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1	Introduction and motivation
The study item Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface was approved in RAN#94e [1]. It will be the first study of AI/ML technology in 3GPP RAN1. One of three use cases identified for the study is CSI feedback enhancements targeting MU-MIMO performance gains for massive MIMO antenna arrays. Although MU-MIMO with massive MIMO antennas arrays is now deployed in the field, we observe the following potential standardization related issues for acquiring CSI at the transmitter for massive MIMO:
· The use of SRS has drawbacks in coverage (compared to CSI Type-II feedback), and it requires antenna switching to be implemented in UE which leads to associated power imbalances between transmit antennas in the UE side (currently is discussed in RAN1 and RAN4).
· The use of CSI Type-II and eType-II have drawbacks in lack of spatial resolution (compared to SRS based channel acquisition).
· The acquired CSI at the transmitter is instantaneous and is sensitive to UE speed; in particular, MU-MIMO performance is seen to degrade at relatively low speeds 
· The latency of the Type-II CSI reports is large and also contribute to the sensitivity to UE speed

Due to its great benefit for networks, and ongoing investments by operators into massive MIMO products, it is thus motivated to see how AI/ML can enhance CSI reporting. We also observe that since existing eType-II reporting has several dB better coverage than SRS, there is in principle room to even increase the AI-CSI payload compared to eType-II, to get on par with the SRS performance in terms of high spatial resolution and MU-MIMO performance. Hence, the KPIs should not only focus on overhead reduction, but also performance benefits of maintaining or even slightly increased CSI overhead is also of interest. 
It is of interest to see whether AI/ML inference for the AI-CSI can have smaller latency than the classical eType-II PMI search algorithm, in which case a reduced CSI acquisition latency itself may improve MU-MIMO performance in networks. 
Another relevant question is how large the maximal gains of AI-CSI can be – how big is the potential? Comparing with genie aided CSI, we see that there is a 20-40% gap in DL throughput compared to eType-II, hence the upper bound of AI-CSI benefits is likely in this range of percentage numbers. Although this may not be achievable without a huge CSI report payload. It is, therefore, left to the study in this SI to investigate all realistic expectations on AI-CSI. 
2	Ongoing discussions on sub-use cases 
The following topics for selection of sub-use cases were extensively discussed at the previous meeting #109e, although no conclusion was met. Here we provide our further views on these sub use cases. 
2.1 On temporal-spatial-frequency domain CSI compression and prediction using a two-sided model
Spatial-frequency (SF) domain CSI compression using two-sided AI model was selected as one representative sub use case in the previous meeting. An open issue is whether to additionally include the temporal-spatial-frequency (TSF) domain compression as a use case. 
It has been observed in real networks and field trials that the acquired CSI at the transmitter is very sensitive to UE speed -- MU-MIMO performance is seen to degrade at relatively low speeds due to channel aging. Hence, it would be beneficial if AI/ML could mitigate channel aging improve the robustness of the CSI report to enhance MU-MIMO by using prediction. 
As MU-MIMO performance is very sensitive to channel aging, the study should investigate whether AI/ML can be used for CSI prediction to remedy this by allowing the AI/ML model to use temporal channel information to make the CSI report more robust.  
First, let’s define what we mean by TSF and SF domain compression.
A CSI report using spatial-frequency (SF) domain compression is obtained by inference use a single CSI-RS measurement  
A CSI report using time-spatial-frequency (TSF) domain compression is obtained by inference using two or more CSI-RS measurements distributed across time 
Hence, the TSF compression has the additional ability to predict CSI into the future (i.e., to the point in time where the CSI is applied), which makes the CSI report more robust to temporal variations of the channel. 
Since the specification already supports that measurement restriction can be “disabled” for a periodic CSI-RS resource, the UE can already today make use of multiple CSI-RS measurement instances. Therefore, the spec impact difference between TSF and SF is likely minor. TSF can be treated as an optional variant of the already agreed SF sub use case. 
In particular, the difference between SF and TSF can just be the presence of an inserted third neural network between the encoder and decoder, see Figure 1. Then a multi-step channel prediction can be achieved in latent space by applying the dynamics  to the output of encoder in a recursive manner until the desired prediction length is achieved. This allows for reduced complexity in implementation and variable prediction horizon which, e.g., dependent on the UE speed.
[image: ]
[bookmark: _Ref110350978]Figure 1 Example of a decoupled TSF network architecture that consists of three neural networks; encoder  and latent space model  that takes care of the channel dynamics, at the UE side, and decoder  at the gNB side. Here, the input   encapsulates an aggregation of CSI-RS measurements from multiple slots in the TSF case. 

It is of interest to see whether including the temporal domain could enhance the performance, and, if so, at what cost. We believe it should be open to any company to (optionally) evaluate this and provide the assumptions and the results. These results and analyses can then be captured in a separate section or table in the technical report. 
We don’t see the argument made by some companies that R18 MIMO must be finished to be used as a baseline for such study as valid. We don’t need a classical solution as a baseline to introduce an AI based feature. For example, AI-based temporal beam prediction is being considered in the BM use case and there is no classical beam prediction in current specifications or in R18. Instead, the R17 or R16 performance can be used as the NR baseline to assess whether AI can improve KPI.
[bookmark: _Ref106712361][bookmark: _Toc111193668]Add the temporal-spatial-frequency (TSF) domain compression as an optional variant of the two-sided model based spatial-frequency (SF) compression. The TSF variant allows multiple CSI-RS measurements over time to be utilized for CSI compression and prediction into the future. The proponent needs to explain whether SF or TSF was used when providing result and analysis. 
2.2 On improving the CSI accuracy based on traditional codebook design using one-sided model
The dual-sided model has a major drawback that it is unclear how it can be trained -- it is a multi-vendor use case requiring encoder/decoder inference to be implemented by different vendors. Therefore, we believe it is important to study whether CSI enhancement can be obtained using machine learning for one-sided AI/ML models. This solution, if promising, will likely have a much shorter time to market than the dual sided case since a single vendor can train the complete model. 
If the traditional MIMO codebook setup is re-used, we see a potential use of one (UE)-sided AI/ML for CSI enhancements as follows.
The current codebook configuration in 3GPP NR specification is configured to the UE via RRC signalling, which occurs just after the initial access phase or during handover procedures. Oftentimes, even if the UE stays within the same cell or connected to the same TRP, the channel condition changes over time and the initial codebook configuration might be outdated/suboptimal after a while due to UE movement, etc. 
A UE side AI/ML model can be trained to output a codebook configuration recommendation to the network based on its downlink channel measurements. Hence, the AI/ML model is trained to perform a codebook recommendation. 
In the current 3GPP NR specifications, a rather slow RRC reconfiguration of the codebook is needed to enable a UE codebook recommendation. Moreover, the RRC configuration may need to reconfigure all the codebook parameters (even though many of the initial codebook parameters are still relevant and need not be changed). Hence, based on the report from the UE, the change of the codebook parameters can be specified to use MAC CE or DCI. 
An alternative solution is that the gNB can RRC configure multiple codebook configurations to the UE (one per CSI report setting), and then use downlink control information (DCI) to trigger different codebook configurations (each associated with a CSI report setting configuration). However, this is still cumbersome since the gNB may need to RRC configure many codebook configurations so that different channel conditions are considered. In addition, UEs typically support one configuration for each type, e.g one Type-I codebook, one Type-II codebook and for an advanced UE implementation, also a Type-II port selection codebook configuration. Hence, it is not possible to use this DCI based switching between e.g. two different configurations of a Type-II codebook, since UE can only be configured with one at a time. This restriction is due to the high UE complexity to support a Type-II codebook; hence it is restricted to a single. Therefore, to change a Type-II codebook, RRC reconfiguration is necessary. 
Note that the use of machine learning algorithms may not be visible in specifications for this use case, the necessary specification changes could be an introduction of faster than RRC reconfiguration of PMI codebooks and the specification of the recommendation report from the UE to the gNB. 
[bookmark: _Toc111193669]Study one-sided model-based CSI enhancements using traditional codebooks by investigating the possible benefits of UE to network codebook parameter recommendation and faster than RRC codebook re-configuration
2.3 On improving CSI prediction using one-sided model
As mentioned in the previous sub-section, we believe it is important to study whether CSI enhancements can be obtained using one-sided AI/ML models. CSI prediction by the UE is of great interest in real deployments, the spec impact is likely rather small for this enhancement, and training is done using a single vendor. We expect limited specification impact for AI/ML model life cycle management, UE capabilities, and control signalling. The existing CSI framework can to a large extent be reused, which is attractive. 
[bookmark: _Toc111193670]Study the performance and standardization impact of one-sided (i.e., UE) model based CSI prediction using the existing CSI framework as a starting point
There is an ongoing Rel.18 MIMO WI with similar scope, using classical methods. It is of great interest to investigate whether AI have a potential to perform the task of CSI prediction with even better performance and/or lower implementation complexity compared to the classical approach. Since this is a SI, the scope is more long term, while the WI is addressing the urgent issue directly. 
CSI aging is a fundamental (the last remaining?) problem for MU-MIMO using massive MIMO antenna arrays. It will likely be addressed by various approaches over the coming releases. We thus don’t see it as an issue that there is a WI that is addressing the same fundamental problem, the outcome of the SI will give some guidance to our future work. 
2.3 On CSI-RS configuration and overhead reduction
Regarding CSI-RS configuration and overhead reduction that was discussed in the previous meeting, we don’t see the need to have this as a separate use case for the SI. It will come as a natural consequence (and KPI) if CSI prediction is studied (which may or may not allow for sparser CSI-RS in time). It should also be noted that CSI-RS overhead is not a big issue in current networks in FR1 while the PDCCH overhead can be more troublesome for aperiodically triggered CSI-RS for AI/ML. 
Configuration and overhead reduction need not be a separate sub use-case for AI/ML but is included as a KPI for any of the sub-use cases 
2.4 On resource allocation, scheduling and parameter configurations
The parameter configurations of the MIMO codebook and CSI reporting has been discussed in Section 2.2 and we are positive to study the use of AI/ML to optimize the configuration of CSI. Then, the resource allocation and scheduling are on a faster time scale and are very dependent on vendor implementation specific decisions. We don’t see how a study of such enhancements can be done in RAN1 since it will be impossible to find a relevant baseline.  Hence, we see this sub use case as low priority (unless the scope of this study is clarified and relevance is better described). 
2.5 On joint CSI prediction and compression
This scheme is already included in our proposal for two-sided TSF compression and prediction (Proposal  1 )
[bookmark: _Ref178064866]3	Potential specification impact
3.1 Training collaboration
A proposal was made in the previous meeting to agree on the following training collaboration types
RAN1#109e Proposal 3.1.1.2-2: In CSI compression using two-sided model use case. The following offline AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model with model transfer to UE
· Type 2: Joint training of the two-sided model with model transfer to NW
· Type 3: Joint training in offline engineering with multi-vendor agreements. No model transfer is required after deployment.
· Type 4: Separate training at UE side and NW side for CSI feedback generation model / CSI reconstruction model respectively. 
· FFS: Model fine tuning. 
Different specification impacts are expected to support different training options. Further discuss and clarify the pros and cons of each option.

We are fine with the above mentioned collaboration types. 
[bookmark: _Toc111193671]Aim to agree in RAN1#110 on the definitions of the four training collaboration types for CSI enhancements, a starting point is the draft shown above.
Here follows our discussion of pros and cons of these four Types:
3.1.1 Training collaboration Type 1 [gNB vendor training, UE/chipset adoption]
The gNB vendor trains both gNB and UE AI/ML models, and UE AI/ML model is adopted by UE for deployment and operation
· Pros: 
· A single gNB AI/ML model can be implemented by the gNB vendor that handles any UE, since all UEs use the same UE ML model (when connected to the gNB vendor).
· gNB hardware can be optimized for the AI/ML model, which is crucial since the gNB needs to process time sensitive CSI reports from many UEs in parallel.  
· As gNB vendor performs the training, the loss function can be optimized for the MIMO transmission scheme, for example, MU-MIMO, C-JT or any other proprietary solution or antenna implementation (e.g. multi-band massive MIMO antenna arrays) on network side. Excellent network performance is expected with this approach. 
· Cons: 
· The UE needs to receive, store, and use a specific AI/ML model for each of multiple gNB vendors. 
· The AI/ML model in the UE cannot be optimized for UE hardware, leading to decreased efficiency, increased power consumption; for example, the UE’s hardware may need to be generic to handle any received AI/ML model.

3.1.2 Training collaboration Type 2 [UE/chipset vendor training, gNB adoption]
The UE/chipset vendors train both gNB and UE AI/ML models, and gNB AI/ML model is adopted by gNB for deployment and operation.
· Pros: 
· Only a single UE ML model needs to be implemented which handles any gNB vendor. 
· ML model in UE can be optimized for its hardware leading to efficiency and low power consumption. 
· Cons: 
· gNB needs to receive, store, and use a specific AI/ML model for each of multiple UE vendor/chipset models, 
· In a slot, multiple AI/ML models (which are different) may need to be executed in parallel in the gNB to receive AI CSI from multiple UEs. 
· The AI/ML model is not optimized for gNB hardware, leading to decreased efficiency, power consumption; for example, the gNB’s hardware may need to be generic. 
· The used loss function for training doesn’t match the network MIMO transmission scheme (MU-MIMO, C-JT, etc), e.g., training for SU-MIMO only. Network performance will be far from optimal as the training cannot take into account these network specific factors. 
· It doesn’t allow cell-specific adaptations (e.g. massive MIMO antenna array type, single or multi-band, cell shaping etc) by per cell decoder deployment.

3.1.3 Training collaboration Type 3 [Joint and bilateral UE/chipset and gNB vendor training and joint operation]
Bilateral training events (likely offline, pre-deployment) between UE/chipset and gNB vendors is assumed. The vendors jointly train both sides of the AI/ML models. Note: The vendors do not need to disclose AI/ML model implementation details to the other party. 
· Pros:  
· The AI/ML model in both UE and gNB can be optimized for it’s hardware leading to high efficiency and best possible performance.
· The gNB side can select a loss function that targets the MIMO transmission scheme (e.g., MU-MIMO, C-JT or any other proprietary solution on network side). 
· The AI/ML models can be kept proprietary even if jointly trained as only the backpropagation parameters (interface loss function derivatives) needs to be shared with other vendor (see more discussion below).
· Cons: 
· Both the gNB and UE need to store and configure a specific AI/ML model respectively for each of multiple UE/gNB vendor/chipset models. Hence, there is a scalability issue to address: How can we manage many AI/ML model pairs across both NW and UE vendors (here denoted the combinatorial problem) 
· In a given slot, multiple gNB AI/ML models may need to be executed in the gNB to receive, for example, CSI from multiple UEs in parallel.
Note: It is possible to jointly train Type 3 AI/ML models, without disclosing the actual model parameters. The figure below illustrates how joint training in a multi-vendor setup can be performed. Note that the interface between gNB and UE for backpropagation of derivatives is not conveyed over an air interface; for example, the training can take place in a lab setup or between online server interfaces.  
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[bookmark: _Ref101897461]Figure 2: Multi-vendor joint training of Type 3 AI/ML models. Note that the derivatives from the gNB vendor backpropagation algorithm propagate to the UE vendor backpropagation, allowing the UE-side AI/ML model to be trained. The exchange of such training information may occur in a lab setup where vendors provide online training interfaces for one another (the exchange does not happen over the air interface).   
In Figure 2, it is expected that the dataset used for joint training is shared between both vendors to, for example, compute forward propagation (UE-side) and the loss function and gradients through backpropagation (gNB side). The datasets for model training could, for example, be provided by the communication service provider (CSP) such as a network operator or other party. 
For Type 3 in particular, the complexity due to a need to manage and use multiple AI models in parallel to support a range of different vendors at the collaboration node exists for both gNB and UE side (while for Type 1 and 2 it is only present for either side).  On the other hand, if UE vendors train the encoder with multiple network vendors, it may be possible to utilize transfer learning and potentially keep some layers frozen (not affected when performing bilateral training with different vendors). 
This would avoid retraining a whole model for each bilateral training setup which would lead to easier management of multiple AI/ML models. Likewise, the gNB decoder can also adopt such transfer learning. Hence, it can be studied in this SI the impact on performance and feasibility of such transfer learning or similar approaches, with the aim to reduce the parallel handling of many AI/ML models in each node. For example, assume chipset vendor trains bilaterally with a first NW vendor A, then when it trains bilaterally with NW vendor B. The chipset vendor then uses the trained model from A as a starting point for B, and only allows to change some layers in the training process with B. The study going for example investigate whether the performance differs for vendor A and B to asses the feasibility of complexity reduction in Type 3. 
In case of Type 1 and 2, the structures of the encoder and the decoder can in principle be jointly designed and optimized whereas for Type 3 the encoder and decoder structures might be designed independently in a fully proprietary manner. Hence, it could be of interest to study the need to align algorithm architectures on the encoder and decoder sides for Type 3.  
[bookmark: _Toc111193672]For Type 3, study whether somewhat aligning AI/ML modes across different bilateral trainings (e.g. node internal model transfer approaches) with different vendors can reduce the implementation complexity due to the multi-vendor training situation.


3.1.4 Training collaboration Type 4 [Separate UE/chipset and gNB vendor training and joint operation]
The UE/chipset and NW vendors design and train AI/ML models separately using proprietary techniques and data. Inference, however, is still executed jointly: A UE-side AI/ML model compresses the CSI, and a NW-side AI/ML decompresses the CSI.

Joint inference with separate training will require that the output of the UE’s encoder is interpretable by the gNB’s decoder. For example, the meaning of signal bits is semi-standardized to ensure interpretability on the NW side. The challenge here is to standardize just enough, while leaving some “wiggle” room for AI/ML to optimize how the CSI is compressed. 

An approach that we have identified for further study is as follows: First, a set of reference (or, anchor) input channel features and their corresponding latent space representations is agreed and standardized. These reference channels and their latent space representations can be thought of as anchor points when training the AI/ML encoders and decoders. Second, metrics to quantify distances between input channel features and their latent space representations are agreed. In principle, UE/chipset and NW vendors can then train independently using proprietary AI/ML models and data by minimizing, for example, triplet loss functions and Siamese networks. Such techniques work well for face recognition applications and can also be investigated for CSI reporting.  

a. Pros:
i. AI/ML model in both UE and gNB can be optimized for it’s hardware leading to high efficiency and best possible performance for the given model
ii. AI/ML models are kept proprietary
iii. Number of AI/ML-models to support on the UE and gNB can be minimized
b. Cons:
i. Techniques to achieve this are unknown for this new area compared to “traditional” Auto Encoder/Auto Decoder frameworks for split AI/ML models
ii. Performance of the case is yet to be evaluated and benefits to be proven, but the approach is worth considering due to the attractive “Pros”. 

We now briefly elaborate on the abovementioned approach. The setup of the two-sided AI CSI use case is illustrated in Figure 3. A significant problem with this setup is that the latent variable  is only understood by the configured UE side AI and NW side AI .

From 3GPP’s multi-vendor perspective, it would be better to fully specify all air interface variables (including the latent variable ). This, of course, is a difficult task -- a key benefit of two-sided AI solutions is to let algorithms optimize the meaning of the latent variable . 

We propose to study a midway solution that imposes sufficient structure on the latent space to, potentially, enable UE/chipset and NW vendors to train their AI models independently of one another using proprietary techniques and data.    

The UE-AI part of this variant of two-sided AI can be viewed as a compressive NN, see Figure 3.
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[bookmark: _Ref110854580]Figure 3: Illustration of a compressive CSI AI

The NN takes the UE’s estimate  of the MIMO channel and outputs a latent representation . 
We want to train the compressive NN to preserve distances between MIMO channels:
· If channels  and  are close to one another (metric is discussed below), then their compressed latent representations   and  should also be close. 
· If two channels  and  are far away from one another, then their compressed latent representations   and  should also be far apart.

The above constraints can be used to preserve important features when compressing MIMO channels. 
To enable compressive NNs from different vendors to be compatible, we can define a set of reference MIMO channels  and a corresponding set of latent variables . 
If different vendors train compressive NNs to preserve the distance between MIMO channels and align closely with the reference MIMO channels, then their trained NNs should be compatible – the extent of which can be studied. 
[bookmark: _Toc102035403][bookmark: _Toc102053808][bookmark: _Toc102053821][bookmark: _Toc102122421][bookmark: _Toc111193673]Study two-sided AI-based solutions for CSI reporting that enable UE side AI/ML / NW side AI/ML interoperability between different vendors, without the need for joint training.
The following gives a brief outline of how the above aim may be achieved. 
On the input channel space (e.g., the space of eigenvectors), we can define a metric  to quantify the distance between two channels  and . This metric could be, for example, the generalized cosine similarity between  and . Similarly, we can define a metric on the output latent space. Such a metric could be, for example, the Hamming distance between UCI payloads. 
The compressive NN can be trained to preserve distances between input channels using a triplet loss setup. Three input channels are selected from the training dataset as follows:
·  is the anchor channel,
·  is the positive channel (close to  w.r.t. to a defined metric ), and 
 is the negative channel (far away from  w.r.t. ).
· 
The exact method for selecting ,  and  would be proprietary. The three channel ,  and  are input to the compressive NN, resulting in three latent space representations ,  and . 
The network can be trained to minimize a triplet loss function, for example, 

where  is a constant (e.g., hyperparameter). 
UE/chipset and NW vendors have the following two training problems to solve using proprietary means: 
1. Minimize the triplet loss function .
2. Minimize the reconstruction error for the reference set  and their corresponding compressed latent representations .

The outlined approach above could be a starting point for such investigation of the Type 4 approach. 
3.2 Configuration and content for encoder input
The UE-AI encoder input  is understood to be based on the UE’s CSI-RS based estimate H of downlink MIMO channel. It is commonplace in AI/ML to use domain knowledge to identify and extract important features of the data, before feeding those features into an AI/ML function (e.g., a NN). This feature extraction may reduce the number of required model parameters for a given performance.
[image: ]
Figure 4 Pre-processing (channel feature extraction) and post-processing for the two-sided AE

To help anchor discussions and potential specification impacts, it would be useful to align on a common model-based feature extraction framework mapping the full MIMO channel to important features . 

A common model-based feature extraction framework is useful for the following reasons:

· Domain knowledge can be used to extract key features of the MIMO channel, which can simplify the compression problem for UE/NW AIs (i.e., smaller easier to train NNs). 
· Smaller NNs will be less onerous on NW and UE hardware, positively impacting cost.
· It is well known that channel eigenvectors corresponding to the smallest eigenvalue has less significance for MU-MIMO performance and may be discarded
· Feature extraction can help make the encoder input  agnostic to specific CSI-RS configurations (such as how the CSI-RS is precoded or beamformed by the network), hence a single AE may support any gNB implementation.
· UEs will have proprietary solutions for Rx antenna configurations, RF chains, antenna switches, matched filters, CSI-RS based channel estimation, etc. A common feature extraction framework may allow the UE and NW AIs to be agnostic to such implementation specific details. 
· A common feature extraction framework may improve the generalizability of trained models, enabling improved performance in a wide range of scenarios (e.g., UE and gNB antenna configurations, propagation environments).

In a way, feature extraction is already used in Type-II CSI reporting in NR, where the UE keeps the most important parts of the MIMO channel and discards the rest. A similar approach can be used for AI-CSI based feature extraction, although to get better performance than the classical Type-II CSI, we may need to discard less information in the feature extraction step (e.g. keeping more DFT vectors). 
Nevertheless, we believe that the framework using DFT codebooks can be borrowed from the classical approach, which also means that the input to the encoder operates in the beam domain instead of the antenna domain (making the precoder and number of physical gNB antennas agnostic to encoder model). 
[bookmark: _Toc102053809][bookmark: _Toc102122404]A natural candidate for pre-processing is the Rel-16 Type II CSI framework based on spatial- and frequency-domain DFT codebooks.

Figure 5 illustrates the throughput gains over baseline (for simulation details see [4]) when knowing the channel in only a subspace. The subspace is a Type-II based DFT approach to pre-processing with L spatial domain bases per polarization and M frequency domain bases. The comparison is made with genie which would represent a theoretical upper bound. The figure shows that while the pre-processing does not achieve exactly the same performance as genie, it captures most of the potential for improvement over baseline.
It can be observed that the performance depends on the number of basis vectors and typically more vectors become increasingly important when load increase, since the probability for MU-MIMO scheduling is higher. It is also observed that the number of basis vectors in the pre-processing is typically larger than for the Type-II codebook of Rel.16.
Evaluations show that DFT based channel feature extraction can reduce CSI reporting overhead and model size. A natural candidate for pre-processing is thus the Rel-16 Type II CSI framework based on spatial- and frequency-domain DFT codebooks.

[image: ]
[bookmark: _Ref101930915]Figure 5: Mean user throughput gains compared to reference method. The potential performance improvement is small between knowing a good DFT-subspace of the channel and knowing the full channel. See [4] for simulation setup. 
Note that the pre-processing typically throws away information about the full channel, such as the channel subspace with lower energy transfer. Hence, to be able to reconstruct the channel at the gNB, there may be need to report information from UE to the gNB on how the pre-processing was performed. 

Providing this side information to the gNB needs to be as dynamic as the encoder output and will thus consume additional UCI overhead. However, it is expected to be small compared to the AE encoder output and if the pre-processing is based on Type-II codebook (such as reporting indices of the DFT vectors), part of the classical signalling framework can be reused. Nevertheless, the overhead must be included in the total overhead when presenting results for such scheme.

[bookmark: _Toc102035396][bookmark: _Toc102053801][bookmark: _Toc102053814][bookmark: _Toc102122410][bookmark: _Toc111193674]Study model-based MIMO channel feature extraction methods (pre-processing) based on spatial- and frequency-domain DFT codebooks (using Type-II CSI Rel.16) and associated specification impacts (e.g., additional required signaling over the air interface).
Note that for the training collaboration types 1-4 defined in the previous section, the UE feature extraction and associated signalling may need to be defined depending on whether the extraction is inside or outside the transferred model (in Type 1 and 2). It is definitely needed for Type 3. 

The pathloss to different UEs will vary by several orders of magnitude, and, therefore, some data normalization needs to be applied to the channel features  (either before inputting the CSI feature to the UE-side AI, or as a dedicated normalization layer inside the UE-AI). For example, we may normalize the MIMO channels  to have unit Frobenius norm. How the normalization was made in the UE may also be communicated to the gNB side. 

[bookmark: _Toc102035397][bookmark: _Toc102053802][bookmark: _Toc102053815][bookmark: _Toc102122411][bookmark: _Toc111193675]Study MIMO channel normalization methods, and associated specification impacts (e.g., additional required signaling over the air interface).
Since the MIMO channel  and domain-specific feature extraction methods (e.g., DFT based transformation) are complex-valued, we expect that complex-valued NNs will play an important role in this study.
[bookmark: _Toc102035398][bookmark: _Toc102053803][bookmark: _Toc102053816][bookmark: _Toc102122412][bookmark: _Toc111193676]Include AIs based on both real- and complex-valued NNs in the study, where each proponent report which type was used in evaluations (i.e., do not restrict the study to only to real-valued NNs).
3.3 Configuration and content for CSI report
The quantized latent variable  will need to be signaled from the UE to the gNB as part of a larger CSI report. This CSI report will likely need to contain information about the UE’s preferred transmission rank, channel quality information, and interference information. In addition, two-sided AI based CSI solutions may need additional information about UE-side feature extractions and compression quality indicators (quantifying the quality of the UE’s channel compression). 
[bookmark: _Toc102122416][bookmark: _Toc102035401][bookmark: _Toc102053806][bookmark: _Toc102053819][bookmark: _Toc102122417][bookmark: _Toc111193677][bookmark: _Toc102122418][bookmark: _Toc102122420]Study CSI enhanced reporting options for two-sided AI based solutions. For example, the CSI report may include a preferred rank indication, channel quality information, interference information, feature extraction information, and compression quality indicators. 

3.4 Training procedure
Training procedure is expected to be discussed in the general agenda item (at least initially), since definitions and terminology needs to be settled before any CSI specific discussion can happen 
3.5 Model exchange
Model exchange is expected to be discussed in the general agenda item (at least initially), since definitions and terminology needs to be settled before any CSI specific discussion can proceed. 
3.6 Scalability of AI/ML model for CSI feedback
It seems the discussion in the previous meeting was about generalizability (which is discussed in the evaluation agenda) and model exchange, see Section 3.5
3.7 Quantization
The latent variable  (the output of the UE-side AI) needs to be communicated over the air interface and, therefore, needs to be quantized to a finite number of bits. The quantization can be applied after training the model or before (so called quantization aware training).

Quantization-aware training can be achieved in multiple ways, e.g., by specifically designed differentiable activation functions that mimic scalar quantization for the air interface (e.g., scaled sigmoid activation functions), or by applying heuristics to pass gradients through non-differentiable scalar/vector quantizers.  

For scalar quantization, the number of bits used to quantise NN node activation values that need to be signalled over the air interface needs to be studied. A larger number of bits per activation (e.g., 8 bits) will result in a more faithful representation of the activation value but reduce the number of activations that can be signalled (since we are limited by the total number of bits signalled over UCI). Similarly, using fewer bits per activation (e.g., 1 bit) will lead to more coarse approximation, but enable model complicated AIs in the NW and UE (more activation values can be signalled).    

As discussed above, we expect complex-valued NNs to play an important role in this study, and, therefore, the latent variable  can be complex-valued. The quantization solution needs to work for complex numbers.

[bookmark: _Toc102035399][bookmark: _Toc102053804][bookmark: _Toc102053817][bookmark: _Toc102122413][bookmark: _Toc111193678]Study quantization methods for UCI, including quantization aware training and complex-valued activation functions.
3.8 Life cycle management
AI/ML model life cycle management is tightly coupled with the discussion on joint/separate training, training procedure, model exchange, scalability of AI/ML models etc. It is expected to be discussed in the general agenda item (at least initially), since definitions and terminology needs to be settled before any CSI specific discussion can proceed. 
3.9  UE capability
UE capability is expected to be discussed in the general agenda item (at least initially), since definitions and terminology needs to be settled before any CSI specific discussion can proceed. 
3.10  Testability
Testability is expected to be discussed in the general agenda item (at least initially), since definitions and terminology needs to be settled before any CSI specific discussion can proceed. 
3.11  Loss function
Loss function is discussed under the evaluation sub-agenda. In this agenda, it can be discussed whether loss functions needs to be standardized. As discussed in Section 3.1.2, for Type 2, there is a problem that the network performance will not be taken into account, since the UE side is performing the training of the decoder and has thus chosen the loss function. One way to reduce these losses would be to standardize a set of loss functions so that the network can choose a loss function that better approximates the network deployment. 
For Type 2 training collaboration, if adopted, there may be a need to standardize asset of different loss functions the UE side should use when training the encoder-decoders. 


Conclusion
In the previous sections we made the following proposals 
Proposal  1	Add the temporal-spatial-frequency (TSF) domain compression as an optional variant of the two-sided model based spatial-frequency (SF) compression. The TSF variant allows multiple CSI-RS measurements over time to be utilized for CSI compression and prediction into the future. The proponent needs to explain whether SF or TSF was used when providing result and analysis.
Proposal  2	Study one-sided model-based CSI enhancements using traditional codebooks by investigating the possible benefits of UE to network codebook parameter recommendation and faster than RRC codebook re-configuration
Proposal  3	Study the performance and standardization impact of one-sided (i.e., UE) model based CSI prediction using the existing CSI framework as a starting point
Proposal  4	Aim to agree in RAN1#110 on the definitions of the four training collaboration types for CSI enhancements, a starting point is the draft shown above.
Proposal  5	For Type 3, study whether somewhat aligning AI/ML modes across different bilateral trainings (e.g. node internal model transfer approaches) with different vendors can reduce the implementation complexity due to the multi-vendor training situation.
Proposal  6	Study two-sided AI-based solutions for CSI reporting that enable UE side AI/ML / NW side AI/ML interoperability between different vendors, without the need for joint training.
Proposal  7	Study model-based MIMO channel feature extraction methods (pre-processing) based on spatial- and frequency-domain DFT codebooks (using Type-II CSI Rel.16) and associated specification impacts (e.g., additional required signaling over the air interface).
Proposal  8	Study MIMO channel normalization methods, and associated specification impacts (e.g., additional required signaling over the air interface).
Proposal  9	Include AIs based on both real- and complex-valued NNs in the study, where each proponent report which type was used in evaluaitons (i.e., do not restrict the study to only to real-valued NNs).
Proposal  10	Study CSI enhanced reporting options for two-sided AI based solutions. For example, the CSI report may include a preferred rank indication, channel quality information, interference information, feature extraction information, and compression quality indicators.
Proposal  11	Study quantization methods for UCI, including quantization aware training and complex-valued activation functions.
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