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1	Introduction
The approval of the Rel-18 work package marks the start of 5G Advanced evolution. The package includes a study item on AI/ML for NR air interface, and the work item description can be found in [1].
The initial use cases focused in this study include:
 (
CSI feedback enhancement, e.g., overhead reduction, improved accuracy
, prediction [RAN1]
Beam management, e.g., 
beam prediction in time,
 and/or 
spatial domain
 for overhead and
 
latency reduction
, beam selection accuracy improvement [RAN1]
Positioning accuracy enhancements
 for different scenarios including, e.g.,
 
those with
 heavy
 
NLOS
 
conditions [RAN1] 
)
For the use cases under consideration, the study aims to evaluate performance benefits of AI/ML based algorithms:
 (
Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
Whether f
ield data 
are optionally needed 
to further assess the performance and
 
robustness in real-world environments 
should be discussed as part of the study. 
Need for common
 assumptions in
 dataset construction for training, 
validation
 and test for the
 
selected use cases
.
 
Consider adequate model training strategy, collaboration levels and associated implications
Consider agreed-upon base AI model(s) for calibration
AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
KPIs
: 
Determine the common 
KPIs
 and corresponding requirements for the AI/ML operations.
 
Determine the use-case specific 
KPIs
 and benchmarks of the selected use-cases.
Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
)
At RAN1#109-e, a comprehensive set of evaluation assumptions were agreed (see Appendix A.1). 
In this contribution, we discuss the remaining issues on evaluation assumptions and present initial evaluation results on AI/ML for beam management.
2	Methodology
NR can operate at a wide range of frequencies, ranging from sub-6 GHz to millimeter wave frequencies. To support operation over such a wide range of carrier frequencies, NR has been designed to utilize beam-based operation, where gNB and UE may use transmit and receive beamforming for all channels and signals. 
Beam management procedures include beam determination, beam measurement and reporting, beam indication and switching, and beam recovery. In beam determination, the gNB and UE find suitable transmit and receive beam directions for communication. In beam measurement and reporting, the UE measures the link quality of multiple beam pairs and reports the measurement results to the gNB. In beam indication and switching, the gNB can indicate to the UE which beam to use for the communication, including switching to a beam different from the current beam. In beam recovery, the UE can attempt to re-establish a transmit-receive beam pair with the gNB from beam failure by using a L1 procedure without declaring radio link failure.
In general, the downlink beam management procedures consist of three steps: Procedure 1 (P-1): SSB-based beam sweeping; Procedure 2 (P-2): CSI-RS based transmit-end beam refinement; Procedure 3 (P-3): CSI-RS based receive-end beam refinement. There are also uplink beam management procedures. 
AI/ML based algorithms may find applications in many steps of beam management. It is worthwhile discussing which of the steps should be the focal point for evaluation. Beam prediction in time and/or spatial domain can help reduce overhead and latency, as well as improving beam selection accuracy. They are good candidates for evaluating AI/ML based algorithms for beam management.
Proposal 1: Beam prediction in spatial domain and beam prediction in time domain should be the focal point for evaluating AI/ML based algorithms for beam management.
As the Rel-18 study on AI/ML for NR air interface is the first one in 3GPP that explores the benefits of augmenting air interface with features enabling improved support of AI/ML based algorithms, it is important to calibrate evaluation results from different companies in order to facilitate drawing observations and making conclusions. 
3GPP has established simulation methodology (see, e.g., TR 38.901 [2]), which can be used to generate synthetic data for the study of AI/ML based algorithms for beam management. Beam management is particularly relevant for NR operation in millimeter wave frequencies. The typical millimeter wave deployment is in urban scenarios where there is high-capacity demand. Therefore, the evaluation could focus on UMi-street canyon and UMa scenarios.
However, the simulation layout for UMi-street canyon and UMa scenarios described in TR 38.901 is much simplified compared to real-world urban scenarios. Additional simulation methodology for generating synthetic data, such as digital twins, can be explored. A digital twin is a virtual representation — a true-to-reality simulation of physics and materials — of a real-world physical asset or system, which is continuously updated. Digital twins can help generate synthetic data that are closer to real-world data, compared to the traditional 3GPP statistical simulation methodology.
While synthetic data can be the baseline for evaluating AI/ML based algorithms for beam management, it would be beneficial to identify existing sets of real data and/or build up new sets of real data, as part of the 3GPP Rel-18 AI/ML study for NR air interface. Such efforts would pay off as it is anticipated that AI/ML will become increasingly more integrated into the 3GPP family of technologies from 5G Advanced to 6G.
Proposal 2: Companies are encouraged to contribute real data to develop and evaluate AI/ML based algorithms for beam management.
3	KPIs
The study item description lists many dimensions for KPIs, including performance, inference latency, computational complexity, overhead, power consumption, memory storage, hardware requirements, and generalization capability. 
Though it is beneficial to have a full characterization of the performance of AI/ML based algorithms for NR air interface, it is important to focus on a few most important KPIs in the initial phase to understand the gains of AI/ML based algorithms. 
From beam management perspective, overhead reduction, latency reduction, and accuracy improvement are highlighted in the study item description.
· Overhead may include reference signal overhead and measurement reporting overhead. With beam prediction, less frequent reference signal transmission and/or less measurement reporting may be needed.
· Latency may include reference signal transmission time, UE measurement time, UE measurement reporting time, among others. With beam prediction, the latency may be reduced.
· Beam management based on UE measurement and reporting may not be accurate due to UE measurement error and the feedback delay in UE measurement reporting. Beam prediction may improve the accuracy.
Also, many of the KPIs such as inference latency depend on the used computing platform (such as the GPU model). Therefore, it is important to report the KPIs together with the used computing platform (such as the GPU model).
It was discussed that complexity should be evaluated as a KPI, where complexity include model complexity and computational complexity. For evaluation of AI/ML based beam management, the computational complexity can be reported via the metric of floating point operations (FLOPs), and the model complexity may be measured by memory storage in terms of AI/ML model size and number of AI/ML parameters.
Proposal 3: For evaluation of AI/ML based beam management, the computational complexity can be reported via the metric of floating point operations (FLOPs).
Proposal 4: For evaluation of AI/ML based beam management, the model complexity may be measured by memory storage in terms of AI/ML model size and number of AI/ML parameters.
It is however important to keep in mind that increasing hardware performance can support successively more complex models. For example, Figure 1 shows how single GPU performance has scaled up to meet the demands of deep learning. GPU inference performance has improved by 317x, more than doubling each year. Figure 2 shows single GPU FP64 performance increased by 20x over the decade from 2010 to 2020, an annual growth rate of 35%. In addition to scaling up the performance of individual GPUs, GPUs are also being scaled out to larger clusters for deep learning and high performance computing applications.
Observation 1: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
Proposal 5: AI/ML model complexity and computational complexity should not be regarded as a roadblock to the adoption of AI/ML based algorithms for beam management enhancements.
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Figure 1: GPU inference performance is more than doubling every year. (Source: Ref. [3])
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Figure 2: Single GPU performance scaling. (Source: Ref. [3])
4	Evaluation results
In this section, we provide initial evaluation results on beam management using AI/ML based algorithms. The system-level simulation assumption and scenarios are built on the basis of the RAN1#109-e agreements.
4.1	Beam prediction in spatial domain
For AI/ML-based beam prediction in spatial domain, we study BM-Case 1: Spatial-domain DL beam prediction for Set A of beams based on measurement results of Set B of beams. In the evaluation, Set A consists of 64 beams, while Set B consists of 16 beams, which is a subset of Set A.
The AI/ML-based beam prediction utilizes a convolutional neural network (CNN). The input to the CNN is the RSRP values of the 16 beams in Set B. The output of the CNN is the predicted best beams in the full Set A. 
As a benchmark, we use exhaustive beam sweeping, where the best beam within Set A of 64 beams is determined based on the RSRP values of all the 64 beams in Set A.
Figure 3 shows the beam prediction accuracy (%) for Top-K beams, where K ranges from 1 to 8. The beam prediction accuracy is the percentage of the Top-1 beam from the exhaustive beam sweeping being one of the Top-K predicted beams. It can be seen that the prediction accuracy for Top-4 beams exceeds 95%.
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Figure 3:Beam prediction accuracy for Top-K beams in spatial domain.
Figure 4 shows the CDF of RSRP difference for Top-1 predicted beam, where the RSRP difference is the difference between the RSRP of Top-1 predicted beam and the RSRP of the Top-1 beam from the exhaustive beam sweeping. The mean of the RSRP difference for Top-1 predicted beam is 0.27 dB.
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Figure 4: CDF of RSRP difference for Top-1 predicted beam in spatial domain.
In summary, the results in Figure 3 and Figure 4 show that the AI/ML-based beam prediction in spatial domain, which measures a subset of 16 beams from a full set of 64 beams, can achieve performance (in terms of RSRP) comparable to that of exhaustive beam search, while the reference signal overhead, measurement effort, reporting overhead, and latency can be much reduced as only 16 beams out of the total of 64 beams need to be measured and reported.
Observation 2: AI/ML-based algorithms for beam prediction in spatial domain can achieve performance comparable to that of exhaustive beam search, while the reference signal overhead, measurement effort, reporting overhead, and latency can be much reduced.
Proposal 6: Capture the presented evaluation results in the TR to highlight that AI/ML-based algorithms for beam prediction in spatial domain can achieve performance comparable to that of exhaustive beam search while reducing the reference signal overhead, measurement effort, reporting overhead, and latency.
4.2	Beam prediction in time domain
For AI/ML-based beam prediction in time domain, we study BM-Case 2: Temporal DL beam prediction for Set A of beams based on the historic measurement results of Set B of beams. In the evaluation, Set A consists of 64 beams, and Set B is the same as Set A.
The AI/ML-based beam prediction utilizes a recurrent neural network (RNN). 
· The optimal beam indices of K=8 latest measurement instances are used for AI/ML model input, where each input of optimal beam index is for each measurement instance.
· The AI/ML model output is up to F=8 predictions for F=8 future time instances, where each prediction of the optimal beam index is for each time instance.
· The sampling interval (i.e., the time interval between two consecutive time instances) is 40 ms.
· The UE speed is 120 km/h. With this high speed, all UEs are assumed to be outdoor.
Figure 5 shows the beam prediction accuracy (%) for Top-K beams, where K ranges from 1 to 8. The beam prediction accuracy is the percentage of the ground-truth Top-1 beam being one of the Top-K predicted beams. It can be seen that the prediction accuracy for Top-8 beams is close to 90% for the farthest future instance of 8 x 40 ms.
Figure 6 shows the average RSRP difference for Top-K predicted beam, where the RSRP difference is the difference between the maximum of RSRPs of Top-K predicted beams and the RSRP of the ground-truth Top-1 beam. It can be seen that the average RSRP difference for Top-2 predicted beam is smaller than 1 dB for the farthest future instance of 8 x 40 ms.
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Figure 5: Beam prediction accuracy for Top-K beams in time domain.
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Figure 6: Average RSRP difference for Top-K predicted beam in time domain.
The evaluation results show that using a history of the best beam index, the AI/ML model can predict the best beam for future time instances. Such temporal beam prediction can help lower reference signal overhead and reduce UE’s measurement requirement as the prediction can help narrow down candidate beams for UE to measure.
In the evaluation, we use only a history of the best beam index to perform the prediction. Temporal prediction performance may be further improved with additional input of information such as the corresponding RSRP, UE position, etc.
Observation 3: AI/ML-based algorithms for beam prediction in time domain can simply use a history of the best beam index to perform the prediction. 
Observation 4: AI/ML-based algorithms for beam prediction in time domain can help lower reference signal overhead and reduce UE’s measurement requirement.
Proposal 7: Capture the presented evaluation results in the TR to highlight that AI/ML-based algorithms for beam prediction in time domain can simply use a history of the best beam index to perform the prediction to lower reference signal overhead and reduce UE’s measurement requirement.
Conclusion
In the previous sections, we discuss general aspects of AI/ML framework for NR air interface and make the following observations:
Observation 1: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
Observation 2: AI/ML-based algorithms for beam prediction in spatial domain can achieve performance comparable to that of exhaustive beam search, while the reference signal overhead, measurement effort, reporting overhead, and latency can be much reduced.
Observation 3: AI/ML-based algorithms for beam prediction in time domain can simply use a history of the best beam index to perform the prediction. 
Observation 4: AI/ML-based algorithms for beam prediction in time domain can help lower reference signal overhead and reduce UE’s measurement requirement.
Based on the discussion in the previous sections we propose the following:
Proposal 1: Beam prediction in spatial domain and beam prediction in time domain should be the focal point for evaluating AI/ML based algorithms for beam management.
Proposal 2: Companies are encouraged to contribute real data to develop and evaluate AI/ML based algorithms for beam management.
Proposal 3: For evaluation of AI/ML based beam management, the computational complexity can be reported via the metric of floating point operations (FLOPs).
Proposal 4: For evaluation of AI/ML based beam management, the model complexity may be measured by memory storage in terms of AI/ML model size and number of AI/ML parameters.
Proposal 5: AI/ML model complexity and computational complexity should not be regarded as a roadblock to the adoption of AI/ML based algorithms for beam management enhancements.
Proposal 6: Capture the presented evaluation results in the TR to highlight that AI/ML-based algorithms for beam prediction in spatial domain can achieve performance comparable to that of exhaustive beam search while reducing the reference signal overhead, measurement effort, reporting overhead, and latency.
Proposal 7: Capture the presented evaluation results in the TR to highlight that AI/ML-based algorithms for beam prediction in time domain can simply use a history of the best beam index to perform the prediction to lower reference signal overhead and reduce UE’s measurement requirement.
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Appendix
A.1	RAN1#109-e agreements
Agreement
· For dataset construction and performance evaluation (if applicable) for the AI/ML in beam management, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
Agreement
· At least for temporal beam prediction, companies report the one of spatial consistency procedures: 
· Procedure A in TR38.901
· Procedure B in TR38.901
Agreement
· At least for temporal beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
· For spatial-domain beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
Agreement
· At least for spatial-domain beam prediction in initial phase of the evaluation, UE trajectory model is not necessarily to be defined.
Agreement
· At least for temporal beam prediction in initial phase of the evaluation, UE trajectory model is defined. FFS on the details.
Agreement
· UE rotation speed is reported by companies.
· Note: UE rotation speed = 0, i.e., no UE rotation, is not precluded.
Agreement
· For AI/ML in beam management evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.

Conclusion
· Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations
· Companies report the training approach, at least including the dataset assumption for training
Agreement
· For evaluation of AI/ML in BM, the KPI may include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity
Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.
Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the parameters (if applicable) in Table 1.2-1b for Dense Urban scenario for SLS
Table 1.2-1b Assumptions for Dense Urban scenario for AI/ML in beam management
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
· Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.
· For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
         [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
         Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
         2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
         Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB


Agreement
· For temporal beam prediction, the following options can be considered as a starting point for UE trajectory model for further study. Companies report further changes or modifications based on the following options for UE trajectory model. Other options are not precluded. 
· Option #2: Linear trajectory model with random direction change.
· UE moving trajectory: UE will move straightly along the selected direction to the end of an time interval, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms. 
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· UE move straightly within the time interval with the fixed speed.
· FFS on UE orientation
· Option #3: Linear trajectory model with random and smooth direction change.
· UE moving trajectory: UE will change the moving direction by multiple steps within an time internal, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms.
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· The time interval is further broken into N sub-intervals, e.g. 100ms per sub-interval, and at the end of each sub-interval, UE change the direction by the angle of A_diff/N.  
· UE move straightly within the time sub-interval with the fixed speed.
· FFS on UE orientation
· Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area


where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
· FFS on UE orientation
· Generalization issue is FFS 
Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.  
Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the following assumption for LLS as optional methodology
	Parameter
	Value

	Frequency
	30GHz.

	Subcarrier spacing
	120kHz

	Data allocation
	[8 RBs] as baseline, companies can report larger number of RBs
First 2 OFDM symbols for PDCCH, and following 12 OFDM symbols for data channel

	PDCCH decoding
	Ideal or Non-ideal (Companies explain how is oppler)

	Channel model
	FFS:
LOS channel: CDL-D extension, DS = 100ns
NLOS channel: CDL-A/B/C extension, DS = 100ns
Companies explains details of extension methodology considering spatial consistency

Other channel models are not precluded.

	BS antenna configurations
	· One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline
· Other assumptions are not precluded. 
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS antenna element radiation pattern
	Same as SLS

	BS antenna height and antenna array downtile angle
	25m, 110°

	UE antenna configurations
	Panel structure: (M, N, P) = (1, 4, 2), 
· 2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· 1 panel as optional
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE antenna element radiation pattern
	Same as SLS

	UE moving speed
	Same as SLS

	Raw data collection format
	Depends on sub-use case and companies’ choice. 


Agreement
· For UE trajectory model, UE orientation can be independent from UE moving trajectory model. FFS on the details. 
· Other UE orientation model is not precluded.
Agreement
· Companies are encouraged to report the following aspects of AI/ML model in RAN 1 #110. FFS on whether some of aspects need be defined or reported.
· Description of AI/ML model, e.g, NN architecture type
· Model inputs/outputs (per sub-use case)
· Training methodology, e.g.
· Loss function/optimization function
· Training/ validity /testing dataset:
· Dataset size, number of training/ validity /test samples
· Model validity area: e.g., whether model is trained for single sector or multiple sectors             
· Details on Model monitoring and model update, if applicable
· Others related aspects are not precluded
Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 
· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.
· Other KPIs are not precluded and can be reported by companies, for example:
· Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
·  Latency reduction:
· (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
·  where M is the total number of beams
· Power consumption reduction: FFS on details
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