[bookmark: _Hlk37418177]3GPP TSG RAN WG1 #110	R1-2206967
Toulouse, France, August 22 – 26, 2022

Agenda item:		9.2.1	
Source:	Nokia, Nokia Shanghai Bell
Title:	Further discussion on the general aspects of ML for Air-interface
Document for:		Discussion and Decision
Introduction
Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, agreed in [1], includes a use case of positioning accuracy enhancement, and the objectives of the SI is as follows,  
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
·  Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference),  and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced




In this contribution, we further discuss the general aspects of AI/ML with respect to air interface.
[bookmark: _Hlk510705081]Discussion
Terminology
The currently agreed AI/ML-related terminology following the RAN #96 plenary meeting is available in RP-221347.
Observation 1: The current definitions of "Offline field data" and "Online field data" refer to “offline training” and “online training” terms, respectively, which have not been defined in the context of RAN1 ML studies.
In our understanding of the context of RAN1 air-interface solutions, the definitions of "Offline field data" and "Online field data" needs to be clarified and be more descriptive. The description should rather indicate the source and storage of the data, e.g., historical data vs. live data, instead of indicating the type of ML model training it is used for. 
It is beneficial to update the current definitions of "Offline field data" and "Online field data" to use more descriptive terms in the context of RAN1 air-interface solution, such as "Historical stored data” and "Live collected data”, respectively.
Both online and offline data need to be stored in some form for the purpose of using it as input to an ML-based algorithm. Then, then the distinction between online and offline field data can be made based on the age of the stored data.
Observation 2: In the context of RAN1 ML studies, the field data can be considered live (online) data if it is no older than X s, after which it becomes historical (offline) data, where X is use-case specific (defined for each use case separately).
Proposal 1: In the context of RAN1 ML-enabled solutions, adopt the following definitions (instead of the agreed definition in RAN1 #109-e).
	Offline field data
	The historical stored data is collected from use-case relevant field measurements, counters, KPIs, which are older than X seconds, where X is use-case specific.

	Online field data
	The live collected data from use case relevant field measurements, counters, and KPIs, which is no older than X seconds, where X is use-case specific.


It has to be noted that in practice, the training or re-training/tuning of an ML model can use both “historical stored data” and "live collected data”, depending on the actual use case.
A second observation is that the terms “online training” and “offline training” might not be appropriate to use in the context of RAN1 ML studies. These terms do not indicate the actual ML model deployment, ML model (re)training process, or the ML model inference process. We discuss below our understating of the intended use of these terms [2] and the issues we identified.
Typically, and based on the proposals on “online” training, the key aspect is that the ML model is assumed to be (re)trained/tuned from the current sample data points (either in single or batch form), and the ML model is being trained while, in real-time, it is being used (ML inference) as part of the ML-enabled function executed in the same network node. 
The complementary “offline” training assumes the ML model is trained, possibly in another network mode, in non-real-time, and using a set of previously accumulated sample data points (either in single or batch form), and then the ML model is not updated during the use of the ML-enabled function.
Both “online” and “offline” training procedures assume that new data is collected for (re)training/tunning in order to adapt for the environment where the ML-enabled function is operating. Because a typical supervised ML model can either be trained or be used for inference, for both “online” and “offline” training, we need to assume that two instances of the same model exist in the same or different network nodes.
In the case of “online” training for a supervised ML model, the first important issue is to address how is the data labeling performed or assumed to be available for the newly collected data sets. New data batches can be tested for consistency (e.g., drift) but self-labeling mechanisms do not exist in general, except if unsupervised learning is used, potentially combined with supervised as 2nd stage ML (e.g., search within the space of pre-computed embeddings, etc.).
Observation 3: Any component of an ML-enabled function that relies on supervised training (e.g. NN part in a deep RL, embedding model, etc.) requires a priori labelled input data to be able to re-training/tuning of the underlying ML model.
This “online”/ “offline” training approach also brings up the need to define what is “real-time” vs. “non-real-time” in the context of the RAN1 air interface use case. E.g., if “real-time“ is defined as using a dataset that was created within the last T seconds, then, based on the use case, this T period can be 10 milliseconds and, in other use cases, 100 seconds. Thus, the “real-time” label indicates different time scales depending on the use case and ML-enabled function. Hence, the “online”/ “offline” training will also indicate procedures operating at different time scales depending on the use case and not be generally descriptive for ML training categories.
In contrast to the above “online”/ ”offline” terminology, the use of "continual learning” and “real-time machine learning” concepts are well-established in the ML research field, e.g., [3][4][5] and, with appropriate adaptations, these can be used in the 3GPP ML work.
We note the following aspects related to continual learning:
· Continual learning allows for stateful (re)training, i.e., when the model continues training on new data (fine-tuning). In contrast, stateless (re)training is when the model is trained from scratch each time
· Stateless (re)training can use manual or automated training procedures
· “continually update your model whenever data distributions shift, and the model’s performance plummets.”
· Stateful training mostly refers to data iteration, i.e., using the same model architecture and features but the train from new data and allows updating (fine-tuning) the model with less data compared to the stateless (re)training
· Changing the model architecture or adding a new feature requires training the new model from scratch, i.e., a model iteration
· Stateful (re)training uses mostly automated training procedures
· Model iteration, i.e., changing/updating the model parameters (weights, biases), adding a new feature to an existing model architecture, or changing the model architecture
· Continual learning can use both “Historical stored data” and "Live collected data” for training 
From this description of continual learning, it is rather obvious that depending on the time scale of the data/model iteration used, both “online” and “offline” training can be achieved.
Observation 4: In continual learning solutions, the time scale/interval between consecutive ML model updates is determined by the rate at which input data is available, in combination with the use case specific conditions such as input data distributions (concept) drift and the model’s performance change.
The preferred way forward in the terminology discussions highlighted above is to use “continual learning” including additional information on the time scale and utilizing data sources as required by each use case.
Proposal 2:  In the context of ML-enabled solutions, RAN1 to adopt the "continual learning” terminology for the ML-enabled solutions where the intention is to describe an ML model which is continuously and automatically tuned/refined/adjusted: 
	Continual learning (training)
	A fundamental idea in machine learning in which models continuously learn and evolve based on the newly available (and possibly increasing amount of) input training data, while retaining previously learned knowledge.


Alternatively, in combination with the definition for continual learning, it could be used to more clearly define the “online” and “offline” terms discussed during RAN1 #109. 
Observation 5: In the context of RAN1 air-interface solutions using continual learning, what is relevant is to specify the time scale/interval between consecutive ML model updates relative to the ML-enabled function output (inference) rate.
Proposal 3: In combination with Proposal 2, in the context of RAN1 ML-enabled solutions, adopt the following definitions:
	Offline training
	ML training procedure using:
· A ‘one-shot’ solution where the training is performed only once before its deployment to a network node, OR
· A continual learning solution where the data iteration (use the same model architecture and features but the train from new data) or model iteration (adding a new feature to an existing model architecture or changing the model architecture) is performed at a time scale much larger compared to the time scale at which the ML model is used for inference.
Use case dependent, the ML training can be performed in the same or different entity (network or UE) where the ML inference is performed.

	Online training
	ML training procedure using a continual learning solution where the data iteration (use the same model architecture and features but train from new data) or model iteration (adding a new feature to an existing model architecture or changing the model architecture) is performed at a time scale comparable to the time scale at which the ML model is used for inference. 
Use case dependent, the ML (re) training can be performed in the same or different entity (network or UE) where the ML inference is performed.



Proposal 4:  When a continual learning-based approach is used in a proposed ML-enabled solution, the solution description should include at least the following details:
· whether the solution is based on data iteration (use the same model architecture and features but train from new data) and/ or on model iteration (adding a new feature to an existing model architecture or changing the model architecture),
· time scale/periodicity at which the data/model iteration is performed,
· when data iteration is used, specify the amounts of “historical stored data” (offline data) and "live collected data” (online data) used for (re)training.
· the pre-set time frequency of, or the event triggering, for the automated re-training process.
According to the above definitions in Proposal 3 and 4, it is evident that reinforcement learning-based solutions can be categorized as being either online or offline training solutions. We further note that the training of a reinforcement learning algorithm typically happens in the exploration operating mode (off-policy) or when the neural network of the value function is re-trained (on-policy). Depending on the time scale of these operations compared to the time scale at which the reinforcement learning is operating in exploitation operating mode, i.e., generating actions detectable as an output of the ML-enabled function, the solution can be either an online or offline training solution.
[bookmark: _Hlk110253966]Proposal 5: In the context of RAN1 ML-enabled solutions, reinforcement learning-based solutions use continual learning and are to be described as either online or offline training solutions, depending on the concrete (sub-)use case and the definitions in Proposal 3.
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During 3GPP RAN1#109, it was agreed to take the following network-UE collaboration levels:
Agreement
Take the following network-UE collaboration levels as one aspect for defining collaboration levels
1. Level x: No collaboration
1. Level y: Signaling-based collaboration without model transfer
1. Level z: Signaling-based collaboration with model transfer
Note: Other aspect(s), for defining collaboration levels is not precluded and will be discussed in later meetings, e.g., with/without model updating, to support training/inference, for defining collaboration levels will be discussed in later meetings
FFS: Clarification is needed for Level x-y boundary 

In our understanding, the “no collaboration level” (Level x) assumes implementation-based ML-enabled solutions at the network or at the UE sides without introducing new signaling but may have an impact on the performance requirements (i.e., level x solutions may not meet some legacy RAN4/5 requirements).

Proposal 6: RAN1 to agree that Level x ML solutions are not visible from signalling point of view but may have an impact on the performance requirements (i.e., RAN4/5 specifications)

The implementation-based approach allows great freedom and flexibility for the design of the ML-enabled solutions. However, collaboration may be needed to achieve better performance or enable solutions for use cases that are impossible to resolve without collaboration. These provide motivation for introducing ML-related network-UE collaboration (Levels y and z). 

Observation 6: Motivation for introducing signaling-based collaboration for ML-enabled solutions is better performance or enablement of the new use cases that are impossible to solve without collaboration.

Collaboration brings additional complexity to the system and requires standardization efforts. To justify a need for standardization, a collaboration-based ML-enabled solution (Level y) should demonstrate superior performance over both (if applicable) non-ML baseline and implementation-based ML (Level x) with respect to the agreed KPIs.
The model transfer brings even more complexity and standardization efforts. In our view, an ML model can’t be separated from the rest of the function that applies the ML model toward certain decision-making (inference). These may include, e.g., runtime instructions, input data pre-processing, and output data post-processing algorithms. Many of those details can be proprietary and implementation specific.

Proposal 7: Model transfer should consider not only the ML model itself, but also the functions that apply this model to certain decision-making.

The standardization efforts for supporting model transfer from scratch can be significant. To be considered for future specification, ML-enabled solutions with model transfer should be justified by significant benefits over non-ML algorithms and ML algorithms that do not use model transfer.

Observation 7: The collaboration levels (x-z) agreed in RAN1#109 correlate with associated standardization efforts needed for related solutions

We find it useful to label solutions proposed by companies in this RAN1 study with one of the agreed collaboration levels to indicate corresponding standardization complexity. This further can be used to decide which solutions to prioritize for the specification phase considering their technical merits and related standardization efforts.

Proposal 8: Consider a collaboration level as an indication of the standardization complexity of the corresponding solutions.

Some companies also proposed categorizing Network-UE collaboration depending on the host of the model. That includes one-sided and two-sided models. Depending on the presence of model transfer, those may exist in levels y and z, and do not require a different category. 
Instead, we suggest RAN1 to define more details on the possible signaling-based collaboration at Level y:
· Capability information UE or gNB indicate that some function is driven by ML
· Assistance information. This may include any data that support ML but is not used for training or inference. E.g., inform about the selected ML model, inform about change of the context or environment to support ML operation.
· Data collection from UE or gNB for training ML model or/and inference. The data collection can be controlled via an existing signaling interface, such as RRC (e.g., the data collection control message could specify triggers, volume, periodicity, criteria, filtering, storage, formats, validation, etc.). 
NOTE: The inference output of one entity (e.g., UE) also could be communicated via data collection interface if it is used as inference input at another entity (e.g., gNB) 
· Performance monitoring
· Model management. Including model selection, switching, and falling back to a non-ML algorithm

Proposal 9: Collaboration level y includes any new signaling for new reporting, data collection, capability information, assistance information, performance monitoring, and model management.

Proposal 10: Collaboration level z may include anything from level y and additional signaling related to model transfer and deployment.
Lifecycle management
Lifecycle management (LCM) describes how an AI/ML model is trained and deployed, as well as other activities carried out by the network or UE over the course of operation. To this extent, LCM can be divided into 4 modules. They are the data collection module, model training module, model management module, and model inference module. Figure 2‑1 illustrates the general workflow among these modules. Note that this general workflow considers only supervised learning aspects. 
[image: ]
[bookmark: _Ref109809014]Figure 2‑1 Example of the LCM

The data collection module contains (1) data collection and (2) data preprocessing steps. The ‘data preprocessing’ is an optional step if raw data can not be used directly for training. 
The model training module contains (4) model training, (5) model validation, and (6) model testing or evaluation steps. The ‘model training module’ receives a model from the model management module. This received model is trained using training data in the ‘model training’ step. Then the trained model is then validated using the validation data at the ‘model validation’ step. If the validated model meets the validation KPI requirements, then this model goes to the ‘model testing’ step. Otherwise, a ‘model tuning feedback’ is sent to the ‘model training’ step for adjusting the hyperparameters. In the ‘model testing’ step, the model is evaluated using the test data. If the target KPI is not met, then feedback is sent to the ‘model management module’ as well as ‘data collection module’. Otherwise, the model is ‘staged’ and ready for deployment. 
The model management module consists of (3) model initialization, (7) model deployment, and (8) model monitoring and verification steps. The ‘model initialization’ step is optional and used for experimental (untrained) models. In the ‘model deployment’ step, the staged model is further fined tuned/optimized, , packaged, and versioned. After this process, the ‘production model’ is stored in the ‘model artifacts’. The ‘model management module’ can receive request for ‘training’, ‘uploading/downloading’, ‘activation/deactivation (archive)’, ‘update/aggregation/delete’, and ‘verify’. The ‘model monitoring and verification’ step will handle these requests. This step also receives performance feedback from ‘model inference module’ and generates performance reports (e.g., periodically or per request). The ‘production model’ generated from ‘model deployment’ is verified using ‘test data’ or ‘benchmarked data’ received from ‘data collection module’.  
The model inference module runs the inference of the ‘downloaded model’ using data received from the ‘data collection module’ via the default controller/actor (this allows for the controller/actor to schedule the inference). The model performance results can also be feedback to the ‘model management module’.
Depending on the implementation, entities described in Figure 2‑1 may reside on one side (Network or UE) or be distributed across UE and Network. 
Observation 8: When LCM elements are distributed, a different understanding of LCM between companies may significantly complicate the discussion and progress on collaboration in the RAN1 study.

Proposal 11: RAN1 to agree on the reference LCM description and study the signaling required to support LCM on a per-use case basis.
A common approach to documenting ML-enabled solutions in RAN1
When comparing different solutions (i.e., sub-use case-specific details from different companies), it is important to understand their details clearly. Companies document their solutions differently. A common approach in describing ML-enabled solutions may facilitate the progress in this study. For example, a high-level description of the “ML-enabled function” can be defined in RAN1. That may include the main processing blocks which need to be described.
Proposal 12: For the collaboration use cases studied in the context of RAN1 ML-enabled solutions, adopt a high-level description of the ML-based solutions using a defined set of processing blocks, including at least the following:
1) Input data acquisition and preparation/pre-processing (data collection, data formatting, cleaning, feature selection and/or engineering, etc.) 
2) ML-algorithm (type of algorithm, number of layers, type of loss function, accuracy metric, etc.) 
3) Non-ML algorithm (optional algorithms such as measurement filtering, channel estimation, etc.) 
4) Output data processing (optional, combination of ML and non-ML algorithm outputs) 
5) Control mechanism (signaling and procedures used to configure any of the blocks 1-4) 

When describing a particular (sub)use case (or ML-enabled function), details need to be provided for (at least) these 5 processing blocks. The exact format to document these processing blocks needs to be decided in RAN1 such that they are applicable to all/most targeted (sub-)use cases. For example, in RAN1 #109 as part of the ML-based CSI compression use case studies there has been an agreement on “For the evaluation of the AI/ML based CSI compression sub use cases, companies are encouraged to report the details of their models […]”, which follows the above proposal.

According to [1] new 3GPP interfaces shall not be introduced for ML-enabled functions. Therefore, signaling enhancements due to Network-UE collaboration (Level y or Level z) will require additional information elements on some of the existing signaling channels. When evaluating and comparing ML-enabled solutions during the RAN1 study, it is beneficial to include a list of new messages, categorized in data collection, capability information, assistance information, performance monitoring, and model management.

Proposal 13: For all use cases studied in the context of RAN1 ML-enabled solutions, companies are encouraged to study and provide a list of potential new signaling messages required, categorized in data collection, capability information, assistance information, performance monitoring, and model management signaling.
Complexity
We consider the complexity analysis of an ML-enabled solution primarily to be an average estimation vs. time. For example, peak compute requirements can be estimated separately, depending on the needs of the specific (sub)use cases.
  
Observation 9: The complexity analysis of an ML-enabled solution primarily is an average complexity estimation vs. time. 

It might also be beneficial to differentiate between the analysis of NG-RAN and UE side ML-enabled solutions such that the embedded system particularities can be described. For collaboration-based solutions (see Section 2.3), the analysis of the aggregated complexity of the algorithms at the NG-RAN and UE sides needs to be provided. 
For an ML-enabled solution that requires training of the ML algorithm at the gNB or UE, the complexity analysis should consider the training and inference separately. For example, when training of such algorithms is performed typically ‘off-line’ using dedicated, and high compute solutions, the inference is executed in NG-RAN and/or UE network nodes with more limited compute resources. Nevertheless, the training requires potentially large amounts of input data (cleaned, formatted, and labeled), which need to be collected by NG-RAN and/or UE, and these might imply a large signaling/traffic overhead on the air interface, which in the end limits the benefits of the ML-enabled solution.

Observation 10: For RAN1 ML-enabled solutions purposes, the complexity of an ML-enabled function needs to include in addition to the complexity of the ML model itself (FLOPs or MACs), the estimated complexity of: signaling (air interface use, overhead), input/ output data pre-/post processing resources, and required configuration procedures for training and inference.  

The ML model complexity expressed in floating-point (FLOP), or multiply and cumulate (MAC) operation is indicative only of the platform-independent complexity and optimization. Platform-dependent and implementation (hardware and software) optimization solutions are not in the scope of RAN1 studies and significantly impact the overall solution complexity and required compute. For example, a difference of x1000’s FLOPs/MACs between two solutions might be rendered irrelevant due to different hardware optimizations and acceleration solutions. 

Observation 11: The ML algorithm inference latency is not a good indicator of the performance of a specific ML-enabled function in the context of the RAN1 air-interface solutions. Instead, the execution latency of the ML-enabled function needs to be analyzed, including the latency of the input and output data pre/post-processing operations.

Proposal 14: For both single- and dual-sided ML-enabled solutions, RAN1 to consider the following metrics for the complexity analysis related to the inference process:  
a.	Number of floating point (FLOP), or multiply and accumulate (MAC) operations required for one forward pass of the ML algorithm 
b.	Alternatively, to a), the FLOP/MAC operations per second needed to run the ML algorithm for (X) seconds
c. Memory footprint of the ML algorithm (Mbit) 
d.	Number of FLOP/MAC operations required to prepare (and format, convert) the input data in case these are not direct measurements or estimates readily available in the radio entity executing the ML-enabled function 
e.	Estimated number and payload (bytes) of additional signaling messages required to convey the ML-input and ML-output information between the involved radio entities (gNB, UE) 
- This might be complemented by the estimated required ML-input and ML-output data rates (latencies), i.e., factoring in the acceptable transmission delays

Observation 12: When an ML-enabled solution assumes that the underlying ML model training (or partial model training) is performed at the UE side, the overall complexity analysis must also include the complexity estimation of the training process, with similar metrics as listed for the analysis of the inference process.

Sustainability of ML-enabled functions
The performance of ML-enabled functions (at gNBs or UEs) may degrade drastically in certain UE conditions (the performance drops in a certain context or negatively impact the performance of other UEs and gNBs). In the scope of the RAN1 ML solutions, especially for autonomous or self-learning solutions, safeguards against overconfidence/ overreliance on the ML-enabled automation system must be established. To ensure certain level of efficiency, the Network should be able to disable the ML-enabled function (switch to non-ML fallback).  

Proposal 15: RAN1 to study mechanisms to disable an ML-based function and to enable a non-ML fallback operating mode, in UEs and/or gNBs

In the context of RAN1 ML-enabled solutions, the input data comprises one or more features. For example, in case of beam management any of RSRP values, beam IDs, UE location (movement vector) can be part of the input data used. Another example is the positioning enhancement use case, where any of RSRP, SRS, PRS, ToA, AoA measurement values can be part of the input data used (in any combination). The different ML-enabled solutions within the same (sub-)use case might perform differently depending on which input data features are being used. Therefore, in the development of an ML-enabled solution it is very relevant to identify which of the input features are important and under which radio conditions. Feature selection is a well-known ML development step for isolating the most consistent, non-redundant, and relevant data features for a given ML model. Typically, this is performed using feature importance estimation techniques, which refers to techniques that assign a score to input features based on how useful they are at predicting a target variable. 
To enable 3GPP flexible and adaptable solutions, it is not desirable to standardize the exact set of features to be used by an ML-enabled solution or sub-use case. Similarly, it is not desirable to standardize a given feature importance estimation and selection algorithm either. Nevertheless, a standardized procedure (signaling) to request/enable/trigger the feature selection, might still be required. This is especially the case when the input data availability depends on the signals/information originating from another network element than the one performing the ML training e.g., UE collecting PRS measurements, or UE collecting CSI-RS beam measurements. The network element which initiates a feature selection procedure, might need to request, and potentially receive as confirmation new configuration, for additional information from other network element(s).

Observation 13: It is not desirable to standardize the exact set of features to be used by an ML-enabled solution, nor the feature importance estimation and selection algorithm to be used. Nevertheless, to avoid the overhead associated with collecting unnecessary many features from various NR elements, it may be beneficial to define means such that a sufficient set of features per use-case is obtained. 

Proposal 16: Investigate the need for a standardized procedure (signaling) to request/enable/trigger the feature selection in a UE using ML-enabled function.
Several of the 3GPP air-interface functionalities can be enhanced/ driven by ML-based algorithms, combination of ML and rule-based algorithms, part of an ML-enabled function. The performance of the UE-side ML-enabled solutions which rely mostly on supervised learning depend on the specific radio conditions at the UE compared to the ‘generic’ radio conditions used to collect the training data for the ML model. Same is valid also for dual-sided ML-enabled solutions. The initially trained ML model can be considered a generic, or meta, ML model. To reduce the deployment overheads (signaling, energy, time) this meta-ML model can be designed to be applicable for a set of related sub-use cases e.g., beam management or positioning enhancement. Consequently, after deployment of the meta-ML model, this would need to be further refined based on the actual sub-use case and/ or radio conditions of any particular network element (UE and/or gNB), rendering the model task (e.g. spatial beam selection) and network element specific (e.g. UE), thus improving its performance compared to the initial meta model. The ML framework studied in 3GPP Release 18 should allow for dynamic selection and configuration of the ML-enabled functions available in the network elements, and the fine/re-tuning of the deployed ML models according to the task UE and/or gNB specific sub-use case and conditions. The ML model adjustments can be performed using the mechanism part of collaboration Level y or Level z.
Observation 14: An ML-enabled function may be deployed for a given use case, and the underlying trained ML algorithm might need to be subsequently fine/re-tunned, via collaboration Level y or Level z, to be applicable to a network element specific (set of) related sub-use cases. Such procedures fall under the ML model adaptation and fine-tuning procedures. 
Proposal 17: Investigate the robustness of an ML-enabled function after deployment and assess the need for standardizing the procedures for triggering and/or controlling the ML model adaptation and fine-tuning after their deployment. 
Testability of ML-enabled functions (RAN4 aspects)
Even though the RAN4 work will start only when there is sufficient progress on use cases in the other working groups, we believe that it is beneficial to exchange the views between the companies on what could be a general approach to the formulation of requirements and testing of AI/ML-enabled features. Therefore, in this contribution, we also raise some initial questions on RAN4 interoperability and testability aspects and share some initial considerations on those.
All new specified ML-enabled functions supported by UE and BS need to be testable in RAN4 & RAN5 scope to ensure that new implementations meet or exceed the existing minimum requirements. Thus, in parallel with the development of the ML-enabled solutions in RAN1, which require collaboration between UE and gNB, there is also a need to define how to specify UE and BS Core and performance requirements and corresponding conformance testing of such solutions. These requirements are of high importance because MNOs would also use them as a reference to test the performance, before allowing or activating new functions in their live networks.

Following the SID [RP-213599] RAN4 is targeting the following objectives in the SI:
	 Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
…
c. Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
i. Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
ii. Consider the need and implications for AI/ML processing capabilities definition



In general, three groups of RAN4 requirements might be impacted by new ML-enabled functions:
1. UE RRM requirements specified in TS 38.133
2. UE CSI reporting and performance requirements specified in TS 38.101-4
3. BS performance requirements specified in TS 38.141-1/2

[bookmark: _Int_Sr75VxbC]The impact on those specifications is ultimately use-case specific and depends on the existing requirements and tests. Thus, a large part of the analysis should be carried out in a use-case specific manner. For example, it will be necessary to verify whether existing tests are still fully applicable if ML-enabled function and/or related message/model exchange interfaces, etc. are used.
However, we can already now pose a number of generic questions on testing of AI/ML-based functions such as listed below. For each of these we provide our initial views, observations and/or proposals.

Q1. What is the focus for the requirements and tests of ML-enabled functions in RAN4:
shall the requirements focus only on RAN core and performance characteristics or also cover some aspects of the ML model lifecycle as well, such as maximum model update and training times, model transfer, accuracy, and generalization capabilities, etc.?

Observation 15: Even though a large part of the RAN4 requirements and tests should be carried out in a use-case specific manner it is possible to open the discussion of a general approach to testing the ML-based functions early enough.

In our view, the goal of RAN4 minimum requirements should not primarily focus on the verification of ML models parameters, such as output/input features, artificial neural network (ANN) architecture, hyperparameters, etc. Each model implemented in the products will be vendor specific. It cannot be expected that proprietary implementations of ML models will be publicly disclosed.

RAN4 should ensure a stable level of system and/or demodulation performance, i.e., that it does not degrade in some conditions even though it is enhanced in the other when ML-based algorithms/functions are enabled. One of the challenges here is the interplay of the ML model and continuously changing radio conditions.

It is very reasonable to assume though that the UE-specific implementation is always responsible for correctly executing the ML model, or the combination of several ML models, which assist the ML-enabled function. Nevertheless, the information about the input signal(s), e.g., RSRP, CSI-RS, etc., required by the ML-enabled function, and also outputs (e.g., time horizon of the prediction) need to be exposed by the UE, potentially as part of ML-assistance capability exchange procedure.

Proposal 18: The UE performance requirements and testing methodology should not aim at testing the ML model or ML algorithm/architecture implementation (input/output features, hyperparameters, etc.), but rather at testing the output/outcome of the overall ML-enabled function, which is supported or assisted by the ML algorithm.

Q2. Is it necessary to introduce separate or new RAN4 requirements if it is known that the AI/ML functionality is enabled explicitly?
· Are new requirements relevant only in the cases when the feature includes UE-NW cooperation or also in the implementations when the model is deployed in UE or BS side independently?
· Is it necessary to consider only existing RAN-related KPIs (e.g., throughput, SINR level, error rated, (processing) delays, etc.) or should any new ML-related KPIs be considered as well?
·  How to design a setup that can enable testing of dual-sided collaborative UE-gNB ML-enabled functions?
For one-sided ML solutions (in the UE or gNB), the performance requirements and testing methodology might not differ from current methodologies for certain use cases. However, when the probabilistic nature of the output/outcome of the overall ML-enabled function (due to the underlying ML algorithm inference) cannot be ignored, and the generalisation of the solutions must be ensured, the testing procedure needs to be tailored accordingly (specific set of input test signals/conditions, specific method to estimate the output accuracy, etc.).

For two-sided ML solutions, the performance requirements and testing methodology need to be revised compared to the existing non-ML solutions. One of the main challenges is that only the device under test is a real device, whereas the other side is usually a specially designed tester. Therefore, the testing equipment will need to support some ML capabilities as well. Then, the complexity of test setup will be strongly impacted by the level of cooperation, e.g., where there is a need to exchange ML models or model parameters, in between the device under test and the tester. In these cases, in addition to the specific set of input test signals/conditions and specific method to estimate the output accuracy, there is also necessary to verify the ML-coordination (timing, signalling) between the two sides.

Observation 16: The solutions with one-sided and two-sided ML models pose different testing challenges and likely require different testing and performance verification methodologies and setups. Most of the requirements are expected to be similar for the existing non-ML based solutions, with additional specific requirements depending on the ML-enabled function under test.

The above discussion addressed the testing of the ML-enabled function when the underlying ML model has been deployed and operates in inference mode. Another question to consider for RAN4 purposes is the need to test the LCM procedure in the UE, including model training and model deployment. Although the UE ML algorithm is vendor specific, in case of frequent updates or re/fine-tuning of the ML model, the induced processing delays might not be possible to ignore, and some limits would need to be respected for correct operation of the ML-enabled function under test.

Proposal 19: Analyse the need to set requirements and testing methods for the LCM procedure(s) in the UE, including ML model training and ML model deployment, as part of the ML-enabled function under test.

Q3. How to ensure that the model trained specifically for the test can perform well enough in a real network with very dynamic propagation conditions?
· How to verify that a considerable change of radio environment from the model’s training conditions does not result in a significant and long-lasting system performance degradation?
· Shall the test make a distinction in between offline (more static) and online (dynamically, continuously) trained ML-models since for the latter approach, the performance can change in time?

Observation 17: The current RAN4 test conditions in many cases are rather easy to handle because the environments are stationary. The ML-enabled functions should be tested in such a way that overfitting of the underlying ML model to the concrete test conditions and environment is precluded.

In the context of RAN1 ML-enabled solutions, the performance of the collaboration mechanism between UE and gNB depends, for example, not only on current radio channel conditions, but also on the ‘historical’ measurements and past radio conditions e.g., when using time-series predictions. This is also the case for solutions relying on continual learning or re-training, reinforcement learning or finetuning of the ML models. These conditions are very different to conventional UEs with rule-based algorithms, which are assumed to be fixed for the rest of the UE lifetime. Therefore, a ML-enabled function which had passed the conformance test in the beginning might behave differently than expected after some time. Thus, specific performance test procedures need to be designed for these UE ML-enabled functions.

If the ML model is assumed to be applicable to all testing conditions, then it can be given (i.e., trained, initialized, transferred, etc.) and fully ready for exploitation and testing. However, such an approach may not always match reality where it is probable that the model gets inappropriate for the new radio conditions or environment (for example, indoor vs outdoor conditions). In this case, the model shall be swapped, modified or a regular rule-based/closed form/fallback algorithm should be used instead. If this kind of modification takes introduces delays, then degraded system performance can be faced for a substantial amount of time. Thus, it might make sense to limit the time needed for the adaptation of the ML-enabled function to different conditions. This can be especially relevant in the implementations that involve collaboration in between UE and NW because the related latencies can be more substantial.

Proposal 20: For all use cases studied in the context of RAN1 ML-enabled solutions, consider discussing the introduction of corresponding test requirements that capture non-stationary radio environment conditions that may imply switching and/or updating of underlying ML model.

Conclusion
In this contribution, we discuss further aspects related to AI/ML for air-Interface, with the following observations and proposals. 
Observation 1: The current definitions of "Offline field data" and "Online field data" refer to “offline training” and “online training” terms, respectively, which have not been defined in the context of RAN1 ML studies.
Observation 2: In the context of RAN1 ML studies, the field data can be considered live (online) data if it is no older than X s, after which it becomes historical (offline) data, where X is use-case specific (defined for each use case separately).
Proposal 1: In the context of RAN1 ML-enabled solutions, adopt the following definitions (instead of the agreed definition in RAN1 #109-e).
	Offline field data
	The historical stored data is collected from use-case relevant field measurements, counters, KPIs, which are older than X seconds, where X is use-case specific.

	Online field data
	The live collected data from use case relevant field measurements, counters, and KPIs, which is no older than X seconds, where X is use-case specific.


 
Observation 3: Any component of an ML-enabled function that relies on supervised training (e.g. NN part in a deep RL, embedding model, etc.) requires a priori labelled input data to be able to re-training/tuning of the underlying ML model.
Observation 4: In continual learning solutions, the time scale/interval between consecutive ML model updates is determined by the rate at which input data is available, in combination with the use case specific conditions such as input data distributions (concept) drift and the model’s performance change.
Proposal 2:  In the context of ML-enabled solutions, RAN1 to adopt the "continual learning” terminology for the ML-enabled solutions where the intention is to describe an ML model which is continuously and automatically tuned/refined/adjusted: 
	Continual learning (training)
	A fundamental idea in machine learning in which models continuously learn and evolve based on the newly available (and possibly increasing amount of) input training data, while retaining previously learned knowledge.


Observation 5: In the context of RAN1 air-interface solutions using continual learning, what is relevant is to specify the time scale/interval between consecutive ML model updates relative to the ML-enabled function output (inference) rate.
Proposal 3: In combination with Proposal 2, in the context of RAN1 ML-enabled solutions, adopt the following definitions:
	Offline training
	ML training procedure using:
· A ‘one-shot’ solution where the training is performed only once before its deployment to a network node, OR
· A continual learning solution where the data iteration (use the same model architecture and features but the train from new data) or model iteration (adding a new feature to an existing model architecture or changing the model architecture) is performed at a time scale much larger compared to the time scale at which the ML model is used for inference.
Use case dependent, the ML training can be performed in the same or different entity (network or UE) where the ML inference is performed.

	Online training
	ML training procedure using a continual learning solution where the data iteration (use the same model architecture and features but train from new data) or model iteration (adding a new feature to an existing model architecture or changing the model architecture) is performed at a time scale comparable to the time scale at which the ML model is used for inference. 
Use case dependent, the ML (re) training can be performed in the same or different entity (network or UE) where the ML inference is performed.



Proposal 4:  When a continual learning-based approach is used in a proposed ML-enabled solution, the solution description should include at least the following details:
· whether the solution is based on data iteration (use the same model architecture and features but train from new data) and/ or on model iteration (adding a new feature to an existing model architecture or changing the model architecture),
· time scale/periodicity at which the data/model iteration is performed,
· when data iteration is used, specify the amounts of “historical stored data” (offline data) and "live collected data” (online data) used for (re)training.
· the pre-set time frequency of, or the event triggering, for the automated re-training process.
Proposal 5: In the context of RAN1 ML-enabled solutions, reinforcement learning-based solutions use continual learning and are to be described as either online or offline training solutions, depending on the concrete (sub-)use case and the definitions in Proposal 3.

Proposal 6: RAN1 to agree that Level x ML solutions are not visible from signalling point of view but may have an impact on the performance requirements (i.e., RAN4/5 specifications)

Observation 6: Motivation for introducing signaling-based collaboration for ML-enabled solutions is better performance or enablement of the new use cases that are impossible to solve without collaboration.

Proposal 7: Model transfer should consider not only the ML model itself, but also the functions that apply this model to certain decision-making.

Observation 7: The collaboration levels (x-z) agreed in RAN1#109 correlate with associated standardization efforts needed for related solutions

Proposal 8: Consider a collaboration level as an indication of the standardization complexity of the corresponding solutions.

Proposal 9: Collaboration level y includes any new signaling for new reporting, data collection, capability information, assistance information, performance monitoring, and model management.

Proposal 10: Collaboration level z may include anything from level y and additional signaling related to model transfer and deployment.

Observation 8: When LCM elements are distributed, a different understanding of LCM between companies may significantly complicate the discussion and progress on collaboration in the RAN1 study.

Proposal 11: RAN1 to agree on the reference LCM description and study the signaling required to support LCM on a per-use case basis.
Proposal 12: For the collaboration use cases studied in the context of RAN1 ML-enabled solutions, adopt a high-level description of the ML-based solutions using a defined set of processing blocks, including at least the following:
1) Input data acquisition and preparation/pre-processing (data collection, data formatting, cleaning, feature selection and/or engineering, etc.) 
2) ML-algorithm (type of algorithm, number of layers, type of loss function, accuracy metric, etc.) 
3) Non-ML algorithm (optional algorithms such as measurement filtering, channel estimation, etc.) 
4) Output data processing (optional, combination of ML and non-ML algorithm outputs) 
5) Control mechanism (signaling and procedures used to configure any of the blocks 1-4) 

Proposal 13: For all use cases studied in the context of RAN1 ML-enabled solutions, companies are encouraged to study and provide a list of potential new signaling messages required, categorized in data collection, capability information, assistance information, performance monitoring, and model management signaling.

Observation 9: The complexity analysis of an ML-enabled solution primarily is an average complexity estimation vs. time. 

Observation 10: For RAN1 ML-enabled solutions purposes, the complexity of an ML-enabled function needs to include in addition to the complexity of the ML model itself (FLOPs or MACs), the estimated complexity of: signaling (air interface use, overhead), input/ output data pre-/post processing resources, and required configuration procedures for training and inference.  

Observation 11: The ML algorithm inference latency is not a good indicator of the performance of a specific ML-enabled function in the context of the RAN1 air-interface solutions. Instead, the execution latency of the ML-enabled function needs to be analyzed, including the latency of the input and output data pre/post-processing operations.

Proposal 14: For both single- and dual-sided ML-enabled solutions, RAN1 to consider the following metrics for the complexity analysis related to the inference process:  
a.	Number of floating point (FLOP), or multiply and accumulate (MAC) operations required for one forward pass of the ML algorithm 
b.	Alternatively, to a), the FLOP/MAC operations per second needed to run the ML algorithm for (X) seconds
c. Memory footprint of the ML algorithm (Mbit) 
d.	Number of FLOP/MAC operations required to prepare (and format, convert) the input data in case these are not direct measurements or estimates readily available in the radio entity executing the ML-enabled function 
e.	Estimated number and payload (bytes) of additional signaling messages required to convey the ML-input and ML-output information between the involved radio entities (gNB, UE) 
- This might be complemented by the estimated required ML-input and ML-output data rates (latencies), i.e., factoring in the acceptable transmission delays

Observation 12: When an ML-enabled solution assumes that the underlying ML model training (or partial model training) is performed at the UE side, the overall complexity analysis must also include the complexity estimation of the training process, with similar metrics as listed for the analysis of the inference process.

Proposal 15: RAN1 to study mechanisms to disable an ML-based function and to enable a non-ML fallback operating mode, in UEs and/or gNBs

Observation 13: It is not desirable to standardize the exact set of features to be used by an ML-enabled solution, nor the feature importance estimation and selection algorithm to be used. Nevertheless, to avoid the overhead associated with collecting unnecessary many features from various NR elements, it may be beneficial to define means such that a sufficient set of features per use-case is obtained. 

Proposal 16: Investigate the need for a standardized procedure (signaling) to request/enable/trigger the feature selection in a UE using ML-enabled function.
Observation 14: An ML-enabled function may be deployed for a given use case, and the underlying trained ML algorithm might need to be subsequently fine/re-tunned, via collaboration Level y or Level z, to be applicable to a network element specific (set of) related sub-use cases. Such procedures fall under the ML model adaptation and fine-tuning procedures. 
Proposal 17: Investigate the robustness of an ML-enabled function after deployment and assess the need for standardizing the procedures for triggering and/or controlling the ML model adaptation and fine-tuning after their deployment. 

Observation 15: Even though a large part of the RAN4 requirements and tests should be carried out in a use-case specific manner it is possible to open the discussion of a general approach to testing the ML-based functions early enough.

Proposal 18: The UE performance requirements and testing methodology should not aim at testing the ML model or ML algorithm/architecture implementation (input/output features, hyperparameters, etc.), but rather at testing the output/outcome of the overall ML-enabled function, which is supported or assisted by the ML algorithm.

Observation 16: The solutions with one-sided and two-sided ML models pose different testing challenges and likely require different testing and performance verification methodologies and setups. Most of the requirements are expected to be similar for the existing non-ML based solutions, with additional specific requirements depending on the ML-enabled function under test.

Proposal 19: Analyse the need to set requirements and testing methods for the LCM procedure(s) in the UE, including ML model training and ML model deployment, as part of the ML-enabled function under test.

Observation 17: The current RAN4 test conditions in many cases are rather easy to handle because the environments are stationary. The ML-enabled functions should be tested in such a way that overfitting of the underlying ML model to the concrete test conditions and environment is precluded.

Proposal 20: For all use cases studied in the context of RAN1 ML-enabled solutions, consider discussing the introduction of corresponding test requirements that capture non-stationary radio environment conditions that may imply switching and/or updating of underlying ML model.

References
[1] RP-213599, “New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” 3GPP RAN #94-e.
[2] RP-221347, “Status report for Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface”, 3GPP RAN#96.
[3] Chip Huyen, Real-time machine learning: challenges and solutions (huyenchip.com), January 2022.
[4] M. De Lange et al., "A Continual Learning Survey: Defying Forgetting in Classification Tasks," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3366-3385, 1 July 2022, doi: 10.1109/TPAMI.2021.3057446.
[5] Timothée Lesort, https://arxiv.org/abs/2007.00487 , July 2020.
image1.png
Data Tor acton

Observations Action
Environment | [«

Default

controller/Actor

Data collecjion module
Nodel management module

Experimental model Verified model

Store

Q Vefcstan

Model [REETETSIIN Model monitoring
deployment ‘and veriication

stored model request response

Test data
requestiesponse

o]

Trained model Model
Model training Model validation testinglevaluation

Model inference

Validated

A
'
!
!
!
! ol rerence s

Mocdituning
fecdback

Model training module

Feedback to data Feedback to model

~CollEction moaue —-management modtite —




