
3GPP TSG-RAN WG1 Meeting #110	R1-2205889
Toulouse, France, August 22 – 26, 2022

Agenda Item:	9.2.1
Source:	Huawei, HiSilicon
Title:	Discussion on general aspects of AI/ML framework
Document for:	Discussion and Decision

1 [bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In the last RAN1 meeting #109e [1], the following agreements and working assumption have been approved, where the working list is provided in Table 3 of the Appendix.
	Agreement
Use 3gpp channel models (TR 38.901) as the baseline for evaluations.
Note: Companies may submit additional results based on other dataset than generated by 3GPP channel models

Working Assumption
Include the following into a working list of terminologies to be used for RAN1 AI/ML air interface SI discussion.
The description of the terminologies may be further refined as the study progresses.
New terminologies may be added as the study progresses.
It is FFS which subset of terminologies to capture into the TR.

Agreement
Take the following network-UE collaboration levels as one aspect for defining collaboration levels
1. Level x: No collaboration
2. Level y: Signaling-based collaboration without model transfer
3. Level z: Signaling-based collaboration with model transfer
Note: Other aspect(s), for defining collaboration levels is not precluded and will be discussed in later meetings, e.g., with/without model updating, to support training/inference, for defining collaboration levels will be discussed in later meetings
FFS: Clarification is needed for Level x-y boundary

This contribution provides our views on the general aspects of the AI/ML framework, including general AI/ML framework, defining stages of AI/ML algorithms, NW and UE collaboration levels, lifecycle management, and the considerations on UE power consumption.
2 General AI/ML framework
A working list of terminologies has been agreed in RAN1#109e [1]. The following are some remaining terminologies that need further discussion due to lack of consensus.
Online training
Online training aims to dynamically update the model to keep up with the drift of data distribution (e.g., in high mobility scenarios). This training mechanism is needed in the case of quick and frequent model updating and in the case of reinforcement learning relying on continuous exploration/exploitation. Thus, online training updates the AI/ML model continuously whenever new training samples arrives and the updated model is continuously applied for inference. Online training is not limited to be performed on the same node as inference. Training and inference at different nodes are also possible as long as the latency of model transfer is sufficiently small.
Offline training
Offline training normally relies on learning features from a large dataset and obtains a good model generalization capability. It does not have a strong requirement on timely and successive iteration between model training and inference. Thus, the model can be non-continuously trained based on collected training samples, and the updated model can be non-continuously applied for inference.
Model deployment
Model deployment refers to the process that the model inference node compiles AI/ML running image into executable files and install it onto the hardware platform. This is assumed that the model inference node has already obtained the AI/ML model described in a certain model representation format (MRF). Therefore, model deployment does not involve model delivery over the air-interface or from a third-party node.
On-UE training
On-UE training refers to the process of online/offline training at the UE side. The specific entity of the UE side to perform model training is up to UE implementation as it is transparent from the spec perspective.
On-network training and Model update
The terminologies of On-network training, and Model update defined in [2] can be used as the baseline for discussion.
Proposal 1: Define the following terminologies if needed:
· Online training: An AI/ML training process that is performed in the same or different node as model inference, where the model is updated continuously with arrival of new training samples and the updated model is continuously applied for inference.
· Offline training: An AI/ML training process that is performed in the same or different node as model inference, where the model is non-continuously trained based on collected training samples, or the trained model is non-continuously applied for inference.
· Model deployment: Deploy a fully developed and tested model runtime image at the node where inference is to be performed.
· On-UE training: Online/offline training at the UE.
The definition of the above terminologies is summarized in Table 4 of the Appendix.
3 Defining stages of AI/ML algorithms
Data collection and the AI/ML model training is elaborated in this section.
3.1 Data collection
NW or UE may deploy an AI/ML model pre-trained offline as a basis and update the model based on training data collected from realistic networks (e.g., field data). The collected field data can also be used for model monitoring. To this end, the procedure and specification impacts for data collection from field needs to be studied. For example, the collected data could be labels fed back from UE, including high resolution CSI for the CSI feedback case (details are referred to [3][4]), and RSRP to derive the ground-truth beam ID for the BM case (details are referred to [5][6]). In addition, from the realistic network perspective, larger size of data would mean longer time for collection and heavier overhead, thus how large dataset can guarantee accurate and optimized AI/ML model should be studied, e.g., by evaluations.
Proposal 2: Study the potential spec impact of data collection from realistic network for supporting the model updating and monitoring of AI/ML model.
For studying data collection, the data types that have already been supported in physical layer should be a starting point, for example, CSI, RSRP, and beam index. Data types that are not supported in physical layer due to privacy issues shall be precluded from data collection, e.g. UE positioning information. Data collection should maintain the agreed principle on user data privacy as captured in the SID, i.e., user data privacy needs to be preserved.
Proposal 3: The study of data collection should follow the principle given in the SID, i.e., user data privacy needs to be preserved.
The proprietary information related to gNB/UE implementation shall not be in the scope of data collection, e.g., the Tx/Rx beam shape information, gNB down-tilt information and beam angle information, etc.
3.2 AI/ML model training
AI/ML model training can be discussed for one-sided model and two-sided model, respectively.
3.2.1 Model training of one-sided (AI/ML) model
One-sided (AI/ML) model can be a Network-side model or UE-side model, according to the working list defined in RAN1#109e [1]. Normally, the NW and the UE use different hardware platforms (e.g., chipsets) and different software platforms (e.g., runtime environment) for model inference. Thus, the compatibility on hardware/software should be ensured during model training. But, this compatibility is difficult to be guaranteed if the model training and the model inference is performed at different side (e.g., NW and UE) as they are not aware of each other’s platforms. Besides, if the training node and the inference node are different, the trained model has to be transferred and thereby faces the model representative format (MRF) issue and transmission overhead of model transfer. Thus, for one-sided AI/ML model, the model training and the model inference should be performed at the same node.
Model training of Network-side AI/ML model
As described above, model training and model inference should be at the same node for one-sided AI/ML model, i.e., On-network training should be assumed for Network-side model. For On-network training, although the model training is entirely performed at the network side, it may require UE to assist the collection of training samples as described in section 3.1, e.g. for CSI feedback case and BM case. Although NW may require UE to assist the collection of training samples, the implementation of training process itself is transparent to UE. In addition, the entity to perform training (e.g., gNB or other entity in NW) and the specific training approach should be up to implementation.
[bookmark: OLE_LINK11][bookmark: OLE_LINK10]Observation 1: For On-network model training, the specific network entity to perform training is up to network implementation.
Observation 2: For On-network model training, it is transparent to UE except for potential feedback enhancement for data collection.
Model training of UE-side AI/ML model
As described above, model training and model inference should be at the same node for one-sided AI/ML model, thus On-UE training should be assumed for UE-side AI/ML model. Similar as On-network model training, the entity of the UE side to perform the training is up to UE implementation also. Whether it needs network to assist the collection of training samples can be further studied.
Based on the above analysis, the following proposal is given for one-sided AI/ML model:
Proposal 4: For further study of one-sided AI/ML model, model training and model inference at the same node should be considered as a starting point, i.e.,
· On-network training for Network-side model
· On-UE training for UE-side model
3.2.2 Model training of two-sided (AI/ML) model
Two-sided AI/ML model consists a pair of model-A and model-B over which joint inference is performed across the network and the UE. This kind of AI/ML model is applied, for example, in the CSI feedback case where a two-sided model is used for CSI compression and recovery. The NW part model (e.g., CSI reconstruction part) and UE part model (e.g., CSI generation part) need to be paired to ensure end-to-end performance. This is challenging in nature because NW and UE involve different equipment vendors and use distinct hardware platforms.
Regarding the model training for two-sided model, the following four training types are under discussion:
· [bookmark: OLE_LINK13][bookmark: OLE_LINK14]Type 1: On-network training with model transfer to UE
· Type 2: On-UE training with model transfer to network
· Type 3: Joint training across network and UE without model transfer
· [bookmark: OLE_LINK12]Type 4: Separate training at network and UE without model transfer
Type 1 - NW trains both model-A (inference at UE) and model-B (inference at NW), and after model training is completed, NW transfers the trained model-A to UE over air-interface, as shown in Figure 1(a). Type 1 works together with collaboration level z because model transfer is required. This training type has several pros. Firstly, it can achieve the optimal NW performance since model-A and model-B are designed and trained jointly at NW based on the dataset collected from the overall networks. Second, NW can dynamically update UE’s model when the wireless scenario changes, e.g., UE handover. Third, the network can train and maintain a unified NW part model over multiple UEs which avoids the multi-vendor combination issue (i.e., many pairs of model need to be maintained if models are trained per NW-UE vendor pair). On the other hand, this type may face the following issues:
· Compatibility Issue: The algorithm design of AI/ML model is coupled with the hardware (e.g., chipset) and the software platforms (e.g., runtime environment), which may result in that the AI/ML model trained at the network side cannot be compiled successfully at the UE side as discussed in Section 3.2.1. In addition, different computing efficiency at the network side and UE side may result in low operating efficiency, long operating delay, or even failed to run at the UE side. Whether there is any method to solve these kind of issues needs further study.
· MRF Issue: Model transfer faces the MRF issue, where UE may not interpret and compile the model transferred by NW due to different platforms for generating AI/ML models. A common MRF needs to be defined for transferring AI/ML model. Some formats, such as ONNX or NNEF, were raised for addressing this issue, however these formats are not designed for wireless communications and the feasibility is unclear at this stage. Defining 3GPP-specific MRF should be the right way to go, however this may be challenging since it would potentially involve heavy workload across working groups, thus it is not clear whether it should be the first step to study for AI/ML for air interference. From long term perspective, it is a worthy aspect to study though.
· Proprietary Issue: The implementation of AI/ML models are usually proprietary. Whether or how to keep the proprietary of AI/ML models when NW’s model is transferred to the UE needs to be further studied.
	[image:]
	[image:]

	(a) Type 1: On-network training with model transfer to UE for two-sided model
	(b) Type 2: On-UE training with model transfer to network for two-sided model

[bookmark: _Ref110631031]Figure 1 Training types with model transfer for two-sided model: Type 1 and Type 2
Type 2 - Both model-A (inference at UE) and model-B (inference at NW) are trained at UE side. After the model training is completed, UE transfers the well-trained model-B to NW over air-interface, as shown in Figure 1(b). Type 1 works with collaboration level z due to the model transfer. In this type, UE can maintain a unified model for multiple NW vendors which reduces the storage burden of UE. However, the model trained by UE may not match the specific networks/scenario due to lack of matched dataset. Besides, model from UE vendor may not be compatible to NW if UE vendor is not aware of NW’s hardware/software. Third, the NW need to maintain or infer UE-specific models which increase the burden of computing and storage on the NW side. Moreover, this type also faces the MRF issue and model proprietary issue as described under Type 1.
Type 3 - Joint training across NW and UE without model transfer for two-sided model can be defined as: a process to train the UE part model-A and the NW part model-B in one forward propagation (FP) & backward propagation (BP) loop. In this type, both NW and UE are involved in model training while no AI/ML is transferred over air-interface. Depending on the development methods, this type may be performed via the following manners:
Centralized manner: The NW vendor and UE vendor work together to design and train the UE part model-A and the NW part model-B. But, as there are different network vendors and UE vendors, this training manner may result in numerous model pairs for both sides, making it difficult from model management and maintenance perspective. In addition, how to protect the proprietary implementation for each vendor is not clear also, since model/hardware/software implementation may need to be aware of to some extent by the other side for this kind of joint training. Besides, model updating timing among NW vendors and UE vendors has to be aligned under such centralized manner which is challenging. Therefore, such manner faces big realistic challenges to be achieved.
Distributed manner: The model structure of model-A and model-B is designed separately by UE vendor and NW vendor, respectively, as shown in Figure 2, and the model of one vendor is unaware of by the vendor at the opposite side. By defining the BP and the FP interaction procedure and under a common dataset, the parameters of model-A and model-B can be trained jointly through iterative FP/BP loops, without disclosing the model/hardware/software to the other vendor. As an interaction approach, the gradients of BP and the results of FP during training process can be exchanged, e.g., in offline manner or over air-interface. This approach creates better independence between vendors and offers protection in model proprietary. However, this solution relies on complex design to support real-time interaction of FP/BP iterations between NW and UE which introduces challenges.
	[image:]

[bookmark: _Ref110631065][bookmark: _Ref110631004]Figure 2 Joint training across network and UE without model transfer for two-sided model
Type 4 - Separate training at network and UE without model transfer for two-sided model can be defined as: a process where UE trains model-A and NW trains model-B in their own BP & FP loops, respectively, with necessary interaction. The training process contains the following steps, as shown in Figure 3:
· Step-1: NW side trains both model-A and model-B (the model-A is used only for training but not for inference) with dataset#1 containing input .
· Step-2: After the training is completed, NW builds dataset#2 and share the dataset#2 to UE side. The dataset#2 contains both input () and the corresponding output (i.e.,) of the trained model-A.
· Step-3: UE side trains model-A using the dataset#2. The output (i.e.,) of the model-A trained by NW side is regarded as labels for the corresponding input () of the model-A trained by UE side.
· Step-4: The model-A trained by UE side and model-B trained by NW side can be separately deployed for joint inference
This separate training mechanism is reasonable because the output of the UE side model-A is close to the output of the NW side model-A when the input of them are same, which is based on the sharing of dataset#2 from NW to UE. Hence, the UE side model-A is trained to follow the functionality of NW side model-A, thereby can be paired to NW model-B for successful inference. For how to share dataset#2 to UE, it can be further studied, e.g., via offline manner or over air-interface.
Separate training facilitates the training of two-sided model by introducing dataset sharing between NW side and UE side. It works with collaboration level y since model transfer is not required, and consequently avoids hardware/software compatibility issue and MRF issues. The NW can maintain a unified model-B over multiple UEs as UE models are trained based on an identical sharing dataset. Furthermore, model proprietary can be guaranteed as joint development between NW vendor and UE vendor is not needed. The drawback of this method is its suboptimal performance. But it is shown in our companion contribution [3] that for CSI feedback, the performance of separate training can closely approach the performance under joint training.
	[image:]

[bookmark: _Ref109751873]Figure 3 Separate training at network and UE without model transfer for two-sided model
The separate training can be operated in a symmetrical way as well, where UE side trains model-A and model-B, and shares the dataset (containing inputs and outputs of model-B) to the NW. NW uses the shared dataset to train NW side model-B separately and deploy it for joint inference. One issue is that the dataset collected from UE side may not well match the channel characteristics of the network.
The pros and cons of aforementioned four training types are summarized in following Table 1.
[bookmark: _Ref110639468]Table 1 Brief comparison of the training types for two-sided model
	Training type
	Pros
	Cons

	Type 1
	· Optimal network performance
· Dynamic model updating
· Network can maintain a unified model over multiple UEs
	· Compatibility issue on hardware/software at UE
· AI/ML model representative format (MRF) needs more 3gpp efforts
· How to protect model proprietary is not clear

	Type 2
	· UE can maintain a unified model for multiple NW vendors
	· Dataset for training at UE may not match the network channel characteristics
· Compatibility issue on hardware/software at NW
· Network may need to maintain/infer UE-specific models
· AI/ML model MRF needs more 3gpp efforts
· How to protect model proprietary is not clear

	Type 3
	· Avoid hardware or software compatibility issue
· Avoid MRF issue
	· Whether/how to perform development between NW vendor and UE vendor is not clear
· Complex design to support real-time interaction of FP/BP iterations between NW and UE

	Type 4
	· Avoid hardware or software compatibility issue
· Avoid MRF issue
· Model proprietary can be guaranteed
· Avoid joint development between Multi-NW vendor and Multi-UE vendor
	· Performance may be not optimal

Based on the above analysis, it can be seen that there are pros and cons for each training type. Further study and comparison are needed before making decision on the direction to move forward. The overall goal is to find a feasible way that supports the commercialization and maximum the benefits that AI/ML can bring.
Proposal 5: Further study the following four types of training for two-sided model:
· Type 1: On-network training with model transfer to UE
· Type 2: On-UE training with model transfer to network
· Type 3: Joint training across network and UE without model transfer
· Terminology: A process to train the UE part model-A and the network part model-B in one forward propagation (FP) & backward propagation (BP) loop with necessary exchange of gradients.
· Type 4: Separate training at network and UE without model transfer
· Terminology: A process where UE trains model-A and network trains model-B in their own BP & FP loops, respectively, with necessary interaction.
3.3 Pre/post-processing of dataset
A typical procedure of AI/ML model generation includes model training, model validation, model testing, and the associated pre/post-processing of the dataset.
Pre-processing can be applied to enhance the scalability of the dataset. For example, the dimension of data can be adjusted through data padding or truncation, so that data of different input and output dimensions may be used to train a same AI/ML model. Thus, the NW or the UE only needs to store a small number of trained AI/ML models that can be generalized to different system settings. This kind of data pre-processing can be performed in frequency domain, (e.g., for different number of RBs), or in spatial domain (e.g., for different number of antenna ports).
Pre/post-processing of dataset can be applied to facilitate model training. For the LOS/NLOS identification of the positioning case, the original frequency channel response is transformed to the power delay profile (PDP) before inputted to the AI/ML model. For the CSI feedback case, the measured channel can be transformed to eigenvector via singular value decomposition (SVD) rather than directly using full channel matrix for model training. For another example in CSI compression, the output of the CSI reconstruction part can be quantized before being fed back to NW, and NW needs to dequantize the received bits correspondingly before inputting them to the CSI generation part. The processing of the SVD and the quantization/dequantization needs to be aligned between NW and UE.
Proposal 6: Study the following aspects for pre/post-processing:
· Pre/post-processing method, e.g. scalability to different configurations, quantization/dequantization and pre-processing to the measured channel
· Potential specification impact on how to align the pre/post-processing methods between network and UE
AI/ML model validation and AI/ML model testing are parts of AI/ML model generation. But, the model testing mentioned here is different with the testing requirement studied in RAN4.
4 Network and UE collaboration levels
The NW-UE collaboration levels have been agreed in RAN1 #109e [1].
	Agreement
Take the following network-UE collaboration levels as one aspect for defining collaboration levels
1. Level x: No collaboration
2. Level y: Signaling-based collaboration without model transfer
3. Level z: Signaling-based collaboration with model transfer
Note: Other aspect(s), for defining collaboration levels is not precluded and will be discussed in later meetings, e.g., with/without model updating, to support training/inference, for defining collaboration levels will be discussed in later meetings
FFS: Clarification is needed for Level x-y boundary

For the clarification in FFS, Level x is purely implementation-based and does not need to introduce any new signaling dedicated for AI/ML. Thus, Level x has no specification impact. For level y, it needs to define signaling related to AI/ML operation, which may include control signaling for training/updating, monitoring, inference, etc., but does not involve the explicit model structure or parameter information. On the basis of Level y, Level z further supports model transfer between the NW and the UE, including explicitly transferring parameters and the structure of AI/ML models. In our understanding, the AI/ML related signaling supported in level y is also supported by level z.
Observation 3: Level x refers to implementation-based AI/ML operation without any collaboration between network and UE, and Level y refers to AI/ML operation requiring signaling exchange between network and UE to facilitate model training/updating, inference and monitoring, without explicit model structure or parameter information.
[bookmark: OLE_LINK16]Another one controversial issue discussed in RAN1#109e meeting is that whether others aspects needs to be considered or not for defining the collaboration level, like model updating, model training and model inference. Model updating is to re-train or fine-tune an AI/ML model, thus the process of model updating can belong to the scope of model training, with the difference that model training starts from scratch while model updating starts from a basis model. In our understanding, for simplicity, there is no need to further consider model training and/or model inference for defining the collaboration levels, instead we can discuss and categorize model training/inference separately, and then can further discuss what combinations can be allowed for a certain use case considering the collaboration levels, types of model training, and types of model inference.
Proposal 7: Model training/updating/inference can be studied with independent dimensions from collaboration level.
Based on the discussion in RAN1#109-e meeting, one-sided model and two-sided model as below are defined from inference perspective, and in our understanding it seems these two types are sufficient for further study for model inference.
· One-sided model inference: Model inference is entirely performed at the UE or the NW. Necessary signaling between UE and gNB is required for facilitating model inference, e.g., UE feeds back inference inputs to NW or the other way around.
· Two-sided model inference: Inference is performed jointly across the UE and the NW. Necessary signaling between UE and gNB is required for model inference, i.e., UE infers the UE part model and sends the output to NW; NW takes the output of UE part model as the input to the NW part model and performs inference.
Proposal 8: Further study the following two types of model inference:
· One-sided model inference
· Two-sided model inference
For model training, the detailed discussion can be found in Section 3.2.
An example of the potential combinations taking into account different collaboration levels, different types of model training and model inference can be seen in Table 2.
[bookmark: _Ref111051299]Table 2 Potential combinations of collaboration levels, model training types and model inference types
	
	Collaboration level y
	Collaboration level z

	One-sided model
	On-network training
	Yes
(e.g., BM, positioning)
	TBD

	
	On-UE training
	Yes
(e.g., BM, positioning)
	TBD

	Two-sided model
	Type 1 model training
	NA
	Yes
(e.g., CSI compression)

	
	Type 2 model training
	NA
	Yes
(e.g., CSI compression)

	
	Type 3 model training
	Yes
(e.g., CSI compression)
	NA

	
	Type 4 model training
	Yes
(e.g., CSI compression)
	NA

5 Lifecycle management
For Lifecycle management (LCM) of AI/ML models, model activation/deactivation, model monitoring, and model switching/updating are elaborated in this section.
5.1 Model activation and deactivation
Operation modes for activation/deactivation
The NW is normally responsible for the performance of the entire network, and thereby it is reasonable to let NW activate or deactivated AI/ML models for the purpose of guaranteeing the NW performance. To elaborate this, model activation/deactivation can be discussed based on three operation modes:
· Network-side model: NW can activate or deactivate the model based on the monitoring results with necessary UE feedback information, without awareness of UE.
· UE-side model: As one mode, the UE can activate/deactivate the UE-side model without awareness of the NW. However, it is also preferred another mode to consider the NW to manage the model lifecycle also for UE-side model to better guarantee the network performance.
· Two-sided model: As the NW part model and UE part model are paired, activating/deactivating the model at any node will cause a corresponding activation/deactivation at peer node. This kind of two-sided operation is better managed by the NW similar to the enabling/disabling of other specified non-AI/ML features involving both NW and UE.
Activation/deactivation triggering
Potential specification impact of model activation/deactivation includes the trigger signaling, which can be based on NW indication or UE request. This is applicable to both UE-side model and two-sided model.
· Based on NW indication: For UE-side model, NW can trigger the model activation/deactivation based on the NW’s measurements or UE’s feedback monitoring information. For two-sided model, NW is aware of the pairing relationship with the UE part model and can determine whether the currently used two-sided model fits the wireless scenario based on, e.g., the performance monitoring. Then, NW can indicate the UE to activate/deactivate the corresponding UE part model.
· Based on UE request: UE may request model activation/deactivation based on its measurements or performance. Alternatively, UE can also request the NW to activate/deactivate due to practical reasons, e.g., computation complexity/power consumption of the UE-part model.
Proposal 9: For one-sided model and two-sided model, network can activate/deactivate AI/ML model depending on model monitoring and/or UE request for guaranteeing the performance of the networks.
5.2 Model monitoring
Model monitoring can operate in event-driven or periodic manner. Model monitoring identifies the adaptiveness between AI/ML model and environment, which can switch model in time and avoid model failure. Model monitoring requires to collect information that reflects the model status. Yet, the process of model monitoring does not need to be always-on, but rather be configured as a monitoring window. The period of the monitoring window could be in terms of, e.g., hours or days, while the inputs for monitoring (e.g., labels) collected within the monitoring window can be subject to hundreds or thousands of TTIs, thereby the resulting overhead of model monitoring can be negligible on average, taking a tiny portion of time during LCM.
Observation 4: Overhead of model monitoring (e.g., ground-truth labels) between network and UE via air-interface may not be a big issue with respect to relatively small monitoring window within long monitoring periodicity in lifecycle management.
Metrics for monitoring
In general, there are two options for model monitoring in terms of different metrics:
Option 1: Inference accuracy, which can be directly monitored. Such performance can be obtained by comparing the inference results with the ground-truth labels. The label during the inference stage needs to be collected for evaluating whether the performance of the model is degraded. Taking NW based monitoring for instance, as the NW could collect ground-truth labels from multiple UE at a time, constructing a large number of diversified labels efficiently, so the duration of monitoring window and the overhead of ground-truth labels may be relatively small.
Option 2: System performance, e.g. system throughput, RSRP, etc. For example, if the throughput using AI/ML decreases or lower than the legacy non-AI/ML system, it might indicate that the model is not suitable to the current environment.
[bookmark: _Hlk111160961]Proposal 10: Study the following metrics for AI/ML model monitoring in life cycle management
· Inference accuracy.
· System performance.
Operation modes for monitoring
The monitoring manner can be different depending on the execution node (e.g., gNB and UE) of these steps, which is analyzed as follows:
· Network-side model:
· For one option, the monitoring can be entirely performed at the NW. For example, NW can collect the ground-truth labels (e.g., optimal beam ID) fed back from the UE as monitoring inputs and calculates the KPI (e.g., beam selection accuracy), then makes monitoring decisions according the KPI, including model activation/deactivation/switching/updating.
· Alternatively, the operation of monitoring inputs collection and KPI calculation (e.g., RSRP) can be performed at the UE, then UE feeds back the resulting KPI to NW, and NW performs the eventual decision making.
· UE-side model:
· For one option, UE collects monitoring inputs and calculating KPI, and then feeds back the KPI to NW, then relies on the NW to make the decision.
· For another option, the monitoring process can be entirely performed up to UE, with potentially requesting NW to send assistant signals (AI/ML-related RS, etc.) to facilitate the UE to obtain monitoring inputs.
· Two-sided model:
· NW can collect the monitoring inputs and calculate the KPI. The inputs can be the feedback from UE including ground-truth labels or instantaneous performance indicator (e.g., ACK/NACK). After the KPI is calculated, NW can activate/deactivate models and indicate the UE to perform accordingly.
· Similar to Network-side model, the inputs collection and KPI calculation can be performed at UE side based on UE measurements, and NW performs the eventual decision based on UE feedback.
Therefore, depending on the execution node (e.g., NW or UE) of these steps, model monitoring can be classified into three cases:
Case 1: gNB collects inputs for monitoring, calculating monitoring KPI, and making the monitoring decision. This case is applicable to at least On-network model and the two-sided model.
Case 2: UE collects inputs for monitoring, calculates monitoring KPI, feeding back KPI to gNB, and gNB makes the decision. This case is applicable to On-network model and On-UE model as well. Two-sided model can also use this monitoring type.
Case 3: UE collects inputs for monitoring, calculates monitoring KPI, and makes the monitoring decision. This option can be applied to monitor the On-UE model.
Proposal 11: Study the following three cases of model monitoring:
· Case 1: gNB collects inputs for monitoring, calculates monitoring KPI, and makes monitoring decision
· Case 2: UE collects inputs for monitoring, calculates monitoring KPI, feeds back KPI to gNB, and gNB makes monitoring decision
· Case 3: UE collects inputs for monitoring, calculates monitoring KPI, and makes monitoring decision.
5.3 Model switching and update
Model switch/updating may occur in the following scenarios:
· Performance degradation of the ongoing AI/ML is detected through model monitoring.
· Cell handover while different AI/ML models are applicable to different cells or NW vendors. Note that the AI/ML models can be maintained per cell, or per area/per site which includes a group of cells.
· The limitation on UE/gNB’s computation/storage that the ongoing AI/ML model can no longer be supported.
Operation modes for model switching/updating
Model switching is usually applicable to case where scenarios changes greatly, probably resulting in a hard change in performance, while model updating is a softer way to optimize performance without changing the model structure. Regarding the procedure, model updating is similar as model training/re-training, while model switching is a series of successive operation including deactivating the currently used model and activating a target new model.
Model switching/updating can also be analyzed according to the execution node:
· Network-side model: Model switching and updating is up to the NW implementation, except for some necessary assistance information fed back from UE (e.g., for facilitating data collection).
· UE-side model:
· For the case that NW is aware of the difference of multiple UE-side models, the NW can trigger the model switching/updating based on the network environment, e.g., when the channel characteristics changes, NW can indicate the UE to switch to a more suitable model or to update to a new model.
· Alternatively, UE may also make the model switching/updating decision up to itself. The model implementation of model switching can be transparent to NW, except for sending the assistance signals for training data collection.
· Two-sided model: Model switching/updating can be triggered by NW, based on performance monitoring or UE request.
Proposal 12: For one-sided model and two-sided model, network can switch/update AI/ML model depending on model monitoring and/or UE request for guaranteeing the performance of the networks.
Model registration
For facilitating NW to efficiently indicate the target model to be switched at the UE side, the UE needs to register its model at the NW. This is applicable to UE-side model and two-sided model.
· For UE-side model, the UE model needs to be registered if it relies on NW’s management to activate/deactivate/switch models.
· For two-sided model, model registration is necessary to pair the NW part model and the UE part model. NW needs to know the pairing relationship of registered models and performs model switching among them.
Observation 5: For UE-sided model, model registration is needed when switching is managed by the network.
Observation 6: For two-sided model, model registration is needed for the switching/updating of the UE part models.
In order to enable the model registration, each model can be labelled with a unique model ID. The format of the model ID could be discussed to avoid conflict over multiple vendors, e.g., assigned by mobile network operator (MNO) and maintained by NW/UE vendors. After registration at NW, the NW can trigger model activation/deactivation/switching/updating at UE for per specific model ID.
Proposal 13: For UE-side model and two-sided model, study the model registration for AI/ML model LCM.
6 Considerations on UE power consumption
In RAN1#109e, FLOPs has been agreed as a KPI in AI/ML-CSI and AI/ML positioning evaluations [1]. But this metric cannot fully represent the power consumption at UE, which is one of the important KPI to evaluate the performance at UE side when compared with legacy algorithms. In our views, power consumption can be evaluated by taking FLOPs and hardware energy efficiency into consideration jointly.
Generally, AI/ML inferences are conducted in hardware accelerators, while legacy algorithms are conducted in general processors. Based on proper implementation, AI/ML accelerators have higher energy efficiency than general processors. Therefore, even if the FLOPs of an AI/ML model is larger than the legacy algorithm, using AI/ML may still achieve a lower power consumption.
Proposal 14: Study the feasibility of modelling for UE power consumption at inference stage.
7 Conclusions
According to the discussions, following observations and proposals are provided:
Proposal 1: Define the following terminologies if needed:
· Online training: An AI/ML training process that is performed in the same or different node as model inference, where the model is updated continuously with arrival of new training samples and the updated model is continuously applied for inference.
· Offline training: An AI/ML training process that is performed in the same or different node as model inference, where the model is non-continuously trained based on collected training samples, or the trained model is non-continuously applied for inference.
· Model deployment: Deploy a fully developed and tested model runtime image at the node where inference is to be performed.
· On-UE training: Online/offline training at the UE.
Proposal 2: Study the potential spec impact of data collection from realistic network for supporting the model updating and monitoring of AI/ML model.
Proposal 3: The study of data collection should follow the principle given in the SID, i.e., user data privacy needs to be preserved.
Proposal 4: For further study of one-sided AI/ML model, model training and model inference at the same node should be considered as a starting point, i.e.,
· On-network training for Network-side model
· On-UE training for UE-side model
Proposal 5: Further study the following four types of training for two-sided model:
· Type 1: On-network training with model transfer to UE
· Type 2: On-UE training with model transfer to network
· Type 3: Joint training across network and UE without model transfer
· Terminology: A process to train the UE part model-A and the network part model-B in one forward propagation (FP) & backward propagation (BP) loop with necessary exchange of gradients.
· Type 4: Separate training at network and UE without model transfer
· Terminology: A process where UE trains model-A and network trains model-B in their own BP & FP loops, respectively, with necessary interaction.
Proposal 6: Study the following aspects for pre/post-processing:
· Pre/post-processing method, e.g. scalability to different configurations, quantization/dequantization and pre-processing to the measured channel
· Potential specification impact on how to align the pre/post-processing methods between network and UE
Proposal 7: Model training/updating/inference can be studied with independent dimensions from collaboration level.
Proposal 8: Further study the following two types of model inference:
· One-sided model inference
· Two-sided model inference
Proposal 9: For one-sided model and two-sided model, network can activate/deactivate AI/ML model depending on model monitoring and/or UE request for guaranteeing the performance of the networks.
Proposal 10: Study the following metrics for AI/ML model monitoring in life cycle management
· Inference accuracy.
· System performance.
Proposal 11: Study the following three cases of model monitoring:
· Case 1: gNB collects inputs for monitoring, calculates monitoring KPI, and makes monitoring decision
· Case 2: UE collects inputs for monitoring, calculates monitoring KPI, feeds back KPI to gNB, and gNB makes monitoring decision
· Case 3: UE collects inputs for monitoring, calculates monitoring KPI, and makes monitoring decision.
Proposal 12: For one-sided model and two-sided model, network can switch/update AI/ML model depending on model monitoring and/or UE request for guaranteeing the performance of the networks.
Proposal 13: For UE-side model and two-sided model, study the model registration for AI/ML model LCM.
Proposal 14: Study the feasibility of modelling for UE power consumption at inference stage.
Observation 1: For On-network model training, the specific network entity to perform training is up to network implementation.
Observation 2: For On-network model training, it is transparent to UE except for potential feedback enhancement for data collection.
Observation 3: Level x refers to implementation-based AI/ML operation without any collaboration between network and UE, and Level y refers to AI/ML operation requiring signaling exchange between network and UE to facilitate model training/updating, inference and monitoring, without explicit model structure or parameter information.
Observation 4: Overhead of model monitoring (e.g., ground-truth labels) between network and UE via air-interface may not be a big issue with respect to relatively small monitoring window within long monitoring periodicity in lifecycle management.
Observation 5: For UE-sided model, model registration is needed when switching is managed by the network.
Observation 6: For two-sided model, model registration is needed for the switching/updating of the UE part models.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]References
[1] [bookmark: _Ref109681980]R1-2205695, “Session notes for 9.2 (Study on AI/ML for NR air interface)”, Ad-hoc Chair (CMCC), May 9 - 20, 2022.
[2] [bookmark: _Ref110677986]R1-2205522, “Summary #4 on general aspects of AI/ML framework”, RAN1#109e, Moderator (Qualcomm), May 9 - 20, 2022.
[3] [bookmark: _Ref110639294]R1-2205890, “Evaluation on AI/ML for CSI feedback enhancement”, RAN1#110, Huawei, HiSilicon, August 22 - 26, 2022.
[4] [bookmark: _Ref111034079]R1-2205891, “Discussion on AI/ML for CSI feedback enhancement”, RAN1#110, Huawei, HiSilicon, August 22 - 26, 2022.
[5] [bookmark: _Ref111034135]R1-2205892, “Evaluation on AI/ML for beam management”, RAN1#110, Huawei, HiSilicon, August 22 - 26, 2022.
[6] [bookmark: _Ref111034136]R1-2205893, “Discussion on AI/ML for beam management”, RAN1#110, Huawei, HiSilicon, August 22 - 26, 2022.
Appendix: Working list of terminologies
[bookmark: _Ref110433134]Table 3 Working list of terminologies
	Terminology
	Description

	Data collection
	A process of collecting data by the network nodes, management entity, or UE for the purpose of AI/ML model training, data analytics and inference

	AI/ML Model
	A data driven algorithm that applies AI/ML techniques to generate a set of outputs based on a set of inputs.

	AI/ML model training
	A process to train an AI/ML Model [by learning the input/output relationship] in a data driven manner and obtain the trained AI/ML Model for inference

	AI/ML model Inference
	A process of using a trained AI/ML model to produce a set of outputs based on a set of inputs

	AI/ML model validation
	A subprocess of training, to evaluate the quality of an AI/ML model using a dataset different from one used for model training, that helps selecting model parameters that generalize beyond the dataset used for model training.

	AI/ML model testing
	A subprocess of training, to evaluate the performance of a final AI/ML model using a dataset different from one used for model training and validation. Differently from AI/ML model validation, testing does not assume subsequent tuning of the model.

	UE-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the UE

	Network-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the network

	One-sided (AI/ML) model
	A UE-side (AI/ML) model or a Network-side (AI/ML) model

	Two-sided (AI/ML) model
	A paired AI/ML Model(s) over which joint inference is performed, where joint inference comprises AI/ML Inference whose inference is performed jointly across the UE and the network, i.e, the first part of inference is firstly performed by UE and then the remaining part is performed by gNB, or vice versa.

	AI/ML model transfer
	Delivery of an AI/ML model over the air interface, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.

	Model download
	Model transfer from the network to UE

	Model upload
	Model transfer from UE to the network

	Federated learning / federated training
	A machine learning technique that trains an AI/ML model across multiple decentralized edge nodes (e.g., UEs, gNBs) each performing local model training using local data samples. The technique requires multiple interactions of the model, but no exchange of local data samples.

	Offline field data
	The data collected from field and used for offline training of the AI/ML model

	Online field data
	The data collected from field and used for online training of the AI/ML model

	Model monitoring
	A procedure that monitors the inference performance of the AI/ML model

	Supervised learning
	A process of training a model from input and its corresponding labels.

	Unsupervised learning
	A process of training a model without labelled data.

	Semi-supervised learning
	A process of training a model with a mix of labelled data and unlabelled data

	Reinforcement Learning (RL)
	A process of training an AI/ML model from input (a.k.a. state) and a feedback signal (a.k.a. reward) resulting from the model’s output (a.k.a. action) in an environment the model is interacting with.

	Model activation
	enable an AI/ML model for a specific function

	Model deactivation
	disable an AI/ML model for a specific function

	Model switching
	Deactivating a currently active AI/ML model and activating a different AI/ML model for a specific function

[bookmark: _Ref111153620][bookmark: _Ref111153616]Table 4 Definition of terminologies
	Online training
	An AI/ML training process that is performed in the same or different node as model inference, where the model is updated continuously with arrival of new training samples and the updated model is continuously applied for inference.

	Offline training
	An AI/ML training process that is performed in the same or different node as model inference, where the model is non-continuously trained based on collected training samples, or the trained model is non-continuously applied for inference.

	Model deployment
	Deploy a fully developed and tested model runtime image at the node where inference is to be performed.

	Model update
	Retraining or fine-tuning of an AI/ML model, via online/offline training, to improve the model inference performance.

	On-UE training
	Online/offline training at the UE

	On-network training
	Online/offline training at the network

image2.png

image3.png

image4.png

image1.png

