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1. [bookmark: _Ref4683067] Introduction 
The objective for this agenda item, stated in [1], is given by
Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
In this contribution, we discuss evaluation on AI/ML for beam management focusing on remaining issues on EVM and evaluation results on temporal beam prediction and spatial beam prediction.

2. Beam Management Performance Evaluation
The BM procedure is critical for the energy efficiency and latency performance of RAN1. The objective of the BM procedure is to achieve high data rate transmission (typically by finding the strongest Tx/Rx beams) with low beam measurement overhead. To evaluate the performance of AI/ML-assisted beam prediction, we first defined the performance metrics.
· Intermediate performance
The intermediate results derived by the output of the AI/ML model during the training/testing/inference phases can directly reflect the performance of the AI/ML model. For both the temporal and spatial domain beam predictions, the top-k beam prediction accuracy is considered as the intermediate performance. According to convention, the top-k accuracy is defined by the probability of the ground-truth optimal beam (pair) is among the top-k beam (pair) predicted. 
· Eventual performance
The end-to-end performance is expected to reflect the network-level performance. The top-k accuracy, however, may not be illustrative. That is, the predicted beam (different from the ground-truth optimal beam) can achieve very similar SNR compared to the ground-truth optimal beam. To reflect the network-level performance, the highest RSRP achieved by the top-k beam predicted can be compared with the baseline (non-AI) beam prediction. Note that the beam measurement overhead of the baseline (non-AI) beam prediction is supposed to align with the AI/ML-based method for fair comparison. Moreover, the highest RSRP achieved by the top-k beam predicted can be compared to the upper bound RSRP achieved by the full beam sweeping in Set A. The RSRP gain is given by the following, where  and  denote the RSRP of the AI/ML beam prediction and the baseline/upper beam prediction.

· Complexity of AI/ML model
The complexity of AI/ML model is typically considered from two aspects: time complexity and space complexity. Space complexity is the amount of storage space required by the AI/ML model. Time complexity is the amount of time (or number of operations) needed to conduct the forward pass of the AI/ML model. To that end, the floating-point operations (FLOPs) are normally regarded as the time complexity metric. Alternatively, considering the optimized structure for AI/ML hardware, the multiply–accumulate operation (MACs) can be considered as time complexity metric.
For the space complexity of the AI/ML model, the number of parameters and the actual model size (possibly after model compression) can be considered as the metric.
Proposal 1: For AI/ML-based beam prediction evaluation, adopt the top-k beam prediction accuracy as the intermediate performance, and the RSRP gain comparing to the baseline and upper bound method as the eventual performance metric.
Proposal 2: For AI/ML-based beam prediction evaluation, adopt the FLOPs and/or MACs as the time complexity, and the number of parameters and actual model size as the space complexity.
2.1. Dataset construction
In this section, we explain the adopted datasets in our simulation and performance evaluation for temporal and spatial beam managements. We adopt two different datasets, namely, the SLS dataset and the ray-tracing dataset. The SLS dataset is generated based on 38.901[2], in which the wireless communication channels are generated using statistical modelling on the propagation paths/rays. The ray-tracing dataset is based on the DeepMIMO dataset [3], in which the propagation paths are generated according to the geometry of the communication environment.
2.1.1. SLS dataset
In the SLS dataset, we consider an area of 7 sites and 21 cells as shown in Figure 1. The detailed parameters of the SLS dataset are summarized in in Section 5.1.  
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[bookmark: _Ref110957378][bookmark: _Ref110957368]Figure 1: AI the layout of the SLS dataset

Since we mainly focus on the intra-cell beam management tasks, we associate each user to the optimal cell. Therefore, the SLS dataset consists of the data generated from multiple gNBs. The dataset contains 100 UEs, each is simulated with 1000 time-steps, the length of a time-step is 1ms. For each time-step sample, the RSRP for each pair of UE beams and gNB beams are recorded. That is, for each UE at one time-step, there are 21 (cells) x 24 (Tx beams) x 4 (Rx beams) = 2016 RSRP values being recorded. To prepare for the dataset for AI/ML beam prediction, for each UE, we first define its serving cell, which is the gNB that provides the best RSRP for a single beam pair to the UE. In the meantime, we identify the corresponding UE’s Rx beam for that best RSRP beam pair. Then, by fixing the identified Rx beam, we adopt the RSRP of the 24 Tx beams of the UE’s serving cell as the dataset format for the AI/ML-based beam prediction. Therefore, each data sample for a UE at one time-step consists of a 1x24 vector of RSRP values for 24 Tx-Rx beam pairs where the 24 Tx beams are from the serving cell and Rx beam is fixed to the one with the best RSRP. 
For temporal beam dataset, note that if the serving cell changes for a UE within the 1000 simulating time-steps (as UE is moving), the 1000 time-steps data sequence will be chunked to multiple data sequences so that the data samples in a single sequence is mapped to the same serving cell. For example, if the serving cell for a UE changes from Cell 1 to Cell 2 at time-step 500, there will be two data sequences generated, each has 500 samples. One uses Cell 1 as the serving cell and the other uses Cell 2 as the serving cell.
2.1.2. Ray-tracing dataset
The wireless communication beams at high carrier frequency, e.g. millimeter wave, highly depends on the geometry of the position and neighboring environment, and the geometry of the gNB and the mobile user. By taking into considerations of the configuration of the position and neighboring environment/geometry, we believe that the generated wireless communication channels can have more specific realistic spatial consistency. Therefore, we believe that evaluating the FR2 beam management on ray-tracing based wireless communication channel dataset is valuable.
The ray-tracing technology keeps track of the position, shape, and material of other objects in the neighboring environment of the communication devices and calculates the gain , delay , and propagation angles  (azimuth) and  (elevation) of each wireless communication propagation paths. Note that  refers to the index of the propagation paths. Given these channel parameters, the delay-domain communication channel can be constructed based on the delay-d channel model as the following
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where  is the delay-domain channel response and  denotes the index of the delay taps.  is the pulse shaping function and  denotes the sampling time. (, ) is array response vector for the antenna array.
In this paper, we adopt the DeepMIMO dataset [3] to generate communication channel data using ray-tracing technology. The DeepMIMO dataset is a public dataset for deep learning applications in millimeter wave and massive MIMO systems.
The DeepMIMO “O1” scenario at 28 GHz carrier frequency is adopted in our simulation. The layout of the DeepMIMO “O1” scenario is shown in Figure 2. This scenario imitates a crowded downtown area in a city incorporating the intersection of two streets and multiple buildings (potential reflectors and scatterers). We placed our gNB at “BS 3” as circled in the Figure 2. Mobile users are distributed on the horizontal street as highlighted by the red rectangular box. In implementation, the user area is discretized into a user grid with the interval of 0.2 m. The channels between the gNB and all the positions in the user grid are generated.
The configuration of the DeepMIMO dataset is set to be as similar to [2] as possible. The detailed parameters of this configuration are summarized in Section 5.2.
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[bookmark: _Ref110957413]Figure 2: DeepMIMO “O1” scenario layout

2.1.3. [bookmark: _Ref111135317]Configuration of Set A of beams
We apply a beam steering code book for the Set A of beams at gNB. As shown in Figure 3, these Set A of beams consist of 24 beams with 2 beam angles along the elevation dimension and 12 beam angles along the horizontal dimension. The horizontal beams span a 120° range to align with the cell service area. The beam angles of the 24 beams are also summarized in Figure 3. This configuration of Set A of beams is adopted in both the SLS and the ray-tracing dataset.
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[bookmark: _Ref110957450]Figure 3: The Set A of beam configuration for gNB
2.2. Temporal beam prediction
As shown in Figure 4, the objective of the temporal beam prediction is to predict the future top-k beams in Set A (in the prediction window size of T2) using the previous RSRP measurements of beams in Set B (in the observation window size of T1). Set A of beams are presented in Section 2.1.3. We consider Set B of beams are the same as Set A of beams. We assume that the user always uses the optimal UE beam.
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[bookmark: _Ref110957477]Figure 4: the objective of the temporal beam prediction
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[bookmark: _Ref110957508]Figure 5: illustration of ML model based temporal beam prediction

As shown in Figure 5, in our machine learning model design, the input to the machine learning model is the optimal beam indices obtained in the observation window (T1), and the output of the machine learning model is the probability of each beam in Set A to be the best beam for all the time instances in the prediction window (T2).
2.2.1. UE Trajectory
As discussed in [4], it is agreed that the user trajectory needs to be considered at least for the temporal beam prediction task. In this report, we adopt the option-2 [4] user trajectory. The user trajectory can be summarized as follows.
Trajectory model (based on option 2)
· Step 0: initialize random position and moving direction, speed is a constant
· Step 1: generate a time interval following exponential distribution (mean = 5 s) with granularity of 100 ms
· Step 2: UE moves straightly along the selected direction to the end of the time interval
· Step 3: generate new moving direction: current moving direction + uniform distribution of [-45°, 45°]
· Loop back to step 1, break loop if
· Time limitation is reached
· UE is out of the service area 
· If the trajectory length (in time) is less than the length of (observation + prediction window), the trajectory should be discarded.
2.2.2. [bookmark: _Ref110957794]Performance Evaluation for Temporal Beam Prediction
In this section, we demonstrate the performance evaluation result in terms of the top-k accuracy over 24 beams by using two machine learning models on both the SLS and ray-tracing datasets. We assume the prediction window is 4-time steps and observation window is 36 time-steps (i.e. N=4 and M=36). The evaluation results are shown in Table 1 and illustrated in Figure 6. It shows that when using the SLS dataset, the top-1 accuracy of predicting the best beam for the future 4 time-steps by using Model A and B are 54.2 % and 52.0 %, respectively. The accuracy increases with the top-k values. For example, Model A and B has 94.6% and 92.8% prediction accuracy when the predicted top 5 best beam indices contain the best beam index of the ground truth. 
On the other hand, both of our models A and B perform better on the ray-tracing dataset. For example, for top-1 accuracy Model A performs 17.1% better than its performance on the SLS dataset and Model B improves 19.8% when predicting on the ray-tracing dataset compared to the SLS dataset. The same observation remains across all the top-k accuracy cases. We believe ray-tracing dataset has higher signal consistency across time compared to SLS dataset where the signal is passing through a stochastic channel.
Observation 1: Both machine learning models perform better on ray-tracing dataset compared to SLS dataset. 
Proposal 3: Study and evaluate the performance of AI/ML beam prediction using the dataset generated by the ray-tracing simulations.
Proposal 4: Evaluate the impact of different observation and prediction window sizes to the performance of AI/ML temporal beam prediction.
[bookmark: _Ref110959574][bookmark: _Hlk111128286]Table 1: The temporal beam prediction evaluation results
	Dataset
	Model
	Top-1 acc
	Top-2 acc
	Top-3 acc
	Top-5 acc

	SLS
	Model A
	54.2%
	76.0%
	85.8%
	94.6%

	
	Model B
	52.0%
	71.8%
	82.5%
	92.8%

	Ray-tracing
	Model A
	63.5%
	88.0%
	95.0%
	99.2%

	
	Model B
	62.3%
	87.4%
	94.6%
	99.1%
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[bookmark: _Ref111128405][bookmark: _Ref111128342]Figure 6: illustration of the temporal beam prediction evaluation results

2.3. Spatial beam prediction
As shown in Figure 7, the objective of the spatial beam prediction is to predict the current top-k beams in Set A using RSRP measurements of beams in Set B (in the observation window size of T1). Set A of beams and Set B of beams are presented in Section 2.1.3. We adopt Set B of beams as the subsets of Set A of beams. The simulation is conducted with different sizes of Set B to investigate the beam measurement overhead for the spatial beam prediction. Note that we arrange Set B of beams as distributed as possible when selecting from the Set A so that Set B can cover a wider range of beam angles. We assume that the user always uses the optimal UE beam.
For spatial domain beam prediction, the AI/ML model inputs can include the RSRP of the beams in Set B and, optionally, additional information, such as beam index and angle. The output of the AI/ML model can be the index of beam in Set A that achieves the highest RSRP, or the RSRP of all beams in Set A. 
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[bookmark: _Ref110957530]Figure 7: the objective of the spatial beam prediction task
[image: ]
[bookmark: _Ref110957538]Figure 8: illustration of ML model based spatial beam prediction

2.3.1. Performance Evaluation for Spatial Beam Prediction
In our AI/ML model design, the input to the model is the RSRP measurements of the beams in Set B. The output of the machine learning model is the probability of each beam in Set A to be the best beam for the current time instance, from which we will calculate the top-k beam indices among Set A. As shown in Figure 8, we evaluate the spatial beam prediction performance with two different machine learning models by using both SLS and ray-tracing datasets. Table 2 and Figure 9 demonstrate the evaluation results. It shows that with 4 beams in Set B (i.e. Set B size = 4), Model C and D can achieve 42.8% and 46.3% top-1 accuracy, respectively, with the SLS dataset. On the contrary, with the ray-tracing dataset, the top-1 accuracy performances of these two models improve to 58.7% and 67.9%, respectively. The accuracy increases by more than 10% when comparing to SLS dataset. Also, Model D’s top-k accuracy performance is always better than Model C given any dataset and Set B sizes. However, architecture-wise, Model D is more complex than Model C.  That is, Model D requires more FLOPs than Model C for inference.
On the other hand, it can be observed that by using more beams in Set B, the top-k accuracy performances of both models improve monotonically given any value of k. For example, Model C’s top-1 accuracy increases from 42.8% to 88.1% on the SLS dataset. The same trend happens when using the ray-tracing dataset as well. However, it takes more beam RSRP measurements in Set B when the size of Set B increases.

Observation 2: Model D always outperforms Model C in both datasets under various sizes of Set B. However, Model D is more complex than Model C in terms of FLOPs. 
Proposal 5: Study and evaluate other forms of ML models with respect to their prediction performance and computation complexity for spatial beam prediction.
Observation 3: With a greater number of beams in Set B, both models achieve higher top-k accuracy. However, greater number of beams in Set B requires more beam RSRP measurements. 
Proposal 6: Study the tradeoff between the beam measurement overhead and prediction accuracy for different number of beams in Set B.
Proposal 7: For AI/ML-based spatial domain beam prediction evaluation, adopt the RSRP of beams in Set B as the AI/ML model inputs. Additional information to the input of AI/ML model is not excluded. 
Proposal 8: Adopt one of the following as the output of AI/ML model: (i) beam index of highest RSRP Set A of beams. (ii) RSRPs of all the Set A of beams.



[bookmark: _Ref110959752] Table 2: The spatial beam prediction evaluation results for different Set B sizes when Set B is a subset of Set A and evenly distributed in Set A 
	Dataset
	Model
	Set B size
	Top-1 acc
	Top-2 acc
	Top-3 acc
	Top-5 acc

	SLS
	Model C
	4
	42.8%
	66.1%
	83.0%
	92.9%

	
	Model D
	
	46.3%
	70.2%
	86.0%
	95.2%

	
	Model C
	6
	51.4%
	75.3%
	88.3%
	95.6%

	
	Model D
	
	59.1%
	81.4%
	91.9%
	97.0%

	
	Model C
	12
	71.1%
	92.3%
	96.6%
	98.3%

	
	Model D
	
	79.4%
	95.7%
	99.0%
	99.84%

	
	Model C
	24
	88.1%
	96.3%
	97.8%
	98.6%

	
	Model D
	
	99.88%
	99.96%
	99.99%
	99.99%

	Ray-tracing
	Model C
	4
	58.7%
	79.9%
	89.9%
	97.8%

	
	Model D
	
	67.9%
	87.3%
	94.6%
	98.8%

	
	Model C
	6
	73.4%
	90.2%
	95.8%
	99.2%

	
	Model D
	
	85.4%
	96.3%
	98.8%
	99.8%

	
	Model C
	12
	84.5%
	97.5%
	99.5%
	99.97%

	
	Model D
	
	91.8%
	98.8%
	99.75%
	99.98%

	
	Model C
	24
	95.9%
	99.5%
	99.84%
	99.98%

	
	Model D
	
	99.95%
	99.99%
	100%
	100%
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[bookmark: _Ref111128799]Figure 9: illustration of the spatial beam prediction evaluation results for different Set B sizes when Set B is a subset and evenly distributed in Set A with (a) SLS Dataset, and (b) ray-tracing dataset. 

In the following experiment, we present the evaluation result for Models C and D by using different choices of beams in Set B given the same dataset and the size of Set B. Note that Set B is still a subset of Set A (i.e. BM case 1, Alt. 1). Figure 11 shows two different selections of beams in Set B with 2 different Set B sizes, 4 and 6. In this figure, the green table shows all beams in Set A which are arranged based on their vertical and horizontal beam directions. The selection of beams in Set B is shown by the red circles. Note that Set B selection 1 is evenly distributed across the spatial domain of beams in Set A, therefore, they are used in the performance evaluations above. We evaluate the prediction performance of the above two models using the ray-tracing dataset. Table 3 and Figure 10 demonstrate the evaluation results in terms of top-k accuracy. For both models, the prediction performance by using Set B selection 1 is always higher than that by using Set B selection 2 given any top-k accuracy evaluation. 
Observation 4: The selection of beams in Set B will affect the prediction accuracy of the AI/ML-based spatial beam prediction.
Proposal 9: For AI/ML-based spatial domain beam prediction evaluation, study the subset selection if Set B is a subset of Set A.
[bookmark: _Ref110960508]Table 3: The spatial beam prediction evaluation results under different sizes of Set B with different beam selections for Set B
	Dataset
	Model
	Set B size
	Top-1 acc
	Top-2 acc
	Top-3 acc
	Top-5 acc

	Ray-tracing
(Set B selection 1)
	Model C
	4
	58.74%
	79.94%
	89.90%
	97.78%

	
	Model D
	
	67.87%
	87.34%
	94.55%
	98.78%

	
	Model C
	6
	73.38%
	90.17%
	95.82%
	99.15%

	
	Model D
	
	85.35%
	96.28%
	98.78%
	99.83%

	Ray-tracing
(Set B selection 2)
	Model C
	4
	49.58%
	69.49%
	80.61%
	90.97%

	
	Model D
	
	56.10%
	75.21%
	84.48%
	93.40%

	
	Model C
	6
	69.38%
	90.32%
	95.91%
	99.18%

	
	Model D
	
	82.74%
	95.60%
	98.35%
	99.70%
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[bookmark: _Ref111128982]Figure 10: illustration of the spatial beam prediction evaluation results for different beam selections for Set B with (a) Set B size = 4, and (b) Set B size = 6.

[image: ]
[bookmark: _Ref110957595]Figure 11: illustration of two different selections of beams in Set B for beam size 4 and 6

In the experiment below, we present the evaluation result for Model C and D by using different designs of beams for Set B. Note that in this evaluation, Set B is not necessarily a subset of Set A. The design and pattern of beams in Set B can be completely different from the beams in Set A.  Figure 12 demonstrates an example of different designs of beams in Set B. Figure 12 (a) shows the shape of beams in Set B when it is a subset of Set A and when the selection of Set B matches the Set B selection 1 pattern for Set B size = 4 in Figure 11. On the other hand, Figure 12 (b) shows the beam shape when the beams in Set B are wider beams compared to beams in Set A. An example can be that Set B are SSB beams and Set A are communication beams (or CSI-RS beams). Finally, Figure 12 (c) shows the beam shape when the beams in Set B have multi-arm beam shapes. 
To generate the wide beam design for Set B at gNB, we reduce the number of antennas used for signal transmission. We use the first half of the antenna arrays, that are being used to generate Set A of beams, along both vertical and horizontal dimensions. That is, the (M,N,P) = (4,8,2) antenna array becomes (2,4,2). To generate the multi-arm beam design for Set B at gNB, we conduct the following steps. First, we generate 24 beams as Set A. Second, each of these 24 beams are multiplied with a Taylor window to achieve sidelobe suppression. Third, we generate a 5-by-31 parity-check matrix for Hamming code. Note that only first 24 columns of this matrix are used to match the number of beams in Set A. Finally, we generate five multi-arm beams in Set B, each of which is the summation of the corresponding beams in Set A as indicated by the parity-check matrix.
Table 4 and Figure 13 show the evaluation results for both models in terms of top-k accuracy using a variety of beam shape designs in Set B. The results show that even though the wide beam design of Set B is evenly distributed and covers almost all the beam directions in Set A, it does not outperform the subset design. Moreover, in terms of top-1 accuracy, wide beam design’s performance is worse than the subset design, changing from 58.7% for subset design to 51.3% for wide beam design when using Model C, and from 67.9% for subset design to 67 % for wide beam design when using Model D. We believe the reason is that the ML models cannot learn how to distinguish among narrow beams whose beam directions lie within a wide beam. To improve the accuracy, a second stage narrow beam sweeping is necessary to identify the best beam. 
On the other hand, both models deliver improvements in terms of the top-1 and top-2 accuracy by using the multi-arm beam design. Since the waveform of multi-arm beam is asymmetric and unbalanced spatially, the ML models can learn to identify the best beam in Set A by cross comparing the input features of the RSRP of all the multi-arm beams in Set B. 
[image: ]
[bookmark: _Ref110957619]Figure 12: Different beam designs of Set B: (a) subset selection 1, (b) wide beams, and (c) multi-arm beams.


	[bookmark: _Ref110960577]Dataset
	Model
	Beam design of Set B
	Top-1 acc
	Top-2 acc
	Top-3 acc
	Top-5 acc

	Ray-tracing

	Model C
	Subset
	58.7%
	79.9%
	89.9%
	97.8%

	
	Model D
	
	67.9%
	87.3%
	94.6%
	98.8%

	
	Model C
	Wide beam
	51.3%
	78.8%
	89.3%
	98.3%

	
	Model D
	
	67.0%
	87.5%
	94.2%
	98.9%

	
	Model C
	Multi-arm beam
(5 beams)
	59.8%
	81.9%
	89.3%
	94.9%

	
	Model D
	
	69.8%
	88.1%
	93.4%
	97.4%


[bookmark: _Ref111129436]Table 4: The spatial beam prediction evaluation results for different beam designs of Set B
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[bookmark: _Ref111129098]Figure 13: illustration of the spatial beam prediction evaluation results for different Set B

Observation 5: The spatial beam prediction by using multi-arm beam design in Set B performs better than using subset beam design in Set B.
Observation 6: The spatial beam prediction by using wide beam design in Set B does not outperforms the performance by using subset beam design in Set B. 
Proposal 10: Study and evaluate a more comprehensive Set B design, including joint designing the number of beams in Set B and their beam shape for spatial beam prediction.

3. Conclusion
In summary, based on the above discussion we have the following observations and proposals:
Observation 1: Both machine learning models perform better on ray-tracing dataset compared to SLS dataset. 
Observation 2: Model D always outperforms Model C in both datasets under various sizes of Set B. However, Model D is more complex than Model C in terms of FLOPs. 
Observation 3: With a greater number of beams in Set B, both models achieve higher top-k accuracy. However, greater number of beams in Set B requires more beam RSRP measurements. 
Observation 4: The selection of beams in Set B will affect the prediction accuracy of the AI/ML-based spatial beam prediction
Observation 5: The spatial beam prediction by using multi-arm beam design in Set B performs better than using subset beam design in Set B.
Observation 6: The spatial beam prediction by using wide beam design in Set B does not outperforms the performance by using subset beam design in Set B. 
Proposal 1: For AI/ML-based beam prediction evaluation, adopt the top-k beam prediction accuracy as the intermediate performance, and the RSRP gain comparing to the baseline and upper bound method as the eventual performance metric.
Proposal 2: For AI/ML-based beam prediction evaluation, adopt the FLOPs and/or MACs as the time complexity, and the number of parameters and actual model size as the space complexity.
Proposal 3: Study and evaluate the performance of AI/ML beam prediction using the dataset generated by the ray-tracing simulations.
Proposal 4: Evaluate the impact of different observation and prediction window sizes to the performance of AI/ML temporal beam prediction.
Proposal 5: Study and evaluate other forms of ML models with respect to their prediction performance and computation complexity for spatial beam prediction.
Proposal 6: Study the tradeoff between the beam measurement overhead and prediction accuracy for different number of beams in Set B.
Proposal 7: For AI/ML-based spatial domain beam prediction evaluation, adopt the RSRP of beams in Set B as the AI/ML model inputs. Additional information to the input of AI/ML model is not excluded. 
Proposal 8: Adopt one of the following as the output of AI/ML model: (i) beam index of highest RSRP Set A of beams. (ii) RSRPs of all the Set A of beams.
Proposal 9: For AI/ML-based spatial domain beam prediction evaluation, study the subset selection if Set B is a subset of Set A.
Proposal 10: Study and evaluate a more comprehensive Set B design, including joint designing the number of beams in Set B and their beam shape for spatial beam prediction.
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5. [bookmark: _Ref101361592]Appendix
5. [bookmark: _Ref111135225]Simulation parameters for SLS dataset
[bookmark: _Ref40286490]Table 5: Simulation parameters for SLS dataset
	Parameter
	Value


	Frequency Range
	FR2 @ 30 GHz

	SCS
	120 kHz

	Deployment
	200m ISD, 2-tier model with wrap-around (7 sites, 3 cells per site)

	Channel mode
	IMT2020_ChannelB_UMa

	System BW
	80MHz

	UE Speed
	Spatial beam prediction: 3km/h
Temporal beam prediction: 30km/h

	UE distribution
	10 UE per cell, 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	(4, 8, 2, 1, 1)

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	(1, 4, 2, 1, 1)

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB



5. [bookmark: _Ref111135341]Simulation assumptions for the ray-tracing dataset
	Table 6: Simulation parameters for ray-tracing dataset

	[bookmark: _Hlk102038587][bookmark: _Hlk111194379]Parameter
	Value

	Carrier frequency
	28 GHz

	Subcarrier spacing
	120 KHz

	BS antenna configuration
	(4, 8, 2, 1, 1)

	BS antenna radiational pattern
	isotropic

	BS orientation
	Pointing to the horizontal street with 10° down-tilting

	BS height
	6 m

	UE antenna configuration
	(1, 4, 2, 1, 1)

	UE antenna radiational pattern
	isotropic

	UE orientation
	Random

	UE height
	2m

	BS BF scheme
	Beam-steering

	Data allocation
	32 OFDM subcarriers
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