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1. Introduction
[bookmark: _Hlk30969022]As a promising technology, AI/ML based solutions have been widely used and has shown impressive performance in various areas, e.g., computer vision, speech recognition, natural language processing (NLP), language translation and so on. 
Motivated by the great success of AI/ML in the afore-mentioned areas, 3GPP also started study on AL/ML for wireless communications in SA2 and RAN3. On the basis of the existing study in 3GPP, RAN#94e meeting decided to start a new study item (SI) on AI/ML for NR air interface in Rel-18 [1]. According to the new SID, this study will focus on three typical use cases of physical layer in the first step: 
	Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels


In RAN1#109e meetings, lots of agreements for the typical scenarios and evaluation assumptions were achieved for the AI/ML based positioning, some of which are as below [3]:
	Agreement
The IIoT indoor factory (InF) scenario is a prioritized scenario for evaluation of AI/ML based positioning. 

Agreement
For InF-DH channel, the prioritized clutter parameters {density, height, size} are:
· {60%, 6m, 2m};
· {40%, 2m, 2m}. 
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.
Agreement
For evaluation of AI/ML based positioning, reuse the common scenario parameters defined in Table 6-1 of TR 38.857.
Agreement
For AI/ML-based positioning evaluation, the baseline performance to compare against is that of existing Rel-16/Rel-17 positioning methods.
· As a starting point, each participating company report the specific existing positioning method (e.g., DL-TDOA, Multi-RTT) used as comparison.
Agreement
Synthetic dataset generated according to the statistical channel models in TR38.901 is used for model training, validation, and testing.

Agreement
The entry “UE horizontal drop procedure” in the simulation parameter table for InF is updated to the following.
	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.



Agreement
The entries “UE antenna height” and “gNB antenna height” in the simulation parameter table for InF is updated to the following.
	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2= for scenario 2 (InF-DH) 

	…
	…

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,), 8}.



Agreement
If spatial consistency is enabled for the evaluation, companies model at least one of: large scale parameters, small scale parameters and absolute time of arrival, where
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901
Agreement
If spatial consistency is enabled for the evaluation of AI/ML based positioning, the baseline evaluation does not incorporate spatially consistent UT/BS mobility modelling (Section 7.6.3.2 of TR 38.901).
· It is optional to implement spatially consistent UT/BS mobility modelling (Section 7.6.3.2 of TR 38.901).
Agreement
Companies are encouraged to provide evaluation results for:
· Direct AI/ML positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· AI/ML assisted positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· details of the output of the AI/ML model inference, how the AI/ML model output is used to obtain the UE’s location
Agreement
For evaluation of AI/ML based positioning, the computational complexity can be reported via the metric of floating point operations (FLOPs).
· Note: For AI/ML assisted methods, computational complexity for the AI/ML model is only one component of the overall complexity for estimating the UE’s location.
· Note: Other metrics to measure the computational complexity are not precluded.
Agreement
For evaluation of AI/ML based positioning, details of the training dataset generation are to be reported by proponent company. The report may include (in addition to other selected settings, if applicable):
· The size of training dataset, for example, the total number of UEs in the evaluation area for generating training dataset;
· The distribution of UE location for generating the training dataset may be one of the following:
· Option 1: grid distribution, i.e., one training data is collected at the center of one small square grid, where, for example, the width of the square grid can be 0.25/0.5/1.0 m.
· Option 2: uniform distribution, i.e., the UE location is randomly and uniformly distributed in the evaluation area.


In this contribution, we will continue to discuss the evaluation of AI-based positioning accuracy enhancement, including the setting for generalization and assumption and so on. Moreover, we will present our evaluation results for some AI/ML-based schemes. 
Discussion
AI-based schemes
During the evolution of R16 NR, 3GPP developed multiple RAT-based positioning methods to provide high accuracy positioning for NR cellular system:
· DL-TDOA positioning
· UL-TDOA positioning
· DL-AoD positioning
· UL-AoA positioning
· Multi-RTT positioning
Theoretically, AI/ML can be introduced to work along with each of the above positioning schemes. In our initial evaluation, we focus on the combination / integration of DL-TDOA positioning and AI/ML. The same approach and evaluation methodologies can be directly extended to other NR positioning methods.
For the existing NR mechanism of DL-TDOA positioning method, UE will measure DL RSTD or estimate the location based on the reception of DL PRS.  Then, UE will report the DL RSTD measurements, optionally along with DL PRS RSRP, or the estimated location to LMF. For UE-assisted DL-TDOA positioning method, LMF will further calculate the location of the target UE based on the reported measurement results, by using traditional algorithm (e.g., CHAN algorithm). We refer to the traditional NR DL-TDOA as “DL-TDOA”.
In order to evaluate the potential advantages of AI/ML over traditional positioning algorithm, we consider the following AI/ML-based schemes, which are based on the assumptions of different types of measurement results and will have different impacts on the system design and specifications.
The first AI-based scheme is based on LMF’s implementation:
· UE measures and reports the DL RSTD results via the existing mechanism. 
· Then, LMF uses a Neural Network (NN) to estimate the location. 
For this scheme, the whole air interface is the same as R16/17 positioning mechanism and it is totally up to LMF implementation.  In other words, the AI/ML operations are transparent to UE. Accordingly, the advantages of this scheme are no impact on specification and easier for the deployment of AI/ML. We refer to this scheme as “AI + DL-TDOA” in subsequent discussions.
In order to further improve the performance, we can consider other types of measurement results to exploit more information from the reception of PRS. One way is to use TOA rather than TDOA. In our initial evaluation, we assume the TRPs and UEs are perfectly synchronized. In this ideal assumption, UE can estimate the TOA directly based on DL PRS. LMF uses a NN to estimate the location. We refer to this scheme as “AI + TOA”. 
No matter TOA or TDOA, only partial information can be attracted from the reception of DL PRS. That is to say, some information, more or less, can not be exploited at LMF side. Thus, another way is to measure and report the channel information to LMF. In our evaluation, UE estimates the channel impulse response (CIR) and reports its normalized versions without quantization to LMF. LMF uses a NN to estimate the location. We refer to this method as “AI + Normalized CIR”. For this scheme, a new type of measurements and reporting format are needed.
Since the reported CIR is normalized, information regarding the received power of DL PRS is missing. UE can also report this information via DL PRS RSRP. We refer to it as “AI + Normalized CIR + RSRP”.  Similarly, RSRP measurements can also be used for other AI-based schemes.
In summary, the following schemes are used in our initial evaluation:
· DL-TDOA: CHAN algorithm is used to estimate the location based on measurement results of DL RSTD
· AI + DL-TDOA: A trained NN is used to estimate the location based on measurement results of DL RSTD
· AI + DL-TDOA + RSRP: A trained NN is used to estimate the location based on measurement results of DL RSTD and associated RSRP
· AI + TOA: A trained NN is used to estimate the location based on measurement results of TOA
· AI + TOA + RSRP: A trained NN is used to estimate the location based on measurement results of TOA and associated RSRP
· AI + Normalized CIR: A trained NN is used to estimate the location based on measurement results of normalized CIR
· AI + Normalized CIR + RSRP: A trained NN is used to estimate the location based on measurement results of normalized CIR and associated RSRP
According to our initial evaluation [4], the schemes “AI + Normalized CIR + RSRP” and “AI + DL-TDOA + RSRP” achieve the similar performance and outperform other AI schemes. 
Based on categories agreed in the last meeting, there will be two different categories of AI-based schemes as below:
· Direct AI/ML positioning
· [image: ]AI/ML assisted positioning 
Fig.1: Illustration of different categories of AI-based schemes.
In our following discussion, direct AL/ML positioning refers to the above-mentioned scheme “AI + Normalized CIR + RSRP”. For the AI/ML assisted positioning, 
· CIR information of all TRPs are used for the input of AI/ML mode 
· The outputs of AI/ML model are the estimated TOAs corresponding to all TRPs. 
· For the AI model training, the TOAs calculated based on the distance between UE and TRPs are used as the labels.
Then, a traditional algorithm (i.e., CHAN algorithm) is used to estimate UE the location. Since additional information of RSRP have marginal impact on the performance, we only evaluate CIR information as the input for the AL/ML assisted positioning.
 
Scenarios setting
In our evaluation, different levels of spatial consistency were enabled to investigate their impacts on the performance of different AI schemes. In summary, two different settings of spatial consistency as below were used in our evaluation
· Setting 1 “w/ spatial consistency”: In this case, the following three models are enabled
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901 
· Setting 2 “w/o spatial consistency”: In this case, only the following two models are enabled
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901 
The difference between these two settings is whether the spatial consistency modeling of small scale parameters is enabled or not.
configuration for generalization evaluation 
Generalization is one of the key aspects to determine the applicability of an AI model. In order to do thorough investigations for the AI model generalization, we have the following suggestion.
 Proposal 1: For the evaluation of AI model generalization, at least the following configurations should be considered for the performance comparison:
· Data sets of the same scenario with different settings are used for training and testing, respectively
· Different drops of the same scenario with the same setting are used for training and testing, respectively
· Mixed data sets of the same scenario with different settings are used for training, and the data set with one setting is used for testing 
· Mixed data sets of different scenarios are used for training, and the data set with one scenario is used for testing 
· E.g., InF-DH + InF-SH, different numbers of TRPs or different positioning for TRPs, …
In this contribution, we will show the simulation results for the first two configurations.  
Generation of data sets 
In our evaluation, the data sets are generated by system-level simulator. The measurement samples are based on the reception of DL PRS within one slot. For each reception of DL PRS, UE will do the measurement corresponding to each scheme, e.g., DL-RSTD, CIR and RSRP. The label associated with each sample is the known location information of the target UE, or the TOA calculated from the distance between UE and TRPs. 
For the evaluation of each AI/ML-based scheme, 80,000 or 800,000 samples are generated with associated labels. There are three different alternatives in our evaluation to general samples for each scheme:
· Alt.1: We simulate 80,000 drops, and only 1 UE is randomly dropped per drop. Compared to the second alternative, the data of UEs have less correlation among each other. 
· 2% of the samples are randomly selected for testing and the remaining 98% samples are used for training. 
· Alt.2: We simulate 1 drop and 80,000 UEs are dropped in this drop. As the number of UEs in a drop increases, the UEs are closed to each other. Thus, the data for close UEs are with higher correlations. 
· 2% of the samples are randomly selected for testing and the remaining 98% samples are used for training. 
· Alt.3: We simulate 10 drops and 80,000 UEs are dropped in this drop. Alt.3 is a middle ground between Alt.1 and Alt.2. For Alt.3, the total number of samples are 800,000. 
· For each drop, 2% of the samples are randomly selected for testing and the remaining 98% samples are used for training. 
Alt.2 can be regarded as a snapshot of a fixed scenario, while Alt.1 is reflecting a set of many similar scenarios with the same scenario with the same TRP deployment. Thus, in some sense, Alt.2 can be used to show some upper bound of AI-based solutions, but the corresponding trained AI modes may suffer the generalization issue. Some other alternative(s) to generate the data sets are in the middle ground between Alt.1 and Alt.2, e.g., Alt.3.
NN models
For each sample of CIR, we use 256 time-domain complex values in our evaluation.  We use the three-dimensional matrix with the size of [M, 256, 2], which are generated from the CIRs corresponding to M TRPs, as the input of neural network.  Since the input size are relatively large, we can consider the input as an “image”. With this intuitive, we choose ResNet for our evaluation as ResNet is widely used for image classification tasks. 
[image: ]Fig.2 illustrates the basic structure of our AI model for direct AI/ML positioning. To be specific, based on ResNet backbone, the input is directly added to the output of a residual block (consisting of 9 Conv2D layers with 64 filters and 1 Conv2D layer with 2 filters, 3×3 kernels are used for these filters), then followed by 1 dense layer with 2 nodes to provide the NN output. The NN outputs are the estimated values of the location (x, y). 
Fig.2: Illustration of the ResNet model for direct AI/ML positioning
For the AI/ML assisted positioning, a similar ResNet model is used except the following two aspects:
· The module “Dense with 2 nodes” is replaced by a dense layer with 18 nodes, where the output of AI model are the estimated TOAs corresponding to the 18 TRPs.
· The input is only CIR information whereas CIR and RSRP information are used for the input of direct AI/ML positioning.
Initial evaluation results
Based on the above-mentioned data sets and AI models, we present some initial evaluation results in this section to show the positioning accuracy of each AI-based or non-AI-based scheme. We use InF-DH scenario in the simulations, where {clutter density, height, size} is set to be {0.6,6m,2m} or {0.4, 2m, 2m}. In order to reduce the workload for the initial evaluation, we assume no timing error. 
Direct AI/ML positioning
As a first step, we evaluate the performance of direct AI/ML positioning for InF-DH with the clutter setting {0.6, 6m, 2m} and with different assumptions:
· Whether spatial consistency of small scale parameters is enabled or not
· Different alternatives for data set construction
Fig. 3 illustrates the evaluation results of the positioning accuracy for the data set generated by {1 drop, 80,000 UEs per drop}, whereas Fig. 4 illustrates the performance for the data set generated by {10 drops, 80,000 UEs per drop}.  Table 1 also shows the positioning accuracy achieved for 90% UE with different assumptions. From Fig. 3, Fig. 4 and Table 1, we can get the following observation:
Observation 1: For InF-DH scenario with clutter setting {0.6, 6m, 2m}, if the data set is generated by modeling the spatial consistency of small scale parameters, some performance gain can be observed compared to the case where the spatial consistency of small scale parameters is not modeled.
· [image: ]The performance gain is quite limited
Fig. 3: CDF of positioning error for direct AI/ML positioning and data set based on {1 drop, 80,000 UEs per drop}
[image: ]
Fig. 4: CDF of positioning error for direct AI/ML positioning and data set based on {10 drop, 80,000 UEs per drop}

Table 1: Positioning accuracy achieved for direct AI/ML positioning
	Accuracy achieved @90% (m)
	w/ spatial consistency
	w/o spatial consistency

	1 drop,  80,000 UEs per drop
	0.33
	0.40

	10 drop,  80,000 UEs per drop
	0.52
	0.86

	80,000 drop,  1 UE per drop
	4.35
	4.35


By comparing the simulation results based on different data sets, we can notice that performance gap is quite large for different alternatives of data set construction.  
Observation 2: For InF-DH scenario with clutter setting {0.6, 6m, 2m}, no matter the data set is generated by modeling the spatial consistency of small scale parameters or not,  the performance gaps are quite large for different alternatives of data set construction.
· The number of drops has larger impact than the enabling/disabling of spatial consistency for small scale parameters on the AI/ML performance
· When the number of drops increased, the achieved accuracy become worse
Therefore, in order to keep the consistency among companies and ensure the results from different sources are comparable, we have the following proposal:
Proposal 2: For the evaluation of AI/ML-based positioning accuracy improvement, the data sets from companies should be generated with the same values of the following parameters to keep the results from different sources be comparable:
· X drops
· Y UEs per drop
· FFS: values of X, Y
[image: ]In order to investigate the AI model generalization, we consider the same scenario (i.e., InF-DH) with different clutter settings, i.e., {60%, 6m, 2m} and {40%, 2m, 2m}. Fig. 5 and Fig. 6 illustrate the evaluation results for the cases with and without spatial consistency of small scale parameters, respectively. Table 2 shows the positioning accuracy achieved at @ 90%.
Fig. 5: Generalization performance for direct AI/ML positioning w/ spatial consistency of small scale parameters
[image: ]Fig. 6: Generalization performance for direct AI/ML positioning w/o spatial consistency of small scale parameters

Table 2: Generalization performance for direct AI/ML positioning 
(different clutter settings for training and testing)
	Accuracy
achieved @90% (m)
	w/ spatial consistency
	w/o spatial consistency

	Training: {60%, 6, 2}
Inference: {60%, 6, 2}
	0.33
	0.4

	Training: {60%, 6, 2}
Inference: {40%, 2, 2}
	13.2
	6.8

	Training: {40%, 2, 2}
Inference: {60%, 6, 2}
	8.47
	7.2

	DL-TDOA: {60%, 6, 2}
	
	12.3


Based on the results showed in Fig. 5, Fig. 6 and Table 2, we have the following observation.
Observation 3: For the InF-DH scenario, if different clutter settings are used for AI model training and testing, there will be large performance degradation. 
· Compared to the case w/ spatial consistency of small scale parameters, there will be smaller performance loss in the case w/o spatial consistency of small scale parameters.   
Fig. 7 and Table 3 show the performance of direct AI/ML positioning when different drops of InF-DH scenario with the same clutter setting {60%, 6m, 2m}:
· Blue curve: training and testing data from the same drops
· 98% of the sampels from 10 drops are used for training
· The remainig samples from the same drops are used for testing
· Red curve: training and testing data from different drops
· All samples from 5 drops are used for training
· [image: ]All samples from another 5 drops are used for testing
Fig. 7: Generalization performance for direct AI/ML positioning w/ spatial consistency of small scale parameters

Table 3: Generalization performance for direct AI/ML positioning 
(different drops for InF-DH with the same clutter setting)
	Accuracy
achieved @90% (m)
	w/ spatial consistency

	training and testing data from the same drops
	0.52

	Case 2: training and testing data from different drops
	6.55


Based on the results showed in Fig. 7 and Table 3, we have the following observation.
Observation 4: For the InF-DH scenario with the same setting, there will be large performance degradation if the training data set and testing data set are from different drops. 
AI/ML assisted positioning
[image: ]We also carried out evaluations for AI/ML assisted positioning by using the similar assumptions and settings. Fig. 8 and Table 4 illustrate the evaluation results of the positioning accuracy for InF-DH with clutter setting {60%, 6m, 2m}. 
Fig. 8: CDF of positioning error for AI/ML assisted positioning 

Table 4: Positioning accuracy achieved for AI/ML assisted positioning
	
	Accuracy  achieved @90% (m)

	1 drop, 80000 UEs per drop, 
w/ spatial consistency
	0.52

	1 drop, 80000 UEs per drop, 
w/o spatial consistency
	0.72

	10 drops, 80000 UEs per drop, 
w/ spatial consistency
	1.03

	80000 drops, 1 UEs per drop, 
w/ spatial consistency
	5.78


[image: ]In order to investigate the AI model generalization, we consider the same scenario (i.e., InF-DH) with different clutter settings, i.e., {60%, 6m, 2m} and {40%, 2m, 2m}. Fig. 9 and Fig. 10 illustrate the evaluation results for the cases with and without spatial consistency of small scale parameters, respectively. Table 5 shows the Positioning accuracy achieved at @ 90%.
 [image: ]Fig. 9: Generalization performance for AI/ML assisted positioning w/ spatial consistency of small scale parameters
Fig. 10: Generalization performance for AI/ML assisted positioning w/o spatial consistency of small scale parameters

Table 5: Generalization performance for AI/ML assisted positioning 
(different clutter settings for training and testing)
	Accuracy
achieved @90% (m)
	w/ spatial consistency
	w/o spatial consistency

	Training: {60%, 6, 2}
Inference: {60%, 6, 2}
	0.52
	0.72

	Training: {60%, 6, 2}
Inference: {40%, 2, 2}
	15.7
	6.65

	Training: {40%, 2, 2}
Inference: {60%, 6, 2}
	7.94
	7.88

	DL-TDOA: {60%, 6, 2}
	
	12.3


Fig. 11 and Table 6 show the performance of AI/ML assisted positioning when different drops of the InF-DH scenario with the same clutter setting {60%, 6m, 2m}:
· Blue curve: training and testing data from the same drops
· 98% of the samples from 10 drops are used for training
· The remainig samples from the same drops are used for testing
· Red curve: training and testing data from different drops
· All the samples from 5 drops are used for training
· [image: ]All the samples from another 5 drops are used for testing
Fig. 11: Generalization performance for AI/ML assisted positioning w/ spatial consistency of small scale parameters

Table 6: Generalization performance for AI/ML assisted positioning
(different drops for the same clutter setting)
	Accuracy
achieved @90% (m)
	w/ spatial consistency

	training and testing data from the same drops
	1.03

	training and testing data from different drops
	7.4


Based on the above illustrated results, we can see that the observations for direct AI/ML positioning  are also applicable to AI/ML assisted positioning. In summary, we can have the following observations for AI/ML assisted positioning:
· When spatial consistency of small scale parameters is enabled, some performance gain can be observed, but the gain is quite limited.
· The number of drops has larger impact on the AI/ML performance than the spatial consistency of small scale parameters.
· Large performance degradation is observed if different clutter settings of InF-DH or different drops are used for training and testing data sets

Comparison of direct AI/ML positioning and AI/ML assisted positioning
In order to compare the performance of different AI/ML schemes, Table 7, Table 8 and Table 9 summarized the positioning accuracy achieved at 90% for both direct AI/ML positioning and AI/ML assisted positioning with the same data sets.

Table 7: Comparison of direct AI/ML positioning and AI/ML assisted positioning with clutter setting {60%,6,2}
	Accuracy achieved @90% (m)
	Direct
	Assisted

	1 drop, 80,000 UEs per drop, w/ spatial consistency
	0.33
	0.52

	1 drop, 80,000 UEs per drop, w/o spatial consistency
	0.4
	0.72

	10 drops, 80,000 UEs per drop, w/ spatial consistency
	0.52
	1.03

	80,000 drops, 1 UEs per drop, w/ spatial consistency
	4.35
	5.78



Table 8: Generalization performance: different clutter settings
	Accuracy achieved @90% (m)
	w/ spatial consistency
	w/o spatial consistency

	
	Direct
	Assisted
	Direct
	Assisted

	Training: {60%, 6, 2}
Inference: {60%, 6, 2}
	0.33
	0.52
	0.4
	0.72

	Training: {60%, 6, 2}
Inference: {40%, 2, 2}
	13.2
	15.7
	6.8
	6.65

	Training: {40%, 2, 2}
Inference: {60%, 6, 2}
	8.47
	7.94
	7.2
	7.88

	Note: 1 drop, 80,000 UEs per drop



Table 9: Generalization performance: different clutter settings
	Accuracy
achieved @90% (m)
	Direct
	Assisted

	training and testing data from the same drops
	0.52
	1.03

	training and testing data from different drops
	6.55
	7.4

	Note: 1 drop, 80,000 UEs per drop, and the spatial consistency of small scale parameters are is enabled


Based on the illustrated results in the above-mentioned three tables, we can see that direct AI/ML positioning achieves better performance for almost all cases except the highlighted cases in Table 8.
Observation 5: Direct AI/ML positioning has better performance than AI/ML assisted positioning almost in all cases. 
Complexity of AI models
 In our initial assessment on the complexity of different AI models, FLOP and the number of trainable parameters are used as the basic metrics. The corresponding complexity of the AI modes used in our evaluations are summarized in Table 10.
Table 10: Complexity of AI modes 
	
	Direct
	Assisted

	MFLOPs
	~ 5.32
	~ 2.96

	No. of trainable parameters
	~ 2.66M
	~ 1.48M


Both CIR and RSRP information are used as the input for direct AI/ML positioning, whereas only CSI information is used as the input for the AI/ML positioning. Thus, the AI model for direct AI/ML positioning has a larger number of trainable parameters and needs more FLOPS. 
3. Conclusions
In this contribution, we discussed AI based positioning accuracy enhancement from the different aspects including AI-based schemes, generation of data sets, AI modes used in evaluation. We also present our initial evaluations on the positioning accuracy of AI-based methods and complexity of different AI approaches as well. Based on the discussion and evaluation results, we have the following observations and proposals. 
Observation 1: For InF-DH scenario with clutter setting {0.6, 6m, 2m}, if the data set is generated by modeling the spatial consistency of small scale parameters, some performance gain can be observed compared to the case where the spatial consistency of small scale parameters is not modeled.
· The performance gain is quite limited
Observation 2: For InF-DH scenario with clutter setting {0.6, 6m, 2m}, no matter the data set is generated by modeling the spatial consistency of small scale parameters or not,  the performance gaps are quite large for different alternatives of data set construction.
· The number of drops has larger impact than the enabling/disabling of spatial consistency for small scale parameters on the AI/ML performance
· When the number of drops increased, the achieved accuracy become worse
Observation 3: For the InF-DH scenario, if different clutter settings are used for AI model training and testing, there will be large performance degradation. 
· Compared to the case w/ spatial consistency of small scale parameters, there will be smaller performance loss in the case w/o spatial consistency of small scale parameters.   
Observation 4: For the InF-DH scenario with the same setting, there will be large performance degradation if the training data set and testing data set are from different drops. 
Observation 5: Direct AI/ML positioning has better performance than AI/ML assisted positioning almost in all cases. 

Proposal 1: For the evaluation of AI model generalization, at least the following configurations should be considered for the performance comparison:
· Data sets of the same scenario with different settings are used for training and testing, respectively
· Different drops of the same scenario with the same setting are used for training and testing, respectively
· Mixed data sets of the same scenario with different settings are used for training, and the data set with one setting is used for testing 
· Mixed data sets of different scenarios are used for training, and the data set with one scenario is used for testing 
· E.g., InF-DH + InF-SH, different numbers of TRPs or different positioning for TRPs, …
Proposal 2: For the evaluation of AI/ML-based positioning accuracy improvement, the data sets from companies should be generated with the same values of the following parameters to keep the results from different sources be comparable:
· X drops
· Y UEs per drop
· FFS: values of X, Y
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