% over Rel-16 Type II codebook under full buffer traffic.
Observation 2: For the rank=2 case, the 1st layer achieves higher GCS than that of the 2nd layer as the eigenvectors of the 2nd layer are more sparse, and AI/ML-based CSI compression on spatial-frequency domain can achieve more gains over the Rel-16 Type II on the 2nd layer.
Observation 3: For AI/ML-based CSI compression on spatial-frequency domain, there is only minor margin (<0.4%) between the GCS of the separate training and the GCS of the joint training even when the UE-side CSI generation part has a different structure with the network-side CSI generation part.
Observation 4: For an AI/ML model trained under Scenario#A (e.g., InH) dataset but applied to Scenario#B (e.g., Uma/UMi) for inference, its performance may be degraded compared to inference under Scenario#A, but mixing the dataset over the three scenarios for AI/ML model training is helpful to improve the generalization.
Observation 5: For an AI/ML model trained under Scenario#A (e.g., InH) dataset but applied to Scenario#B (e.g., Uma) for inference, its performance can be improved by applying fine-tuning using a relatively small dataset from Scenario#B.
Observation 6: For generalization over indoor/outdoor UE distribution ratios, 
· AI/ML model trained by any indoor/outdoor UE distribution ratio shows similar performance on the outdoor testing dataset. 
· With the decrease of the indoor channel ratio in training dataset, the trained AI/ML model brings decreased performance on the indoor testing dataset.
Observation 7: For the AI/ML model with eigenvector as input, it provides similar performance gain over Rel-16 Type II codebook regardless of UE Rx antenna number (4Rx or 2Rx) although the AI/ML model is trained by the dataset with 4 Rx.
Observation 8: From the preliminary results, with the same overhead of CSI feedback and in terms of average throughput, AI/ML-based CSI compression on temporal-spatial-frequency domain can provide around 19%-25% gain over Rel-16 Type II codebook under full buffer traffic and outperforms AI/ML-based CSI compression on spatial-frequency domain.
Observation 9: From the preliminary results, AI/ML-based CSI prediction outperforms the baseline without CSI prediction in terms of GCS.
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Appendix: Simulation Assumptions
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the following table is taken as a baseline of EVM
· Note: the following table captures the common parts of the R16 CSI enhancement EVM table and the R17 CSI enhancement EVM table, while the different parts are FFS.
· Note: the baseline EVM is used to compare the performance with the benchmark release, while the AI/ML related parameters (e.g., dataset construction, generalization verification, and AI/ML related metrics) can be of additional/different assumptions.
· The conclusions for the use cases in the SI should be drawn based on generalization verification over potentially multiple scenarios/configurations.
· FFS: modifications on top of the following table for the purpose of AI/ML related evaluations.
 
	Parameter
	Value

	Duplex, Waveform
	FDD (TDD is not precluded), OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban (Macro only) is a baseline.
Other scenarios (e.g. UMi@4GHz 2GHz, Urban Macro) are not precluded.

	Frequency Range
	FR1 only, FFS 2GHz or 4GHz as a baseline

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	Companies need to report which option(s) are used between
-          32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ
-          16 ports: (8,4,2,1,1,2,4), (dH,dV) = (0.5, 0.8)λ
Other configurations are not precluded.

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)
2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)
Other configuration is not precluded.

	BS Tx power
	41 dBm for 10MHz, 44dBm for 20MHz, 47dBm for 40MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz, 30kHz for 4GHz

	Simulation bandwidth
	FFS

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	FFS

	MIMO layers
	For all evaluation, companies to provide the assumption on the maximum MU layers (e.g. 8 or 12)

	CSI feedback
	Feedback assumption at least for baseline scheme
· CSI feedback periodicity (full CSI feedback) :  5 ms,
· Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	Overhead
	Companies shall provide the downlink overhead assumption (i.e., whether the CSI-RS transmission is UE-specific or not and take that into account for overhead computation)

	Traffic model
	FFS

	Traffic load (Resource utilization)
	FFS

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h)
FFS whether/what other indoor/outdoor distribution and/or UE speeds for outdoor UEs needed

	UE receiver
	MMSE-IRC as the baseline receiver

	Feedback assumption
	Realistic

	Channel estimation         
	Realistic as a baseline
FFS ideal channel estimation

	Evaluation Metric
	Throughput and CSI feedback overhead as baseline metrics.
Additional metrics, e.g., ratio between throughput and CSI feedback overhead, can be used.
Maximum overhead (payload size for CSI feedback)for each rank at one feedback instance is the baseline metric for CSI feedback overhead, and companies can provide other metrics.

	Baseline for performance evaluation
	FFS



Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the following parameters are taken into the baseline of EVM
· Note: The 2nd column applies if R16 TypeII codebook is selected as baseline, and the 3rd column applies if R17 TypeII codebook is selected as baseline.
· Additional assumptions from R17 TypeII EVM Same consideration with respect to utilizing angle-delay reciprocity should be considered taken for the AI/ML based CSI feedback and the baseline scheme if R17 TypeII codebook is selected as baseline
· FFS baseline for potential sub use cases involving CSI enhancement on time domain
· Note: the baseline EVM is used to compare the performance with the benchmark release, while the AI/ML related parameters (e.g., dataset construction, generalization verification, and AI/ML related metrics) can be of additional/different assumptions.
· The conclusions for the use cases in the SI should be drawn based on generalization verification over potentially multiple scenarios/configurations.
· FFS: modifications on top of the following table for the purpose of AI/ML related evaluations.

	Parameter
	Value (if R16 as baseline)
	Value (if R17 as baseline)

	Frequency Range
	FR1 only, 2GHz as baseline, optional for 4GHz.
	FR1 only, 2GHz with duplexing gap of 200MHz between DL and UL, optional for 4GHz

	Simulation bandwidth 
	10 MHz for 15kHz as a baseline, and configurations which emulate larger BW, e.g., same sub-band size as 40/100 MHz with 30kHz, may be optionally considered. Above 15kHz is replaced with 30kHz SCS for 4GHz.
	20 MHz for 15kHz as a baseline (optional for 10 MHz with 15KHz), and configurations which emulate larger BW, e.g., same sub-band size as 40/100 MHz with 30kHz, may be optionally considered. Above 15kHz is replaced with 30kHz SCS for 4GHz

	MIMO scheme
	SU/MU-MIMO with rank adaptation.
Companies are encouraged to report the SU/MU-MIMO with RU
	SU/MU-MIMO with rank adaptation. Companies are encouraged to report the SU/MU-MIMO with RU

	Traffic load (Resource utilization)
	20/50/70%
Companies are encouraged to report the MU-MIMO utilization.
	20/50/70%
Companies are encouraged to report the MU-MIMO utilization.



Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the ‘Baseline for performance evaluation’ in the baseline of EVM is captured as follows
	Baseline for performance evaluation
	Companies need to report which option is used between
-        Rel-16 TypeII Codebook as the baseline for performance and overhead evaluation.
-         Rel-17 TypeII Codebook as the baseline for performance and overhead evaluation.
-         FFS: Whether Type I Codebook can be optionally considered at least for performance evaluation



Table A.1 Simulation assumptions for training inputs of AI-SF
	Parameters
	Value

	Number of drops
	800

	UEs per drop
	1000

	TTI sample for per UE
	1 sample per UE

	Training set size
	800K/300K

	Testing set size
	 60K/20K

	Training input
	Eigenvector(s) of the channel

	Batch size
	200

	Number of epochs
	500

	FLOPs
	1.9G

	Number of parameters
	29M



Table A.2 Simulation assumptions for training inputs of AI-SFT
	Parameters
	Value

	Number of drops
	10

	UEs per drop
	125

	TTI interval between neighboring samples
	5ms

	TTI samples for per UE
	400 samples per UE

	Training set size
	350K

	Testing set size
	150K

	Training input
	Eigenvector(s) of the channel

	Batch size
	100

	Number of epochs
	500

	FLOPs
	1.2G

	Number of parameters
	12M


Table A.3 Simulation assumptions for training inputs of AI/ML-based CSI prediction
	Parameters
	Value

	Number of drops
	10

	UEs per drop
	210

	TTI interval between neighboring samples
	5ms

	TTI samples for per UE
	400 samples per UE

	Training set size
	400K

	Testing set size
	1K

	Training input
	Eigenvector(s) of the channel

	Batch size
	200

	Number of epochs
	500

	Flops
	112M

	Number of parameters
	139K
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