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1. [bookmark: _Ref4683067] Introduction 
The objective for this agenda item, stated in [1], is given by
Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
In this contribution, we discuss evaluation on AI/ML for CSI feedback enhancement focusing on MIMO CSI feedback compression and CSI prediction in time.

2. CSI feedback compression for overhead reduction
2.1. AI/ML-based MIMO CSI compression
In wireless systems, transmitters and receivers (transceivers) rely on Channel State Information (CSI) to compute their transmit precoding and receive combining matrices, among other important parameters. CSI knowledge is indispensable. Without CSI, wireless links would suffer from low signal quality and possibly high interference from other links. To estimate CSI, the transmitter sends a predefined signal to the receiver. The latter can then apply various algorithms to estimate CSI. At this stage, CSI is known to the receiver only. The transmitter relies on feedback from the receiver for acquiring CSI knowledge. Raw CSI feedback, however, may require large overhead which would degrade the overall system performance and cause large delay. This is typically avoided. Alternatively, from CSI, the receiver extracts necessary information for the transmitter operations like the precoding weights, Rank Indicator (RI), Channel Quality indicator (CQI), and modulational and coding scheme (MCS), etc, and only feeds back those smaller pieces of information. To help reduce the overhead further, the best precoder is chosen from a predefined quantized codebook, and only the Precoder Matrix Indicator (PMI) from such codebook is fed back to the transmitter.
Compared to previous generations, one of the main technologies which facilitates improved performance and new use cases in 5G is the use of massive MIMO. Use of massive MIMO enables improved beamforming, which leads to increased energy efficiency, reduced interference, and improved coverage. CSI makes it possible to adapt transmissions to current channel conditions, which is crucial for achieving reliable communication with high data rates in MIMO systems. True benefit of MIMO systems can only be realized in presence of accurate and timely CSI, particularly in scenarios where channel reciprocity doesn’t hold.
In order to realize massive MIMO gain in 5G, major CSI enhancements has been introduced as in Figure 1, including 
· Support for higher number of ports, substantial flexibility for reference resources (CSI-RS and CSI-IM) 
· Time/frequency location
· New CDM type
· Increased number of patterns 
· New channel state feedback (CSF) reporting modes
· Subband/wideband reporting
· Periodic/semi-persistent and aperiodic reporting
· Various combination of report quantity
· Enhanced codebook for precoder selection 
· Type I family codebook
· Type II family codebook, enhanced resolution
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[bookmark: _Ref4682445][bookmark: _Ref100585114]		Figure 1: Existing codebooks in 3GPP NR 

AI/ML has been successfully applied in a wide range of areas including computer vision and natural language processing with substantial performance improvement. AI/ML-based techniques are data-driven and have the potential to realize the complex relationship in data to deliver accurate decision in various scenarios. Due to the success of AI/ML, in various fields it has attracted significant attention from both industry and academia to solve complex communication problems [2], [3]. Specifically, significant effort has been dedicated in applying AI/ML to CSI compression and CSI estimation for Massive MIMO applications. Our motivation for incorporating AI/ML into current CSI framework from the UE side is twofold:
· Improved performance when handling system non-linearities
· In 5G, UE is provided with the following reference signals to compute CSI feedback 
· In order to have optimal CSI feedback parameters UE also take into account environment/configuration/UE characteristic information
· Hence, UE needs to incorporate non-linear multi-dimension model in order to compute optimal/accurate CSI feedback
· AI/ML have the capability to deal with non-linearity in the system which is usually difficult to mathematically formulate and analytically solve
· Complexity reduction
· Increased complexity with 5G evolution
· Demand for higher number of RX at the UE side (#RX>4, Bigger form factor, i.e., foldable phones)
· Increased number of codebooks
· Increased CSI/CSI-RS flexibility
· Conventional CSI computation consume significant computational resources and power in order to handle the new requirements/flexibility introduced to CSI framework
· AI/ML may be more efficient design to handle such diverse configurations

Reliance on quantized information derived from CSI, e.g., selecting PMI from a quantized precoder codebook, limits the system performance. Instead, compressed raw CSI feedback allows transmitters to optimize their transmission parameters and improve the link quality, all while maintaining small feedback overhead. Downlink CSI feedback overhead is significantly increased due to the large number of antennas at base station in massive MIMO system. CSI compression helps to reduce the CSI feedback overhead. AI/ML-based MIMO CSI compression was proposed first in [4]. As in Figure 1, AI/ML-based encoder network can compress original CSI into a vector at UE and this compressed vector is reported to base station. AI/ML-based decoder network can decompress the reported vector in order to reconstruct CSI at based station. Compared with the existing compressive sensing-based CSI compression, deep learning-based solution can provide better reconstruction performance (in terms of mean squared error or cosine similarity) at base station [4].
Proposal 1: Study potential specification impact, performance, and complexity for AI/ML-based MIMO CSI compression which can provide improved performance with lower complexity when handling system non-linearities.
[image: ]
		Figure 2: AI/ML-based MIMO CSI compression 

2.2. Evaluation on AI/ML-based MIMO CSI compression
We have evaluated the performance of AI.ML-based MIMO CSI compression in terms of cosine similarity ( which was also used in [4]. The definition of cosine similarity is defined as follows.

where  is the channel vector at ith subcarrier or ith subband and N is the number of subcarriers or subbands. The cosine similarity is usually used to measure how two channel vectors are similar. We also included the performance of eType II codebook in terms of cosine similarity. Detailed simulation assumptions are provided in Section 6. For eType II codebook, we used paramCombination-r16 = 1 to 8 for codebook parameter configuration in TS 38.214. As shown in Figure 3, AI/ML-based MIMO CSI compression shows about 8 to 10% better performance over eType II codebook depending on the payload size.
Observation 1: AI/ML-based MIMO CSI compression shows about 8 to 10% better performance over eType II codebook in terms of cosine similarity.
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[bookmark: _Ref101781414]		Figure 3: Cosine similarity for AI and Rel-16 eType II codebook 

In addition, we can further consider link-level/system-level simulation to check the performance of AI/ML-based MIMO CSI compression in terms of BLER and spectral efficiency. 
Proposal 2: Study evaluation methodology for link-level/system-level simulation to verify the performance benefit of AI/ML-based MIMO CSI compression.
Regarding training and test for neural networks, we may need to use the same data set (channel samples) to evaluate the performance. 
Proposal 3: Construct the shared data set for channel samples to evaluate the performance of AI/ML-based MIMO CSI compression.
Another issue for MIMO CSI compression is that we can consider full CSI matrix as an input of AI/ML-based MIMO CSI compression. We can only use a precoder matrix as an input. Therefore, we need to determine which can be used as an input of AI/ML-based MIMO CSI compression.
Proposal 4: Discuss which type of channel matrix is used as an input of AI/ML-based MIMO CSI compression.

3. CSI prediction in time
As discussed in previous sections, CSI is a crucial piece of information that is needed to attain high link quality. For instance, CSI aids numerous processes including channel equalization, precoding for MIMO channels, beamforming, user scheduling, interference alignment, and transmit antenna selection, among others. CSI aging (or stale CSI), however, is a serious problem that adversely affects wireless systems. This is especially significant in Frequency Division Duplex (FDD) systems, where channel reciprocity is not typically assumed. Thus, FDD transmitters rely on feedback from receivers to acquire CSI. Such feedback causes further delay that adds to the overall CSI aging problem.
To overcome CSI aging, prediction can be performed on raw CSI to allow more timely decisions based on future channel conditions. This is quite a difficult problem since each CSI instance is a complex-valued matrix with dimensions , where  and  are the numbers of RX and TX antennas, respectively, and  is the number of elements in the frequency dimension, which could be on a subcarriers level or Resource Blocks (RB) level. In other words, the number of parameters to be predicted to construct future CSI is quite large. However, the potential gains accrued from CSI prediction warrants further investigation.
Proposal 5: Study CSI prediction under Release 18 AI/ML-based CSI enhancement.
In the discussion below, we show our initial results for Machine Learning based CSI prediction and compare its performance to a non-AI based technique.
CSI prediction can be performed given a recent history of CSI samples, which form a sequence. The following figure shows an example of CSI availability (in yellow) in a time slotted grid. The problem can be stated as follows:
The Problem: Given a sequence of CSI values, Predict future CSI.
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As depicted in the figure above, CSI may not be available at every time slot. By ignoring the slots without CSI, we obtain the following figure, where  is the length of the input CSI sequence, and  is the length of the predicted CSI sequence. 
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CSI Samples:
We treat each CSI instance as a 2-dimensional (2D) image, where:
1. The first axis is the frequency (or delay tap) dimension, and
2. The Second axis is the antenna (beam) dimension
Figure 4 shows an example of a CSI instance in the Beam–delay tap dimension.
[image: ] 
Figure 4. CSI sample as 2D image
A sequence of CSI instances forms the input to our AI/ML-based model and is depicted in Figure 5 below. In other words, we treat the CSI sequence as frames in a video, and the prediction problem becomes a frame prediction problem.
[image: ]
Figure 5. CSI input sequence

To assess the performance of AI based prediction we compare it against a non-AI based prediction method. The simulation parameters are shown in Table 2 in Appendix 6.2. The results are shown in Figure 6, which depicts the Normalized Mean Squared Error (NMSE) of the predicted samples vs. the prediction length (). Our initial results show that in the very near future, the non-AI solution performs better than our AI based solution. However, as the prediction length increases (i.e., as we predict samples further into the future) the AI based model becomes superior. These initial results show that AI based CSI prediction may be superior to classical prediction solutions.
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Figure 6. NMSE for CSI prediction of an AI/ML model vs Non-AI based method.
(prediction length in units of ms).

Observation 2: Depending on the requirements on CSI prediction, for example the required prediction length, AI/ML-based solutions may show superior performance compared to classical non-AI based methods.
For fair and proper assessment of AI-based CSI prediction, comparison with a benchmark classical solution is needed. Classical non-AI based prediction methods are numerous. This includes a potential 3GPP solution following the RAN#94e work item (WI) “NR MIMO evolution for downlink and uplink” for Release-18 [5], which includes the following objective:
“Study, and if justified, specify CSI reporting enhancement for high/medium UE velocities by exploiting time-domain correlation/Doppler-domain information to assist DL precoding, targeting FR1”.
Assuming that one of the objectives of CSI prediction is for transmit precoding, this 3GPP WI objective provides a clear, concise, and relevant benchmark for AI/ML-based CSI prediction assessment.
Proposal 6: AI/ML-based CSI prediction for transmit precoding enhancement should use the outcome of the CSI enhancement objectives in 3GPP WI [5] as a classical benchmark solution for performance evaluation.
In addition to transmit precoding, CSI is also needed for demodulation. This is another potential application for CSI prediction where potentially superior AI/ML-based solutions can enable the reduction of DMRS overhead.
Proposal 7: Study AI/ML-based CSI prediction enhancement for DMRS overhead reduction, without sacrificing performance.
Proposal 8: AI/ML-based CSI prediction should focus on outdoor scenarios of medium and/or high UE velocities.
4. Conclusion
In summary, based on the above discussion we have the following observations and proposals:
Observation 1: AI/ML-based MIMO CSI compression shows about 8 to 10% better performance over eType II codebook in terms of cosine similarity.
Observation 2: Depending on the requirements on CSI prediction, for example the required prediction length, AI/ML-based solutions may show superior performance compared to classical non-AI based methods.
Proposal 1: Study potential specification impact, performance, and complexity for AI/ML-based MIMO CSI compression which can provide improved performance with lower complexity when handling system non-linearities.
Proposal 2: Study evaluation methodology for link-level/system-level simulation to verify the performance benefit of AI/ML-based MIMO CSI compression.
Proposal 3: Construct the shared data set for channel samples to evaluate the performance of AI/ML-based MIMO CSI compression.
Proposal 4: Discuss which type of channel matrix is used as an input of AI/ML-based MIMO CSI compression.

Proposal 5: Study CSI prediction under Release 18 AI/ML-based CSI enhancement.
Proposal 6: AI/ML-based CSI prediction for transmit precoding enhancement should use the outcome of the CSI enhancement objectives in 3GPP WI [5] as a classical benchmark solution for performance evaluation.
Proposal 7: Study AI/ML-based CSI prediction enhancement for DMRS overhead reduction, without sacrificing performance.
Proposal 8: AI/ML-based CSI prediction should focus on outdoor scenarios of medium and/or high UE velocities.
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6. [bookmark: _Ref101361592]Appendix
6. Simulation assumptions for CSI compression
[bookmark: _Ref40286490]Table 1: Simulation assumptions for AI and eType-II codebook
	Parameter
	Value


	Carrier Frequency
	3.5 GHz

	Bandwidth
	10 MHz

	Subcarrier spacing
	15 kHz

	Channel model
	TR 38.901 UMa

	Antenna configuration
	32 Tx, 2 Rx (Cross polarized)

	Number of RBs
	52 PRBs (subband size = 4 PRBs)

	Codebook parameter configuration
	paramCombination-r16 = 1 to 8



6. Simulation assumptions for CSI prediction
	Table 2: CSI Prediction Simulation Parameters

	[bookmark: _Hlk102038587]Parameter
	Value

	Channel model
	TR 38.901 UMa

	Antenna setup and port layouts at gNB
	16 TX ports: N1=8, N2=2 #Polarizations = 1
(dH, dV) = (0.5, 0.8)λ


	Antenna setup and port layouts at UE
	1 RX antenna

	Slot Duration
	0.5 ms

	UE distribution
	100% outdoor (30km/h) 

	CSI Sampling Period
	1 ms

	Number of input CSI samples
	10

	Number of output CSI samples
	1  10
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