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[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In RAN1#109e, companies reached some agreements on evaluation of AI/ML for beam management. Following agreements were extracted from the chair’s notes [1] and feature lead’s summary of discussions [2] related/relevant to spatial-domain beam prediction.Agreement:
· For dataset construction and performance evaluation (if applicable) for the AI/ML in beam management, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
· For spatial-domain beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
· At least for spatial-domain beam prediction in initial phase of the evaluation, UE trajectory model is not necessarily to be defined.
· For AI/ML in beam management evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.
· Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations
· Companies report the training approach, at least including the dataset assumption for training
· For evaluation of AI/ML in BM, the KPI may include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.
· For dataset generation and performance evaluation for AI/ML in beam management, take the parameters (if applicable) in Table 1.2-1b for Dense Urban scenario for SLS. (Table content is omitted here)
· Companies are encouraged to report the following aspects of AI/ML model in RAN 1 #110. FFS on whether some of aspects need be defined or reported.
· Description of AI/ML model, e.g, NN architecture type
· Model inputs/outputs (per sub-use case)
· Training methodology, e.g.
· Loss function/optimization function
· Training/ validity /testing dataset:
· Dataset size, number of training/ validity /test samples
· Model validity area: e.g., whether model is trained for single sector or multiple sectors             
· Details on Model monitoring and model update, if applicable
· Others related aspects are not precluded.


For KPI related discussions, the following agreements were reached.· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 
· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.
· Other KPIs are not precluded and can be reported by companies, for example:
· Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
· Latency reduction:
· (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
· where M is the total number of beams
· Power consumption reduction: FFS on details


In this contribution, we focus on discussing spatial-domain beam prediction using AI/ML based approach and feasibility study and initial evaluation results using agreed-upon assumptions and parameters from RAN1#109e.

Evaluation methodology and KPIs for AI/ML based spatial domain beam prediction
Dataset generation 
For dataset construction, we use the agreed-upon assumptions and simulation parameters from RAN1#109e as depicted in Table 2.1-1 [2]. Some key parameters are indicated in Table 2.1-1 below.
Table 2.1-1: Simulation parameters for dataset generation
	Parameter
	Value

	Scenario
	UMi_UMa 38.901,7 sites, 3 cells per site

	Carrier frequency
	30 GHz

	Subcarrier spacing
	120 kHz

	System BW
	80 MHz

	ISD
	200 m

	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	Antenna configuration at UE
	[Mg Ng M N P] = [1 1 2 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-60, -42.86, -25.71, -8.57, 8.57, 25.71, 42.86, 60]
Vertical angle = [-45, -20, 5, 30]

	UE RX beam pattern
	8 Rx beams
Horizontal angle = [-60, -20, 20, 60]
Vertical angle = [-20, 20]

	Indoor UE fraction
	80%

	Spatial consistency 
	False

	Rotation
	False




Evaluation metrics
To evaluate the performance and complexity of AI/ML-based beam prediction in spatial domain, we adopt the following intermediate KPIs as discussed and agreed during RAN1#109e.
AI/ML model performance evaluation using intermediate KPIs:
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· Average L1-RSRP difference of Top-1 predicted beam
· Definition: the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· CDF of L1-RSRP difference for Top-1 predicted beam
· In addition to the above KPIs, we also evaluated the following:
· Average L1-RSRP difference of Top-K predicted beam
· Definition: the difference between the highest ideal L1-RSRP of the Top-K predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam.
AI/ML model complexity evaluation:
· Space complexity
· We adopt number of parameters in AI/ML model as the KPI to represent space complexity. 
· Computational complexity
· We use floating point operations (FLOPs) as the KPI to represent AI/ML model computational complexity and follow the definitions as described in [3].

Performance Evaluation Results
In this sub section, we discuss the evaluation results for AI/ML-based spatial beam prediction for both performance and complexity aspects.
Input and Output of Top-K beam prediction in spatial domain
To reduce beam sweeping overhead, we investigated using a subset of narrow beams to predict the Top-K beams out of all the available narrow beams. Figure 3.1-1 depicted the high-level prediction diagram. 
The input for the AI/ML beam prediction model is L1-RSRP from a subset of the narrow beams, and the output of prediction is the Top-K beams. We study and compare the performance when using various number of beams as the input and different input beam patterns. Table 3.1-1 describes the scope of the performance evaluation.
Figure 3.1-1: AI/ML beam prediction in spatial domain


Table 3.1-1: Input and output for spatial beam prediction
	Input beam pattern
	Number of input beam L1-RSRP
	Total number of beams
	Output (Top-K beams)

	Fixed pattern
	4, 8, 12, 16, 20, 24, 28, 32
	256
	1, 2, 4, 6, 8

	Random Patterns
	4, 8, 12, 16, 20, 24, 28, 32
	256
	1, 2, 4, 6, 8

	Pre-set patterns
	4, 8, 12, 16, 20, 24, 28, 32
	256
	1, 2, 4, 6, 8



Input beam pattern options:
· Option 1: Fixed Beam Pattern
In this option, a defined fixed beam pattern with M select beams out of all the available beam pairs is applied for all the input samples. In our experiment, we use even-space sampling to pick M beam pairs (M  {4, 8, 12, 16, 20, 24, 28, 32}) from the total 256 beam pairs. 
· Option 2: Random Beam Patterns
In this option, we randomly select M beam (M  {4, 8, 12, 16, 20, 24, 28, 32}) from all available beams as input for each sample.
· Option 3: Pre-configured Beam Patterns
In this option, we pre-defined a set of N (N = 5) different beam patterns, each with M selected beam pairs (M  {4, 8, 12, 16, 20, 24, 28, 32}), then one of them will be randomly chosen as input for each sample. 
Note: The intention of using random beam patterns or (a few) pre-configured beam patterns as input is to enable the AI/ML model to learn to predict the Top-K beam pairs even if the input beam pattern changes, e.g., in case configuration changes, without the need to retrain the model. 

AI/ML Model Training and Testing 
We separated the total samples into 3 parts:
· Training: 90% of total samples
· Validation: 10% of training samples
· Testing: 10 of total samples
For AI/ML model architecture, we use CNN-based neural network (NN). The results were generated using the final NN weights that performed the best in validation samples. The details of the training parameters are described in Table 3.2-1.

Table 3.2-1: AI/ML model training parameters
	[bookmark: _Hlk110499082]AI/ML model training detail
	Value

	Type
	CNN-based

	Total dataset size
	10000

	Training dataset size
	8100

	Validation dataset size
	900

	Testing dataset size
	1000

	Batch size
	512

	Epoch
	300




Performance Evaluation
In this section, we discuss evaluation results for AI/ML based beam prediction in spatial domain, focusing on the following aspects:
· Performance comparison across different number of beam pairs used as input to AI/ML model 
· Performance comparison across different input beam patterns: fixed, random, and pre-configured
· For performance, we evaluate Top-1/Top-K beam prediction accuracy, L1-RSRP difference of Top-1/K predicted beam pair(s) and compare with the L1-RSRP difference from sparse beam sweeping approach.
Results
Table 3.2.1-1 contains the performance evaluation results when using fixed beam pattern sampling with various numbers of Set B beam pairs as input to the AI/ML model. Table 3.3.1-2 depicts the performance evaluation results when using pre-configured beam patterns sampling with various numbers of Set B beam pairs as input, and Table 3.3.1-3 shows performance evaluation results when using random beam patterns sampling approach with various numbers of Set B beam pairs as input.Table 3.3.1-1: Performance for using fixed beam pattern sampling approach

	Fixed Beam Pattern Sampling (total beam pairs = 256)

	Set B Length
	Accuracy (%)
	Avg. L1-RSRP difference of Top-K predicted beam

	
	Top-1
	Top-2
	Top-4
	Top-6
	Top-8
	Top-1
	Top-2
	Top-4
	Top-6
	Top-8

	4
	15.7
	24.5
	36.4
	46.4
	53.4
	9.32
	6.81
	4.67
	3.30
	2.64

	8
	22.5
	35.1
	51.6
	61.3
	68.0
	6.40
	4.13
	2.38
	1.66
	1.21

	12
	30.3
	45.4
	62.0
	70.3
	77.8
	4.67
	2.85
	1.49
	1.0
	0.66

	16
	39.7
	58.1
	73.3
	80.2
	83.8
	3.32
	1.81
	0.84
	0.55
	0.45

	20
	40.4
	57.7
	74.2
	81.4
	85.6
	2.92
	1.62
	0.71
	0.42
	0.30

	24
	46.8
	63.6
	79.5
	85.7
	89.5
	2.29
	1.29
	0.55
	0.31
	0.20

	28
	49.4
	66.7
	81.1
	88.2
	91.0
	1.86
	1.03
	0.43
	0.21
	0.15

	32
	51.1
	69.1
	82.5
	88.3
	92.5
	1.71
	0.89
	0.37
	0.22
	0.14


Table 3.3.1-2: Performance for pre-configured beam pattern sampling approach

	Pre-configured Beam Pattern Sampling (total beam pairs = 256)

	Set B Length
	Accuracy (%)
	Avg. L1-RSRP difference of Top-K predicted beam

	
	Top-1
	Top-2
	Top-4
	Top-6
	Top-8
	Top-1
	Top-2
	Top-4
	Top-6
	Top-8

	4
	12.0
	20.2
	31.8
	40.6
	48.5
	10.09
	7.77
	5.43
	4.23
	3.41

	8
	17.5
	29.1
	41.9
	52.4
	60.0
	7.72
	5.44
	3.27
	2.29
	1.79

	12
	24.2
	37.8
	54.3
	63.2
	70.0
	5.52
	3.75
	2.20
	1.50
	1.15

	16
	32.0
	46.5
	62.6
	70.5
	75.30
	4.25
	2.68
	1.48
	0.99
	0.78

	20
	33.3
	49.2
	64.8
	75.3
	79.7
	3.84
	2.39
	1.29
	0.76
	0.59

	24
	35.8
	52.8
	70.2
	76.7
	81.4
	3.31
	2.02
	0.95
	0.64
	0.48

	28
	40.3
	58.0
	74.3
	80.7
	85.1
	2.79
	1.67
	0.78
	0.52
	0.38

	32
	40.9
	60.2
	75.0
	81.7
	85.6
	2.61
	1.50
	0.70
	0.46
	0.37



Table 3.3.1-3: Performance for using random beam pattern sampling approach

	Random Beam Pattern Sampling (total beam pairs = 256)

	Set B Length
	Accuracy (%)
	Avg. L1-RSRP difference of Top-K predicted beam

	
	Top-1
	Top-2
	Top-4
	Top-6
	Top-8
	Top-1
	Top-2
	Top-4
	Top-6
	Top-8

	4
	5.6
	10.8
	19.2
	26.7
	33.6
	14.08
	10.77
	8.18
	6.75
	5.84

	8
	9.5
	17.8
	29.4
	40.1
	48.2
	9.79
	7.63
	5.15
	3.92
	3.15

	12
	13.3
	23.1
	37.1
	45.6
	53.8
	8.39
	6.19
	4.06
	3.08
	2.46

	16
	17.3
	28.1
	43.9
	54.0
	60.4
	7.01
	5.09
	3.22
	2.27
	1.81

	20
	19.4
	33.4
	48.2
	58.7
	65.3
	6.27
	4.17
	2.63
	1.81
	1.41

	24
	21.1
	34.8
	49.3
	60.2
	66.6
	5.67
	3.72
	2.30
	1.51
	1.10

	28
	23.2
	37.7
	54.8
	64.7
	71.2
	5.19
	3.41
	1.95
	1.31
	0.93

	32
	22.4
	39.7
	55.4
	65.6
	72.0
	4.86
	3.06
	1.67
	1.12
	0.83



To understand the distribution of L1-RSRP differences for all the test samples, we plotted the corresponding CDF as depicted in Figure 3.3.1-1 (for fixed input beam pattern), Figure 3.3.1-2 (for pre-configured- input beam pattern), and Figure 3.3.1-3 (for random input beam pattern).Figure 3.3.1-1: CDF of L1-RSRP difference for fixed input beam pattern


From the above figures, we can see that with the same amount of training data, using fixed beam pattern as input achieved better performance compared to using random beam patterns or pre-configured beam patterns. This observation may be due to that using more beam patterns as input may require more training data for the AI/ML model to learn the mapping function between all the input beam patterns and their corresponding Top-K beams (outputs). Figure 3.3.1-3: CDF of L1-RSRP difference for random input beam pattern
Figure 3.3.1-2: CDF of L1-RSRP difference for pre-configured input beam pattern

We also compared the performance (Top-1 accuracy and L1-RSRP difference of Top-K predicted beams) between our AI/ML model and the sparse beam sweeping approach, in which the beam pair with the highest L1-RSRP is chosen as the best beam pair. Figure 3.3.1-4 depicts the intermediate KPI results from sparse beam sweeping. 
Figure 3.3.1-4: Performance comparison between AI/ML-based approach and sparse beam sweeping


From our study, we noticed that using the L1-RSRP difference of Top-1/K predicted beams alone may not indicate the prediction performance directly as the value depends on the true L1-RSRP difference in the dataset. For example, if the true L1-RSRP differences between Top-10 beams are all very close, e.g., within 1 dB in the dataset, then a prediction performance of 1dB for L1-RSRP difference of Top-1 predicted beam does not necessarily mean the performance is good. Thus, to better understand the performance, the L1-RSRP difference between the ideal L1-RSRP of the Top-1 genie-aided beam and the ideal L1-RSRP of the Top-K genie-aided beams in the dataset should be used together to determine how good the performance is, we thus plotted such information in Figure 3.3.1-5 for the dataset we use. For example, from the figure, the true L1-RSRP difference between the Top-1 beam and the Top-3 beam in our dataset is ~3.1 dB and the difference between the Top-1 beam and the Top-4 beam is 4 dB. Thus, prediction performance can be considered decent when the result for L1-RSRP difference of Top-1 predicted beam is ~ 3 – 4 dB. This corresponds to using ~16 Set B beams as input to predict the best beam in Set A beams for Fixed Beam Pattern input option (refer to Table 3.3.1-1).
Figure 3.3.1-5: Average L1-RSRP difference between the ideal L1-RSRP of the Top-1 genie-aided beam and the ideal L1-RSRP of the Top-K genie-aided beams in the dataset

Observation 1: We observe when using the same amount of training samples and same number of input beam measurements, fixed input beam pattern achieved better performance compared with random input beam patterns and pre-configured input beam patterns. 
Observation 2: We observe when using the same input beam sampling approach, performance improved when more input beam measurements are used.
Observation 3: We observe that AI/ML based spatial beam prediction achieved better performance compared to sparse beam sweeping approach.
[bookmark: _Hlk110602272]Observation 4: When evaluating AI/ML model performance, using “Average L1-RSRP difference of Top-1 (or Top-K) predicted beam” alone may not directly indicate the performance unless the average L1-RSRP difference between the ideal L1-RSRP of the Top-1 genie-aided beam and the ideal L1-RSRP of the Top-K genie-aided beams in the (testing) dataset is known.
Proposal 1: For AI/ML based spatial beam prediction, to help performance evaluation discussion, companies are encouraged to share simulation details for the dataset generation and provide the average L1-RSRP difference between the ideal L1-RSRP of the Top-1 genie-aided beam and the ideal L1-RSRP of the Top-K genie-aided beams in the training/testing dataset.

AI/ML Model Complexity
We evaluated the AI/ML model complexity using total number of parameters in the AI/ML model and total number of floating-point operations (FLOPs) as described in Table 3.3.-1. 
Table 3.3-1: AI/ML model complexity

	[bookmark: _Hlk110499245]Total number of beams
	Number of NN parameters
	FLOPs

	256
	2,491,968
	2,605,568



 Conclusions
In this contribution, we discussed our study on evaluation results of AI/ML-based spatial beam prediction on both performance and AI/ML model complexity; our observations and proposals are as follows.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Observation 1: We observe when using the same amount of training samples and same number of input beam measurements, fixed input beam pattern achieved better performance compared with random input beam patterns and pre-configured input beam patterns. 
Observation 2: We observe when using the same input beam sampling approach, performance improved when more input beam measurements are used.
Observation 3: We observe that AI/ML based spatial beam prediction achieved better performance compared to sparse beam sweeping approach.
Observation 4: When evaluating AI/ML model performance, using “Average L1-RSRP difference of Top-1 (or Top-K) predicted beam” alone may not directly indicate the performance unless the average L1-RSRP difference between the ideal L1-RSRP of the Top-1 genie-aided beam and the ideal L1-RSRP of the Top-K genie-aided beams in the (testing) dataset is known.
Proposal 1: For AI/ML based spatial beam prediction, to help performance evaluation discussion, companies are encouraged to share simulation details for the dataset generation and provide the average L1-RSRP difference between the ideal L1-RSRP of the Top-1 genie-aided beam and the ideal L1-RSRP of the Top-K genie-aided beams in the training/testing dataset.
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