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1 Introduction
At RAN #94, a new study on artificial intelligence/machine learning for NR air interface has been approved [1] with the following goals briefly summarized as below.
· For the initial set of use cases CSI feedback enhancements, beam management, positioning accuracy improvements for different scenarios were considered
· For each of the above use cases, a representative set of sub use cases for characterization and baseline performance evaluation to be finalized by RAN#98.
· AI/ML model, terminology, and description to identify common and specific characteristics for framework investigations including
· Characterize the defining stages of AI/ML related algorithms and associated complexity
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases
· Characterize life cycle management of the AI/ML model
· Dataset(s) for training, validation, testing and inference
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· For the use cases under consideration:
· Evaluate performance benefits of AI/ML models for the agreed use cases
· Evaluation methodology for link and system level simulations
· KPIs and corresponding requirements
· Assess potential specification impact, specifically for the targeted use cases for a common framework
· PHY layer aspects
· Protocol aspects
· Interoperability and testing aspects
In this document, we discuss various aspects of the above-mentioned goals for the positioning accuracy improvement use case. 
2 Brief review of NR positioning
[bookmark: _Hlk101158397]2.1 Overview of positioning methods in Rel-15/16
NR Positioning supports multiple RAT dependent and RAT independent methods several of which have been inherited from the LTE specification. For example, from TS 37.355, we observe that positioning methods supported include OTDOA which is dependent on PRS signals transmitted by the eNB and other RAT independent methods such as A-GNSS, Enhanced Cell ID (ECID), Terrestrial Beacon System (TBS) Positioning, Sensor based positioning, WLAN-based and Bluetooth based positioning.
In addition, Rel-15 and Rel-16 support the following NR based positioning methods:
· NR-ECID 
· NR Downlink Time Difference of Arrival (DL-TDOA)
· NR Downlink Angle of Departure (DL-AoD)
· NR Multi-Round Trip Time (Multi-RTT)
· NR UL Time Difference of Arrival (UL-TDOA)
· NR Angle of Arrival (AoA)
Note that the UL positioning methods are at a high level transparent to the UE except for the support of UL-SRS transmission. Most of the specification impact is for assistance data to the TRPs and reporting from the TRPs to the LMF. 
2.2 Positioning enhancements in Rel-17
While Rel-17 does not add any new positioning methods, it adds several new features to the existing NR based positioning methods to significantly enhance positioning accuracy and latency including:
· On-demand PRS allowing both the UE and the LMF to request DL-PRS parameter changes
· Improved timing error mitigation with timing error groups: 
· UERx, UETx, gNBRx, gNBTx, UERxTx and gNBRxTx measurements
· Improved assistance data and enhanced reporting for various NR positioning methods
· Path RSRP (PRSRP) reporting
· Enhanced multipath + angle reports
· LOS/NLOS indication
· Batch reporting of measurements
· Latency reduction methods including 
· Single sample-based measurements
· Rx beam sweep for low latency FR2 measurements
· Fast activation & deactivation of measurement gaps (MG)
· LMF requested MGs
· Gapless measurement & positioning processing windows (PPW) 
· Preconfigured DL-PRS assistance data, MGs & PPWs, storage of UE positioning capabilities and scheduled location time
· Enabling RRC Inactive Positioning using DL-PRS, transmitting UL-SRS in Inactive mode, small data transmission (SDT) feature for UE measurement reporting in Inactive state
In addition, Rel-17 also supports some GNSS enhancements including integrity protection.
2.3 Positioning enhancements in Rel-18 
In Rel-18, 3gpp is expected to study and potentially specify solutions for
· NR Sidelink positioning
· NR Carrier Phase measurements-based positioning
· PRS/SRS bandwidth aggregation
· Integrity for RAT dependent positioning accuracies
· Positioning enhancements for low power high accuracy use case
· Positioning support for RedCap UEs
We note that several of these above-mentioned positioning methods and mechanisms can benefit from ML enhancements in the form of improved assistance data to the TRP and the UE for performing measurements & positioning estimates, enhanced measurement reporting from the TRP and the UE to the LMF for UE-assisted methods, improved on-demand RS configuration etc. 
In addition, we note that there is a significant scope to define native ML based methods such as RF Fingerprinting which can have high performance in strong NLOS conditions.
In the following sections, we dive into the details of various mechanisms by which ML can improve positioning accuracy.
3 Discussion on use cases and scope of enhancements
The primary goal for the positioning system is to provide an estimate of the current location of the user using the configured reference signals as input. 
In general, we can also consider the tracking/filtered estimation use case wherein the algorithm takes as input the current channel observation and some function of the past channel observations as input and provides a position estimate for each time instance (aka trajectory). Finally, we can also extrapolate this to the non-causal smoothing use case where the past, current and future channel observations are considered for predicting the positions in a UE trajectory. For the scope of the Rel-18 study, we propose to only focus on the one-shot positioning use case. 
Proposal 1: Study primarily the one-shot positioning use case in Rel-18. Additional enhancements for tracking and smoothing algorithms can be considered later. 
3.1 Inference modes
One way to categorize the sub use cases is as a function of the entity at which the inference is performed, and the information needed to perform the inference. We identify the following primary candidate use cases:
UE-based methods: UE performs the positioning estimate using only channel observations from the DL-PRS.
UE-assisted methods: Network derives the final positioning estimate using measurement reports from the UE measuring the DL-PRS. For methods which use both DL-PRS and UL-SRS, the network derives the positioning estimate using the UE reported measurements and some additional measurements reported by the TRPs measuring the UL-SRS. 
Network-based methods: Network derives the final positioning estimates using only channel observations derived from the UL-SRS. 
Network-assisted methods: This is a counterpart to the UE-assisted method wherein the network reports UL-SRS based channel measurements to the UE and the UE may fuse them with DL-channel from the DL-PRS to derive the final location estimate. 
This classification is already along the lines of the positioning methods already defined in the Rel-16 & Rel-17 specification. For each inference mode defined above, there could be one or more potential training options. It is expected that the network and the UE may work together to first collect the training data and model training occurs offline in the Rel-18 study timeframe. 
For the positioning use case, we note that the data to be trained must be collected directly from the environment in many scenarios and hence we should focus on enabling the data collection in the initial part of the study. Further details of the training framework are discussed in our companion paper on the general AI/ML framework [2].
Proposal 2: Study UE-based, UE-assisted, Network-based, and Network-assisted positioning methods for performing AI/ML based inference. 
Proposal 3: For the positioning use case, the data is collected by the UE and/or the network and the training is performed offline. 


3.2 Scope of enhancements
ML can impact various functions in the positioning pipeline and related procedures. We identify some potential areas of enhancement at a broad level.
3.2.1 New ML based positioning methods 
Current positioning methods (see Section 2) are primarily geometry-based methods where the position is computed using intermediate parameters such as RSTD (based on LOS delays) and LOS angle. The observed channel is processed to derive these intermediate parameters and a geometric model is used to solve for the final position. 
New ML based methods are especially beneficial in:
· Heavy NLOS conditions where the LOS path may not exist for many TRPs
· Weak LOS conditions where we can easily mistake a noise spike for an LOS path
· Dense multipath scenarios where we cannot easily distinguish the LOS path from other paths
In all the above scenarios, the performance of the classical methods is expected to be degraded. We consider two new ML based positioning methods as examples for further study and to define the general framework:
RF Fingerprinting (RFFP): Learns a direct relationship from the channel observations to the UE position. See Section 4 for further details.
Likelihood fusion: Derives the distribution of the LOS delay + angle from the channel observations of a given TRP, transforms it into a likelihood function and computes the UE position by combining the likelihoods across all the TRPs. See Section 5 for further details.
Depending on the specific realization of these algorithms, we could also consider them as enhanced ML based reporting with either interpretable features or non-interpretable features.
3.2.2 Signaling and procedure to support model generation, inference, and life cycle management
The AI/ML model development, inference operation, and its life cycle management can be aided by the introducing following categories of signalings and procedures:
· Training data collection assistance
· Assistance information for training and inference
· Model activation, switching, and deactivation
· Performance monitoring and related signaling
We discuss further details of each type of signaling and assistance data in Section 6.
3.2.3 ML enhanced reporting
Given the rich set of methods already specified in Rel-16 and Rel-17, we identify two potential areas for ML enhanced reporting.
Improved measurement report computation: Existing parameters specified in the measurement report are computed using new ML based methods. 
New reporting parameters: We may define new parameters (depending on the study outcome) which enhance existing methods or may be relevant for new ML based methods. 
We discuss further details of ML enhanced reporting in Section 7.
Proposal 4: The overall scope of enhancements include:
· New ML based and ML enhanced positioning methods (ex. RFFP and Likelihood fusion)
· Assistance data and signaling for model generation, inference and life cycle management
· ML enhanced reports mapping to existing report parameters and new parameters (interpretable and non-interpretable features).

3.3 Ground truth availability
Supervised methods: ML positioning methods which require ground truth for each training example. It is expected that this ground truth comes from a non-NR system (ex. AGVs carrying lidar can map out the environment in a factory and report a highly accurate position estimate based on the lidar map).
Unsupervised and semi-supervised methods: ML methods which do not require the availability of precise ground truth for each training example. In semi-supervised methods, the ground truth is available in some locations while in other locations it is not available. For example, an AI/ML model can be trained using NR positioning output derived from classical algorithms which can be considered a noisy ground truth. Another example considers relative position-based training in which the difference in position between two locations, say as measured by a sensor, can be used to train the NN. For designing the ML framework in Rel-18, we propose to consider both supervised and unsupervised methods while we focus our evaluations on the supervised methods. 
Proposal 5: Study both supervised and unsupervised positioning methods for the purpose of defining the AI/ML framework in Rel-18. For evaluations and comparison with classical methods, focus on the supervised methods. 
4 RF Fingerprinting – ML based positioning method
4.1 High level overview of RFFP
RF Fingerprinting for positioning (RFFP) is a well-studied ML based positioning method in literature. The key idea in RFFP is to learn a parameterized function between the channel observations made by the UE and TRPs and the current position of the UE. The parameterization is through a NN and the parameters of the NN are trained using a data collection campaign and thus RFFP is an ML based positioning method. Written as an equation, the basic input to output mapping for RFFP methods can be expressed as

where  is the function which represents the architecture of the NN and is parameterized by the NN parameters (weights) . The input to the RFFP network is based on a deterministic function  of the channel observation . This function captures the common input pre-processing to be done for each channel observation input to the NN and is not specifically dependent on the data realizations used for training the NN model. The output of the RFFP NN, represented by , is the estimated/predicted position of the UE. In addition, RFFP NN can also be designed to additional quantities such as positioning uncertainty/covariance etc of the predicted positioning, one or more additional hypothesis of the position and their uncertainty etc. 
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Figure 1:  Illustration of RF Fingerprinting method
The key technical idea behind RFFP is that the entire channel observation is utilized for positioning. All the multipath information from all the channel observations is utilized implicity in learning the mapping from the input observations to the estimated UE location. One implication of such a method is that there is no assumption that the channel from the TRP to the UE has a LOS component. Thus, this method works in NLOS heavy channels as well. Such a method allows the UE position estimation to be estimated even from a single cell assuming a multipath rich environment. In practice, we would observe channel information from multiple cells and all this information could be used to learn the position. 
From literature, we note that RFFP using RSRP/RSSI of the observed PRS/SRS signals at the UE/TRP has been investigated for predicting position of the UE. In the recent years, channel observations (or channel state information (CSI)) have also been used extensively to learn the RFFP NN. We note that CSI based RFFP can achieve cm-level accuracy even in challenging conditions at the cost of more data input while RSRP based methods can achieve accuracy in the order of meters.
4.2 Potential ML architectures to realize RFFP
We discuss various RFFP architectures from the perspective of where positioning inference is performed and with respect to the signals/inputs used for performing the inference.
4.2.1 UE-based RFFP
The RFFP NN is trained and available at the UE for inference. The NN takes as input the channel observations derived from the DL-PRS to determine the UE position. The channel observations maybe from one TRP (single cell RFFP) or from multiple cells/TRP (multi-cell RFFP). Compactly, the UE inference can be represented as  = p, where  is the channel observed from the TRP. 
4.2.2 Network-based RFFP
This method is the counterpart of the UE based RFFP where the network utilizes the UL channel observations from the TRPs to derive the UE position. This procedure can be represented as:
 = p, or 
 = p, where . 
In this architecture, the network may directly use the channel observations, or a compressed set of features reported by each TRP to perform inference.
4.2.3 UE-assisted RFFP (X-node positioning)
For UE-assisted methods, the RFFP NN can be split in such a way that a part of the model can be executed at the UE and the rest of the model can be executed at the NN. One candidate architecture to enable such a method can be represented as:

												.
In this model, the UE computes some features  from the DL-PRS channel observations derived from a feature-extraction NN  and reports these features to the network. The network utilizes all the features reported from the UE, performs feature fusion, and infers the UE position. In such an architecture, the execution of the NN is split between the UE and the network at inference time. Note that the features computed by the UE  may use TRP specific or common processing for all the TRPs. 
Some examples of features reported by the UE:
1. Multipath delay + angle generated by classical methods à Interpretable features mapped to existing or enhanced reporting.
2. Latent features  generated by a per-TRP feature processor trained jointly with the fusion NN at the network à Non-interpretable features. 
3. Latent features  generated by a per-TRP feature processor trained independently of the fusion NN at the network (ex. Autoencoder) à Non-interpretable features.
We would like to note that there are many potential architecture and feature reporting options for realizing such RFFP methods and the specifics of each method are not that relevant for this discussion at this point of time. 
The key architecture takeaway is that there are methods which execute a part of the inference at the UE and the remaining part of the NN at the network and the defined framework should support such a split X-node architecture for inference. 
We also note that when UL-SRS is transmitted by the UE and the UL channel observations can also be incorporated into the inference. The features from the UL channels are reported from each TRP to the network. 

												, 

4.2.4 Network-assisted RFFP
This method is the counterpart to the UE-assisted RFFP where the network observes the UL channel at the TRPs and transmits the derived channel features to the UE. The UE executes the fusion NN and derives the final position using the network reported features. Like the UE-assisted method in Section 4.2.3, we note that there may exist multiple methods to derive the features which are reported to the UE by the network.
Proposal 6: Support RFFP based methods with various architecture flavours: UE-based, UE-assisted, Network-based and Network-assisted methods.
5 Likelihood fusion – ML enhanced positioning method
Section 3.2.1 outlined scenarios where the performance of classical positioning methods is expected to be degraded. Multipath and NLOS conditions can create ambiguity in determining the true LOS delay from the observed channel profile. 
Consider the UE-assisted DL-TDoA positioning method as an example. Current positioning methods require the UE to report an RSTD value for each TRP relative to the reference TRP. Enhancements have been introduced in Rel-17 to improve robustness of the positioning method to multipath and NLOS scenarios by allowing the UE to report RSTD for multiple paths and to send an LOS/NLOS indication. 
Machine learning techniques are expected to play a significant role in further improving the positioning accuracy by enhancing the measurement information that is reported, especially for multipath and NLOS scenarios. In this section, we outline one such approach. 
5.1 Combining soft information to improve accuracy in multipath scenarios
In many situations, combining soft information outperforms a hard-decision based approach. If a UE experiences a multipath channel, instead of deciding which of the paths is truly LOS, it would be beneficial if there was a way for the UE to report more than one hypothesis for the RSTD, together with a confidence metric indicating the level of certainty of each hypothesis. More generally, the UE could report a distribution of the measured quantity, e.g., RSTD. Then, the network can combine this soft information with similar information from other measurements made by the UE to derive a more accurate position estimate for the UE.
The figures below illustrate this idea using an example in the context of multi-cell RTT positioning method. 
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[bookmark: _Ref101946856]Figure 2: Impact of multipath on positioning accuracy
In Figure 1, there is an over-estimation of RTT with respect to TRP1 due to multipath. As a result, the reports received by the network are not consistent with each other and could result in an error in the position estimate. 
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[bookmark: _Ref101946064]Figure 3: Likelihood fusion to address multipath scenarios
In Figure 2, the same situation is considered, with the difference that it is possible for the network to determine a distribution of the measured quantity – RTT in this case. For instance, for TRP1, the report could inform the network that the RTT could have two possible values, together with the relative confidence associated with the values. The network could then perform soft combining of information across reports from all the measurement sources through likelihood fusion. Combining with the reports based on the other two TRPs allows the network to improve the positioning accuracy in this example.
5.2 Machine learning framework for a likelihood-fusion based approach
Machine learning techniques could play a role in the following aspects:
· Derive the distribution of the measured quantity based on the observed channel estimates
· Efficiently combine the likelihood information from multiple sources
The approach of reporting soft information in the form of a distribution of the measured quantity could be applied to any of the existing positioning measurement quantities. For example, the TRP may also apply ML techniques to derive and report a distribution of uplink measured quantities such as UL-TDoA or UL-AoA based on the observed uplink channel features. 
In each case, it would be useful to study the framework required to enable this approach. Specifically, we would need to consider aspects such as assistance data to train the ML models, enhancements to the reporting framework, and performance monitoring aspects.
Proposal 7: Study the specification impact needed to support machine learning based likelihood fusion techniques for positioning.

6 Specification aspects for model training and life cycle management
There are several categories of signaling support that can help the model generation, inference operation, and the life cycle of the ML models. See our companion paper [2] for a detailed discussion of these aspects. In this section, we discuss this from the perspective of the positioning use case. 
6.1 Training data assistance
Enabling data collection: It is highly desirable that data be collected on a large scale from commercially deployed UEs across diverse network deployments, devices, and environments. Such a large-scale data collection is essential for commercial grade ML model development and to ensure performance, scalability across scenarios and robustness to changing conditions.
The network may aid data collection at the UEs to train and refine ML models. For positioning, we may need to develop site specific or sub-area specific ML models and may decide on a different number of models depending on the collected data characteristics. The DL-PRS channel observations can be collected at the UEs and sent to an over-the-top (OTT) server for offline ML model development and training. 
For data collection, that involves both DL and UL observations (ex. DL channel using PRS and UL channel using SRS for RTT), the UE and the network would have to coordinate to collect the needed to train the needed ML models. 
Proposal 8: Study the procedures needed for the network to enable training data collection at the UE and the TRPs 
Configuration meta-data: As discussed in our general framework paper (Section 7.1 of [2]), the model development process may involve a decision on whether ML model or family of models should be developed. For positioning, it would be beneficial and somewhat necessary to have several ML models one for each deployment. A model developer may also want to develop one model across different DL-PRS configurations or have several models one of each PRS configuration. 
As an example, consider that the network may use several resource configurations for DL-PRS. This could include a combination of TXRU mapping, digital/analog precoding etc. In this scenario, a given PRS configuration would present a different channel distribution or SNR configuration observed at the UE. It may thus be beneficial for the UE to know the underlying beam configuration. Suppose the network uses N TRP configurations and that this configuration ID would be signaled to the UE as a meta information. This would allow the model developer to categorize the collected PRS into N different datasets and helps the developer make decisions about how many models need to be learnt. 
At inference time, the right model may be chosen based on the meta-data indication that matches the PRS configuration. This could be done either at the network or at the UE. If the UE registers K models with the network, the configuration IDs that each of the K models support could be provided to the network during the model registration so that the network may know which of the K models to activate at the UE. Alternatively, the configuration ID could be signaled as meta information to enable the UE to choose the model. 
Proposal 9: Study meta-data assistance for UE’s training data collection for ML model development.
Noisy ground-truth: The network may estimate the ground truth and this noisy ground truth can be provided to the UE to aid on-device model development and training. The ground truth may be noisy, and the model development can utilize the ML training techniques involving noisy ground truth. 
For UE-assisted positioning, the network may provide measurement error feedback to the UE. This may be based on approximate ground truth the network has and the model development can utilize this information feedback. 
Proposal 10: Study (noisy) ground truth and measurement error feedback for UE’s training data collection
6.2 Assistance information for training and inference
Assistance data for training and inference refers to the various types of assistance information that may be used as input to the ML model. 
Example 1: Consider that Rel-17 already defines boresight angle and relative beam strength information for DL-AoD method. Such information can also be provided to ML based methods to improve the overall performance. It is noted that the use of more explicit input such as beam/resource information, as opposed to PRS/SRS resource IDs to a ML model has well known benefits including better sample efficiency and better generalization performance. 
Example 2: The network may provide the UE with LOS/NLOS maps for each TRP, which it has aggregated using information from multiple UEs over time. This enables the UE to selectively process TRPs, reduce outliers and improve positioning accuracy. In another example, the network may provide the location of certain virtual anchors (which are mirror images of TRPs across reflectors). The UE may use the location of these virtual anchors to improve the positioning performance by using not just the LOS path but also the multipath for positioning. 
We note that it is not required for the UE to utilize this information, but any UE which can take advantage of this can improve its performance.
Proposal 11: Study providing beneficial assistance data to the UE for improved training and inference. 
6.3 Model configuration, activation, switching and deactivation
Models registered with the network may be assigned a model identity and the network can use this identity to refer to the model for the purpose of activation, switching, deactivation and performance monitoring. Note that this does not require the network to have knowledge of the model structure or associated parameters. 
Similarly, a model ID can be assigned for X-node ML models as well serving the same function of managing the part of the model at the UE. Note that managing X-node ML models involves coordination between the network and the UE.
For a subset of network-based models, it may also be beneficial if the UE is aware of the model being used. The UE may provide some assistance data or feedback relevant to the model and could recommend activation/deactivation of models in some scenarios.
Proposal 12: Study mechanisms to activate, switch, and deactivate registered ML models for UE-based, network-based and X-node models.  
6.4 Performance monitoring 
The performance of ML models registered with the network by the UE may need to be monitored. This may involve dedicated reference signals for validation, additional computation, and mechanisms to compare against the expected result and indicate to the UE.
For the positioning use case, the network may provide measurement error feedback (some examples are computed position, LOS/NLOS, actual RSTD values after computing the final position etc.) to the UE to improve its model performance. Similarly, the network may request the UE to evaluate measurement reports with both classical and ML methods for comparison if ML models are used for parameters in measurement reports.
Typically, it is expected that the network may monitor the performance of UE models or X-node models registed to the network. For network side or for X-node models, it may be beneficial for the UE to be aware of the ML model running at the network. The activation status of this model can be signaled to the UE along with a model identification, and the UE may also be involved in directly monitoring or providing some feedback needed for monitoring performance. 
Performance monitoring of models either at the network, UE or X-node models may be facilitated by introducing the following types of signaling:
· Dedicated RS for the purpose of performance monitoring
· Feedback needed for performance monitoring 
· Indication of performance monitoring result to the other entity
Proposal 13: Study the procedures needed to enable performance monitoring of ML models for positioning, including dedicated reference signals, information feedback, indication of performance monitoring outcome.  

7 ML enhanced reporting 
As discussed in Section 3.2.3, ML enhanced reporting is one of the key aspects for enhancements to be studied in Rel-18. We consider two kinds of enhanced reporting possibilities:
7.1 Enhanced reporting categories
Enhanced reporting of existing parameters: In this feature, the UE uses NN methods to compute the existing parameters to be reported. We illustrate this with some potential examples.
Example 1: Consider the NR DL-TDOA or NR Multi-RTT method in which the UE reports the Reference Signal Time Difference (RSTD) [NR-RSTD-r16] for a pair of TRPs. A UE computes the first arrival path from each TRP and takes the time difference between the given TRP and the chosen reference. In this example, the UE can use an NN to compute the LOS delays, RSTD values and the RSTD quality. Similarly, additional paths reported by the UE [NR-AdditionalPathList-r16], LOS/NLOS soft information for each path, per-path RSRP specified in Rel-17 may also benefit from ML based methods.
Example 2: Consider the multipath mitigation enhancements in Rel-17 in which the TRP can report multiple candidate UL-AoA values for each path. The TRP may derive a probability distribution of the UL-AoA (ex. A Gaussian mixture) using ML based algorithms and enhance the report to the LMF using the Rel-17 framework. 
Defining new reporting parameters: As discussed earlier in Section 4 (RFFP) and Section 5 (likelihood fusion method), the UE may need to report new features to realize the gains of ML based positioning especially for the UE-assisted methods. Similarly, for the Network assisted methods, it is expected that the network may provide the UE with some additional measurements to improve the fusion at the UE. RAN1 may additionally identify some parameters to augment the measurement reporting for existing methods. 
7.2 Spec impact 
For new reporting parameters, RAN1 should evaluate the proposed new positioning methods or enhancements to existing methods and determine whether a new parameter report (or a new positioning method) is beneficial.
For already existing parameters, some parameters may have a RAN4 specified performance metric. It is expected that the NNs deployed at the UE should ideally meet the minimum performance as specified in RAN4 test cases. However, since the NNs deployed are data driven and best matched to the conditions which were used in training, it may be beneficial for the network to know that UE deployed an NN model to report a certain parameter and monitor its performance. If the NN model output is not satisfactory, the NN processing may be disabled by the network and the UE switches back to classical processing.
The network may optionally help the UE to collect some training data so that the UE may improve the model performance. 
Proposal 14: Study ML enhanced feature reporting including features relevant to new ML based and ML assisted positioning algorithms and enhancements to existing algorithms.

8 Other aspects of ML for positioning
8.1 Scenarios & applicability of proposed ML enhancements
In the earlier sections, we proposed to study new ML methods, enhancements to existing methods, assistance data and reporting improvements to enable ML positioning. We briefly discuss the applicability and relevance of such a wide range of proposals.
Consider the case of the RFFP (see Section 4) which requires a reasonably dense sampling of the environment for accurate positioning as discussed in our companion paper [3]. Note that this relevant to all inference modes for RFFP. It is reasonable to expect that such a dense sampling of the environment may be easier to obtain in an indoor environment (ex. Enterprises, factory, malls & retail establishments, hospitals, stadiums etc.) as compared to an outdoor macro cell like environment. Even in an indoor environment, it is easier to obtain a dense sampling of the environment is areas where movement is readily feasible (walkways, AGV tracks etc.) rather than in obscure locations. The key advantage of RFFP based methods is that they do not depend on the availability of the LOS path between the TRPs and the UE.
For scenarios where data sampling is not easy, we can consider methods like likelihood fusion (Section 5) which are ML based but can be realized with improved channel processing and reporting methods and implementing new fusion algorithms. Such methods may be applicable for a wider range of conditions, especially when data is not readily available. On the other hand, likelihood fusion method fundamentally relies on the availability of the LOS path for its accuracy. It addresses one aspect of the challenging multipath conditions problem where the LOS path delay cannot be accurately estimated and adopts a soft fusion approach.
As a third example, consider the scenario where due to lower density of TRP deployment (network optimized for communication use case), the UE does not find enough LOS TRPs to perform positioning. In such scenarios, the network may provide the UE with assistance data such as the location of virtual anchors as determined by the presence of large reflectors (walls, ceiling etc.). A capable UE may be able to utilize the multipath components in the channel to derive additional constraints for positioning, thus addressing the use case of improved accuracy with limited #TRPs.
Thus, we observe that different ML based positioning methods and assistance data rely on different assumptions and are applicable to different operating conditions. We thus propose to study multiple ML based positioning methods addressing the wide variety of various use cases. 
Proposal 15: Study multiple ML positioning methods suited to a wide variety of operating conditions as there is no single method that can improve performance in all scenarios.
8.2 Robustness to environment conditions
For the positioning use case, especially for new ML based positioning methods, we note that the data for training must come from a live deployment. It may be challenging, for now, to train generic ML models from synthetic data that can be deployed in the field with no modifications (transfer learning framework). The environment conditions when the data is collected for training may be different than the conditions when the inference is performed. Positioning ML models are especially sensitive to such changes in the environment. The ML models may have to be trained on multiple environment conditions so that they are robust to small changes in the environment.
In addition, there is a need to constantly monitor the performance of the ML model and if the performance degrades then perform model refinement/retraining procedures so that the output is in line with the expectations. 
Additionally, we note that the ground truth position may not always be available for training supervised ML models especially during the refinement phase. We may need to consider supporting unsupervised/semi-supervised ML methods which can learn the environment with minimal ground truth information. Using semi-supervised ML models can become a key approach to deploying ML models which can be up to date with the changes in the environment. Alternatively, we can assume that some UEs are deployed in the environment which provide good ground truth for training and the trained ML models can be deployed to a large #UEs. Note that this also implies that UE specific aspects such as group delays, antenna variations etc. must be corrected by implementation to enable model reuse. 
Proposal 16: Study ML methods and procedures that can enable robust operation to moderate changes in environments (ex. People, furniture movement). 
9 Summary & Proposals
9.1 Summary
We classify the proposed NN methods into a few categories primarily based on the inference mode.
	Inference mode
	NN at network 
	NN at UE
	Description/Examples

	UE-based
	No
	Yes
	UE uses DL channel to implement inference 

	UE-assisted
	Could be
	Yes
	UE reports DL channel features which map to physically interpretable quantities.

	UE-assisted
	Yes
	Yes
	UE reports DL channel features which map to uninterpretable quantities. Network uses these inputs and further processes them to obtain the final position

	Network-based
	Yes
	No
	Counterpart of UE-based method. Network uses UL channel to implement inference

	Network-assisted
	Yes
	No
	Network reports UL SRS features to the UE mapping to physically interpretable quantities

	Network-assisted
	Yes
	Yes
	Network reports UL SRS features to the UE which map to uninterpretable quantities.



We also consider various forms of assistance data provided from the network to the UE to enable training data collection and inference. Finally, we consider the impact of UE reporting under this framework. 
9.2 List of proposals
Proposal 1: Study primarily the one-shot positioning use case in Rel-18. Additional enhancements for tracking and smoothing algorithms can be considered later. 
Proposal 2: Study UE-based, UE-assisted, Network-based, and Network-assisted positioning methods for performing AI/ML based inference. 
Proposal 3: For the positioning use case, the data is collected by the UE and/or the network and the training is performed offline. 
Proposal 4: The overall scope of enhancements include:
· New ML based and ML enhanced positioning methods (ex. RFFP and Likelihood fusion)
· Assistance data and signaling for model generation, inference and life cycle management
· ML enhanced reports mapping to existing report parameters and new parameters (interpretable and non-interpretable features).
Proposal 5: Study both supervised and unsupervised positioning methods for the purpose of defining the AI/ML framework in Rel-18. For evaluations and comparison with classical methods, focus on the supervised methods. 
Proposal 6: Support RFFP based methods with various architecture flavours: UE-based, UE-assisted, Network-based and Network-assisted methods.
Proposal 7: Study the specification impact needed to support machine learning based likelihood fusion techniques for positioning
Proposal 8: Study the procedures needed for the network to enable training data collection at the UE and the TRPs 
Proposal 9: Study meta-data assistance for UE’s training data collection for ML model development.
Proposal 10: Study (noisy) ground truth and measurement error feedback for UE’s training data collection
Proposal 11: Study providing beneficial assistance data to the UE for improved training and inference. 
Proposal 12: Study mechanisms to activate, switch and deactivate registered ML models for UE-based, network-based and X-node models.
Proposal 13: Study the procedures needed to enable performance monitoring of ML models for positioning, including dedicated reference signals, information feedback, indication of performance monitoring outcome.
Proposal 14: Study ML enhanced feature reporting including features relevant to new ML based and ML assisted positioning algorithms and enhancements to existing algorithms.
Proposal 15: Study multiple ML positioning methods suited to a wide variety of operating conditions as there is no single method that can improve performance in all scenarios.
Proposal 16: Study ML methods and procedures that can enable robust operation to moderate changes in environments (ex. People, furniture movement). 
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