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1. [bookmark: _Ref5850594]Introduction
 At RAN #94, a new study on artificial intelligence/machine learning for NR air interface has been approved [1] with the following goals briefly summarized as below.

Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels
Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
In this document, we discuss various aspects of the above-mentioned goals for the beam management use case evaluation.

2. Beam Prediction in Time Domain
Leveraging historical information about beams (e.g., strongest beam IDs along with their associated RSRPs) may be useful in predicting information about beams in future time instances. This prediction task can be carried out at UE based on previous beam measurements and/or at gNB based on previous beam measurement reports from UE. Depending on where the prediction task is carried out, the study should focus on evaluating the performance gains , and then study the associated trade-offs (after agreement on KPIs) accordingly. The purpose of this section is to discuss proposed evaluation methodology and KPIs for temporal beam prediction, as well as potential benefits and trade-offs.

A sub use case of temporal beam prediction is beam blockage prediction, which is suggested to be studied and evaluated, as a topic for future study. Example: Let us assume that a UE can predict blockage based on the history of beam measurements. One of the ways that this UE capability could be useful is that UE can proactively indicate to gNB that a blockage is imminent, and the gNB can take this information into account and proactively switch the downlink beam to a secondary beam. The existing methods for beam failure detection and recovery are reactive in nature, in which the blockage event is detected first, and then the beam failure recovery procedure is initiated. 

Observation 1: Leveraging historical information about beams (e.g., strongest beam IDs along with their associated RSRPs) to predict information about beams in the future (e.g., best beam IDs or predicted L1-RSRP values) can help reduce reference signal overhead and/or the L1 reporting periodicity without adversely impacting performance (e.g., throughput). This would in turn lead to reduced UE power consumption and reduced UE-specific reference signal overhead.

Proposal 1: RAN1 should evaluate temporal beam prediction and identify aspects of temporal beam prediction where AI/ML-assisted methods are beneficial.
· Aspects of temporal beam prediction may include prediction of future strongest beam-ID(s) and/or future L1-RSRP values associated with strongest beam IDs.
· FFS: Evaluate and identify performance benefits related to beam blockage/failure prediction

2.1. [bookmark: _Hlk100867512]Evaluation methodology
Let us review the features that have already been agreed by 3gpp in TR 38.901 [2] and can be leveraged for studying and evaluating temporal beam prediction problem:

Spatial consistency
The spatial consistency procedure is laid out in Section 7.6.3.1 of [2] which enables the generation of cluster-specific and ray-specific random variables in channel generation process in such a way that they are spatially consistent for drop-based simulations. Later, in section 7.6.3.2, two procedures (Procedure A and Procedure B) are defined for spatially consistent UE/gNB mobility modelling. Procedure A generates channel realizations incorporating the time evolution of the channel and in procedure B, spatial or time evolution of the channel is obtained by generating channel realizations separately for all links to different Rx positions. In the case of mobility, these positions may be a function of time along one or more Rx trajectories. 

UE rotation
UE rotation modeling is a feature that is included in Section 7.6.7 of [2]. One scenario of interest for temporal beam prediction is how UE rotation would impact future beam measurements considering history of beam measurements, that can be modeled and evaluated using this established feature in [2].

Blockage model
In Section 7.6.4 of [2], two alternative models (Model A and Model B) are provided for the blockage modelling. Both approaches have their own use cases. Model A is applicable when a generic and computationally efficient blockage modelling is desired. Model B is applicable when a specific and more realistic physical blocking modelling is desired. For the sub use case of blockage prediction, these blockage models can be utilized for evaluation purposes.

We believe these aspects provide reasonable tools for evaluation of temporal beam prediction within the scope of Rel-18 SI. System-level simulations, e.g., for indoor hotspot (InH) and urban micro (UMi) deployments, are suggested to evaluate the system performance of temporal beam prediction.

Given the tools put forward in [2] which enable different aspects related to temporal beam prediction, a set of simulation assumptions need to be agreed upon for the purpose of calibrating simulation results. Some of the proposed aspects are:

· Consider different scenarios for UE mobility and identify for which scenarios temporal beam prediction may be beneficial through evaluations.
· Include UE rotation and UE movement on a trajectory in the simulation setup. Some predefined trajectories can be defined and agreed upon for evaluation, e.g., a straight line, rectangular or circular trajectory, etc.

[bookmark: _Hlk102057319]Proposal 2: RAN1 to use channel model in TR 38.901 for the evaluations on AI/ML for temporal beam prediction. A set of simulation assumptions should be agreed upon for evaluation purposes.

2.2. KPIs 
Temporal beam prediction may lead to reduced reference signal overhead (and/or UE power consumption), but on the other hand the overall performance of temporal beam prediction depends on beam prediction quality. Reducing reference signal overhead beyond a certain point may adversely impact the overall performance due to poor beam prediction quality. One major direction of RAN1 evaluations on this topic should be to study the trade-off between reference signal overhead reduction (and/or UE power consumption) and a measure for beam prediction quality. The measure for beam prediction quality may be a measure for beam prediction accuracy (such as RSRP prediction accuracy and/or top-M beam selection accuracy) and/or overall system performance (e.g., throughput).

Proposal 3: The KPIs for temporal beam prediction can be trade-off between reference signal overhead reduction (and/or UE power consumption) and a measure for beam prediction accuracy (such as L1-RSRP prediction accuracy and/or top-M beam selection accuracy) and/or overall system performance (e.g., throughput).

In order to evaluate the benefits of AI/ML-based schemes, their performance should be compared to state-of-the-art non-data-driven baseline methods.

Proposal 4: Based on the agreed KPIs, RAN1 should study and identify baseline prediction schemes for temporal beam prediction as a benchmark for AI/ML-based schemes to compare against

Based on the nature of the deployment/scenario/use case, temporal beam prediction may or may not be beneficial. As an example, temporal beam prediction may be better suited to some mobility scenarios over the others. The study should focus on identifying deployments/scenarios/use cases for which temporal beam prediction may provide reasonable gains over non-prediction-based methods, using the agreed KPIs.

Proposal 5: Based on evaluations using the agreed KPIs, RAN1 should identify the deployments/scenarios/use cases for which AI/ML based temporal beam prediction may be beneficial.

Beam prediction quality is a function of inference error in beam prediction instances and has an important role in determining the overall performance of temporal beam prediction. The impact of beam prediction quality on the overall system performance should be evaluated. The results of this evaluation may be useful in the context of AI/ML model performance monitoring and the implications that it may have on activating/deactivating AI/ML models.

Proposal 6: For temporal beam prediction, RAN1 should study the impact of incorporating beam prediction quality information on performance, using the agreed KPIs

Temporal beam prediction at UE and gNB have different requirements in terms of signalling overhead and the associated beam prediction accuracy. For instance, gNB only has access to a subset of UE measurements and having access to more beam measurements may improve gNB-side beam prediction accuracy. On the other hand, in order for gNB to have access to more UE beam measurements the UE report overhead would inevitably need to increase. The trade-off between beam prediction accuracy and required signalling overhead should be considered in the study for UE-side and gNB-side prediction, and the benefits and drawbacks of temporal beam prediction at each side should be identified.

Proposal 7: RAN1 should study the benefits and trade-offs associated with UE-side and gNB-side temporal beam prediction, using the agreed KPIs 

3. Beam Prediction in Spatial Domain
Leveraging beam measurements on a first beam set may be useful in predicting information about beams on a second beam set. This prediction task can be carried out at UE based on beam measurements on a first set and/or at gNB based on beam measurement reports from UE. Depending on where the prediction task is carried out, the study should focus on evaluating the trade-offs between reference signal overhead, UE power consumption, and performance. The purpose of this section is to discuss proposed evaluation methodology and KPIs associated with spatial domain beam prediction and propose a few use cases for which spatial domain beam prediction may be evaluated.

The spatial domain beam prediction mentioned in this section may refer to prediction over spatial domain for a given measurement instance or over time and spatial domains (use measurements from multiple previous measurement instances on first beam set to predict L1-RSRP vector(s) and/or strongest beam-ID(s) over a second beam set).

We will consider two types of spatial domain beam prediction in the next two sections:
· Codebook-based spatial domain beam prediction: in this case, the prediction space is composed of beams from a codebook, and the output of the predictor is a beam or a set of beams optionally along with their predicted L1-RSRPs. 
· Non-codebook-based spatial domain beam prediction: the prediction space in this case is not limited to beams from a codebook and incorporates custom generated beams at UE and/or gNB. It has been shown through evaluation results that creating custom beams at UE and/or gNB may lead to improved spectral efficiency by optimizing the beam management procedure.

Observation 2: Leveraging the measurements on a first set of beams (optionally over multiple past measurement instances) to predict measurements on a second set of beams can lead to reduced number of UE measurements, lower RS overhead and hence UE power saving. 

Proposal 8: RAN1 should evaluate spatial domain beam prediction and identify aspects of spatial domain beam prediction where AI/ML-assisted methods are beneficial.
· Aspects of spatial domain beam prediction may include prediction of future strongest beam-ID(s) and/or future L1-RSRP values associated with strongest beam IDs.

3.1. Codebook-based spatial domain beam prediction

In this section, we focus on codebook-based spatial domain beam prediction and discuss the proposed evaluation methodology and KPIs. In [3], we propose two use cases for study and evaluation in Section 3.1.2.

3.1.1. Evaluation methodology
[bookmark: _Hlk102061020]Given the discussions in Section 2.1 of this document regarding the features that are supported by the channel models in [2], we believe these features provide reasonable tools for evaluation of codebook-based spatial domain beam prediction within the scope of Rel-18 SI. System-level simulations (e.g., for InH and UMi deployments) are suggested to evaluate the system performance of spatial domain beam prediction.

To calibrate simulation results, a set of simulation assumptions need to be agreed upon. Some of the proposed simulation assumptions are:

· Consider different scenarios for UE mobility and identify for which scenarios spatial domain beam prediction may be beneficial through evaluations.
· Include UE rotation and UE movement on a trajectory in the simulation setup. Some predefined trajectories can be defined and agreed upon for evaluation, e.g., a straight line, rectangular or circular trajectory, etc.
· Consider prediction over spatial domain only as well as prediction over spatial and time domain

Proposal 9: RAN1 to use channel model in TR 38.901 for the evaluations on AI/ML for codebook-based spatial domain beam prediction. A set of simulation assumptions should be agreed upon for evaluation purposes.

3.1.2. KPIs
[bookmark: _Hlk100869094]
Spatial domain beam prediction may lead to reduced reference signal overhead (and/or UE power consumption), but on the other hand the overall performance of spatial domain beam prediction depends on beam prediction quality. Reducing reference signal overhead beyond a certain point may adversely impact the overall performance due to poor beam prediction quality. One major direction of RAN1 evaluations on this topic should be to study the trade-off between reference signal overhead reduction (and/or UE power consumption) and a measure for beam prediction quality. The measure for beam prediction quality may be a measure for beam prediction accuracy (such as RSRP prediction accuracy and/or top-M beam selection accuracy) and/or overall system performance (e.g., throughput).

Proposal 10: The KPIs for spatial (+time) domain beam prediction can be trade-off between reference signal overhead reduction (and/or UE power consumption) and a measure for beam prediction accuracy (such as L1-RSRP prediction accuracy and/or top-M beam selection accuracy) and/or overall system performance (e.g., throughput).

In order to evaluate the benefits of AI/ML-based schemes, their performance should be compared to state-of-the-art non-data-driven baseline methods.

Proposal 11: Based on the agreed KPIs, RAN1 should study and identify baseline prediction schemes for spatial domain beam prediction as a benchmark for AI/ML-based schemes to compare against

Based on the nature of the deployment/scenario/use case, spatial domain beam prediction may or may not be beneficial. As an example, spatial domain beam prediction may be better suited to some mobility scenarios over the others. The study should focus on identifying deployments/scenarios/use cases for which spatial domain beam prediction may provide reasonable gains over non-prediction-based methods, using the agreed KPIs.

Proposal 12: Based on evaluations using the agreed KPIs, RAN1 should identify the scenarios/use cases for which AI/ML based spatial (+time) domain beam prediction may be beneficial

Beam prediction quality is a function of inference error in beam prediction instances and has an important role in determining the overall performance of spatial domain beam prediction. The impact of beam prediction quality on the overall system performance should be evaluated. The results of this evaluation may be useful in the context of AI/ML model performance monitoring and the implications that it may have on activating/deactivating AI/ML models.

Proposal 13: For spatial domain beam prediction, RAN1 should study the impact of incorporating beam prediction quality information on performance, using the agreed KPIs

Spatial domain beam prediction at UE and gNB have different requirements in terms of signalling overhead and the associated beam prediction accuracy. For instance, for both Use Case 1 and Use Case 2 discussed in Section 3.1.2 of [3], if we consider gNB-side beam prediction, gNB will need to rely on UE measurement reports of (a subset of) first beam set, in order to predict information about second beam set. Having access to more beam measurements may improve gNB-side beam prediction accuracy. On the other hand, in order for gNB to have access to more UE beam measurements the UE report overhead would inevitably need to increase. The trade-off between beam prediction accuracy and required signalling overhead should be considered and evaluated in the study for UE-side and gNB-side prediction, and the benefits and drawbacks of spatial domain beam prediction at each side should be identified accordingly.

Proposal 14: RAN1 should study the benefits and trade-offs associated with UE-side and gNB-side spatial (+time) domain beam prediction, using the agreed KPIs 

3.2. Non-codebook-based spatial domain beam prediction

The de-facto method for communication at mmWave frequencies in existing implementations is analog beamforming using predefined codebooks at transmitters and receivers. While analog beamforming makes mmWave communications practically realizable by allowing hardware architectures with limited RF-baseband chains, the purpose of this subsection is to discuss what could be done beyond the said approach by inferring additional information about the underlying raw channel using beamformed measurements and AI/ML-assisted methods.

One of the ways that we can enable non-codebook-based spatial domain beam prediction is through estimation of channel AoA/AoD and tailoring the beam management process to leverage this information. To illustrate this point, consider the downlink scenario in which UE (and gNB) generate custom (non-codebook-based) beams with their beam pointing angles directed towards estimated AoA (and AoD) of the strongest channel path (beams  and  in Figure 1, respectively). Using these custom beams that are not part of UE (and gNB) codebooks may lead to performance improvements e.g., in the form of increased spectral efficiency, as illustrated in Section 4.2.2. The performance gains that can be enabled by non-codebook-based spatial domain beam predictions versus baseline codebook-based schemes should be evaluated.

[image: ]
Figure 1: Illustration of non-codebook-based beams tailored to channel AoA/AoD characteristics

Observation 3: Estimating information about underlying raw mmwave channel (such as channel AoA/AoD information associated with strongest channel clusters) can help in tailoring the beam management procedure to the estimated information and enhance performance (e.g., spectral efficiency) compared to using pre-defined codebooks at UE and gNB.

Proposal 15: RAN1 should study methods for non-codebook-based spatial domain beam prediction and identify aspects of non-codebook-based spatial domain beam prediction where AI/ML-assisted methods are beneficial.

3.2.1. Evaluation methodology
Given the discussions in Section 2.1 of this document regarding the features that are supported by the channel models in [2], we believe these features provide reasonable tools for evaluation of non-codebook-based spatial domain beam prediction within the scope of Rel-18 SI. System-level simulations (e.g., for InH and UMi deployments) are suggested to evaluate the system performance of spatial domain beam prediction.

Proposal 16: RAN1 to use channel model in TR 38.901 for the evaluations on AI/ML for non-codebook-based spatial domain beam prediction 
· One enabler for non-codebook-based spatial domain prediction is estimation of channel AoA(s)/AoD(s) and tailoring beam management process to leverage this information

3.2.2. KPIs
For non-codebook-based spatial domain beam prediction, the trade-off between signalling overhead needed to enable non-codebook-based spatial domain beam prediction and the resulting performance improvements should be studied.
Proposal 17: RAN1 to study the trade-off between signalling overhead needed for enabling non-codebook-based spatial domain beam prediction and the resulting performance gains.
Proposal 18: Using the agreed KPIs RAN1 should compare the performance of non-codebook-based spatial domain beam prediction to codebook-based methods and identify the deployments/scenarios/use cases for which non-codebook-based spatial domain beam prediction is beneficial.

4. Performance Results
We present our simulation results for temporal and spatial domain beam prediction in this section. Even though we present some of the results based on raytracing data and field measurements to motivate the topic and highlight benefits of AI/ML-assisted methods, our proposal (as mentioned in Section 2.1) is to use channel model in TR 38.901 for the purpose of temporal beam prediction evaluations.

4.1. Temporal beam prediction
Three sets of results are presented in this section. In the first set, we consider temporal beam prediction using dataset generated based on TR 38.901. For the second set, we present the results generated based on field data. Finally, for the third set, we consider over-the-air data generated in an outdoor lawn and demonstrate the performance for real-time gNB prediction.

4.1.1. Performance evaluation using TR 38.901 channel model

For this section, we use data collected from 38.901 Indoor InH channel model simulations, wherein the AI/ML-model inference is running at the UE side. Our dataset consists of time-series RSRP data corresponding to all possible combinations of L3 beams, UE antenna panels, and polarizations (1024 in total) between particular UEs and their serving gNBs, calculated during beam management cycles every 40 ms. To introduce temporal variety into this RSRP data, we rotate the UEs on their vertical axes at a speed of 100 revolutions per minute. Using this dataset, we have trained a recurrent neural network model to provide a prediction for the RSRPs for a UE at beam management cycle , given the RSRP values from beam management cycles .

We have run 3 sets of analysis simulations: one set where we have deployed our trained model in an interpolation scheme, and two sets providing comparison baselines:
1. ML beam interpolation: For selected beam management cycles in each simulation, we have used predicted RSRPs from our model in place of calculated L1-RSRPs to select a beam pair for transmission. We have explored this scheme for multiple interpolation rates (1 out of 2 predicted cycles, 9 out of 10 predicted cycles).
2. No interpolation: We have used the calculated RSRP values to select a beam pair during every beam management cycle. This baseline provides an upper bound on performance.
3. Sample-and-hold: Instead of producing predictions at a given set of cycles, we have instead skipped over this same set of cycles by extending the length of time between beam management cycles, effectively holding a beam pair selection between calculated cycles. The interpolation rate of 1 out of 2 cycles corresponds to a sample-and-hold beam management periodicity of 80 ms; the interpolation rate of 9 out of every 10 cycles corresponds to a sample-and-hold beam management periodicity of 400 ms.

We have evaluated mean throughput per UE for our prediction scheme for each interpolation rate as well as for our baselines. Figure 2 provides CDFs of these mean throughputs. We note the improvement provided by our ML beam interpolation scheme compared to the sample-and-hold baseline: the ML scheme using 1 out of 2 predicted cycles achieves a 50% reduction in calculated beam management cycles while suffering only a 2.44% drop in median per-UE mean throughput; the corresponding sample-and-hold scheme (80-ms periodicity) suffers a 10.61% drop in throughput to accomplish the same reduction. Table 1 summarizes our full results.

[image: ]
Figure 2: CDF of per-UE mean throughput


Table 1: Summary of simulation results for temporal domain beam prediction using TR 38.901
	Analysis simulation
	Beam management cycle scheme
	Reduction in calculated beam management cycles (%)
	Median per-UE mean throughput (Mbps)
	Reduction in median per-UE mean throughput (%)

	No interpolation
	All cycles calculated
	0
	52.80
	0

	ML beam interpolation
	 80-ms measurement periodicity (1/2 cycles predicted)
	50.00
	51.51
	2.44

	
	400-ms measurement periodicity (9/10 cycles predicted)
	90.00
	46.85
	11.27

	Sample-and-hold
	80-ms periodicity
	50.00
	47.20
	10.61

	
	400-ms periodicity
	90.00
	22.61
	57.18






4.1.2. Performance evaluation using field data
For the simulations in this section, we use data collected from field trials, wherein the AI/ML-model inference is running at the gNB side. We evaluate the use case in which time series of UE reported 2 strongest L1-RSRPs with a relatively long periodicity 80ms, are used as inputs to predict whether the strongest beam is going to change until a next applicable UE reporting instance. In this evaluation, various neural networks have been trained to track 8 SSB beams and predict such beam changes in every 20ms between adjacent 80ms L1-reporting instances.

In Figure 3, we consider the trade-offs between miss detection probability (MDP) and false alarm probability (FAP) associated with the above beam change prediction problem, achieved by such various neural networks. Furthermore, the associated trade-offs between beam mismatch rate (BMR) and power reduction rate (PRR) are presented in Figure 4. Particularly, power reduction rate is defined for the UE’s efforts on beam measurements, referring to a baseline where a 20ms measurement periodicity is considered.

For the evaluation scenarios that we have considered and for a standard miss detection metric, the ML models are able to achieve FAPs of {52.31%, 42.46%, 36.05%, 31.15%} with target MDP at {5%, 10%, 15%, 20%}, or equivalently achieve PRRs of {32.12%, 39.09%, 43.77%, 47.46%} with target BMR at {0.57%, 1.14%, 1.71%, 2.28%}. Moreover, for a relaxed miss detection metric allowing 2dB of difference between the missed new strongest beam, and the new second strongest beam but also being the strongest one at the decision making cycle, we are able to reduce the achievable FAPs to { 50.44%, 36.05%, 26.82%, 20.48%} with target MDP at {5%, 10%, 15%, 20%}, or equivalently PRRs of { 36.42%, 47.04%, 54.42%, 58.08%} with target BMR at { 0.11%, 0.23%, 0.34%, 0.45%}. In summary, with target BMR lower than 0.5%, we can reduce over 58% of the UE power (or DL reference signal overhead if UE-specific DL reference signals are considered) consumed for beam management.
[image: ]
Figure 3: Target Miss-Detection-Probability versus Achieved False Alarm Probability for temporal beam prediction
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Figure 4: Target beam-mismatch-rate versus achieved-power-reduction-rate for temporal beam prediction

4.1.3. Performance evaluation using real-time gNB-side prediction
The results shown in this section are based on over-the-air measurements captured in an outdoor lawn and are based on real-time gNB-side beam predictions. These results were demonstrated at Mobile Worldwide Congress (MWC) 2022 [3]. In this demo, a user is holding a handset and roaming in the courtyard area. gNB relies on measurement reports from UE to predict best beams in future time instances, in a real-time manner. A snapshot of the demo is shown in Figure 5, in which the RSRPs of ML-predicted beams are compared to the ones that are reported over-the-air. We observe that they are very close to each other, thereby showing the accuracy of the prediction. Also, the CDF of the throughput when using ML-predicted beams versus over-the-air reported beams are compared which are again very close. Due to temporal prediction capability of the UE, the RS measurement period can increase without adversely impacting the throughput. This would in turn lead to UE power savings.
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Figure 5: Snapshot from MWC 2022 Demo
4.2. Spatial domain beam prediction
In this section we present simulation results for codebook-based and non-codebook-based spatial domain beam prediction. 

4.2.1. Codebook-based spatial domain beam prediction
For the simulations in this section, we use raytracing data. We evaluate Use Case 2 as identified in Section 3.1.2 of [3], in which measurements (over multiple measurement instances) on wide beams can be utilized to predict information (e.g., strongest beam ID optionally associated with their corresponding L1-RSRPs) about refined (narrower) beams. To generate the dataset, UE moves along random directions in the region where raytracing data is collected. Independent fading and UE trajectory has been applied for training and test phases.
 In this simulation setup, an AI/ML model has been trained to tracks 3 SSB beams (receive measurements associated with 3 SSB beams over multiple measurement instances as input to the AI/ML model) and predict among 10 refined (CSI-RS) beams. 

In Figure 6, we consider the difference between L1-RSRP of the predicted beam and L1-RSRP of the actual strongest beam as the performance metric, and compare the performance of three methods:
· Linear predictor: this is the baseline method that we are comparing against, which is capable of correctly identifying the strongest beam with a probability of 0.45.
· AI-assisted (top-1 beam): This method is using the trained AI model to predict the best refined beam, which is capable of correctly identifying the strongest beam with a probability of 0.62.
· AI-assisted (top-2 beams): This method is using the trained AI model to predict the two strongest refined beams. The difference between the L1-RSRP of the actual strongest beam and the maximum of the L1-RSRPs of the predicted beams is computed as the metric. With a probability of .87, the actual strongest beam is within the top-2 predicted beams by the AI model.
In conclusion, for the simulation setup that we have considered, the AI model is capable of learning to predict best refined beams based on wide beam measurements. This may lead to reduced overhead of refined beams, which would in turn have UE power saving benefits.

[image: ]
Figure 6: RSRP loss of predicted versus actual strongest beam
4.2.2. Non-codebook-based spatial domain beam prediction
For the simulations in this section, we consider downlink scenario and use dataset collected based on InH and UMi deployments [2]. In our simulations, we assume assistance information from gNB to UE where the assistance information is beam shape of gNB beams. Note that indication of gNB beam shape information to UE has been included as a feature in the positioning context [4]. Given this information at the UE side, and using a few beamformed measurements, we utilize AI/ML-assisted models at the UE side to estimate the AoA/AoD information corresponding to the underlying raw channel. Given this information, we generate custom (non-codebook-based) beams at UE and gNB directed along the estimated AoA and AoD (as depicted in Figure 1). For InH and UMi deployments, we compare the performance of non-codebook-based schemes to codebook-based schemes and illustrate the resulting spectral efficiency gains enabled by non-codebook-based methods.

In Figure 7, we compare the spectral efficiency CDF across UEs for InH deployment. We see improvement in spectral efficiency across the board, and looking at the median, we see an improvement by 2 b/s/Hz (19% improvement) when using non-codebook-based methods compared to codebook-based methods. Figure 8 illustrates the comparative performance of non-codebook-based beam prediction versus codebook-based methods for UMi deployment, and as we note InH shows better gains compared to UMi deployments considering these initial results. As the channels in UMi deployment have richer multi-path characteristics and larger angular spread, pointing a beam along the AoA/AoD of the strongest channel path may not be as beneficial as the InH deployment which is inherently more line-of-sight-heavy. For the UMi deployment, more advanced beamforming techniques utilizing estimated AoA/AoD information of multiple channel paths may lead to better performance.
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Figure 7: Spectral efficiency CDF across UEs for InH
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Figure 8: Spectral efficiency CDF across UEs for UMi




5. Conclusions
In this document, we have discussed aspects related to evaluation methodology for the beam prediction use case. We also presented initial results highlighting the benefits of AI/ML-based approaches for beam prediction. We made the following proposals and observations.

Proposal 1: RAN1 should evaluate temporal beam prediction and identify aspects of temporal beam prediction where AI/ML-assisted methods are beneficial.

Proposal 2: RAN1 to use channel model in TR 38.901 for the evaluations on AI/ML for temporal beam prediction. A set of simulation assumptions should be agreed upon for evaluation purposes.

Proposal 3: The KPIs for temporal beam prediction can be trade-off between reference signal overhead reduction (and/or UE power consumption) and a measure for beam prediction accuracy (such as RSRP prediction accuracy and/or top-M beam selection accuracy) and/or overall system performance (e.g., throughput).

Proposal 4: Based on the agreed KPIs, RAN1 should study and identify baseline prediction schemes for temporal beam prediction as a benchmark for AI/ML-based schemes to compare against

Proposal 5: Based on evaluations using the agreed KPIs, RAN1 should identify the deployments/scenarios/use cases for which AI/ML based temporal beam prediction may be beneficial.

Proposal 6: For temporal beam prediction, RAN1 should study the impact of incorporating beam prediction quality information on performance, using the agreed KPIs

Proposal 7: RAN1 should study the benefits and trade-offs associated with UE-side and gNB-side temporal beam prediction, using the agreed KPIs 

Proposal 8: RAN1 should evaluate spatial domain beam prediction and identify aspects of spatial domain beam prediction where AI/ML-assisted methods are beneficial.

Proposal 9: RAN1 to use channel model in TR 38.901 for the evaluations on AI/ML for codebook-based spatial domain beam prediction. A set of simulation assumptions should be agreed upon for evaluation purposes.

Proposal 10: The KPIs for spatial (+time) domain beam prediction can be trade-off between reference signal overhead reduction (and/or UE power consumption) and a measure for beam prediction accuracy (such as L1-RSRP prediction accuracy and/or top-M beam selection accuracy) and/or overall system performance (e.g., throughput).

Proposal 11: Based on the agreed KPIs, RAN1 should study and identify baseline prediction schemes for spatial domain beam prediction as a benchmark for AI/ML-based schemes to compare against

Proposal 12: Based on evaluations using the agreed KPIs, RAN1 should identify the scenarios/use cases for which AI/ML-based spatial (+time) domain beam prediction may be beneficial

Proposal 13: For spatial domain beam prediction, RAN1 should study the impact of incorporating beam prediction quality information on performance, using the agreed KPIs

Proposal 14: RAN1 should study the benefits and trade-offs associated with UE-side and gNB-side spatial (+time) domain beam prediction, using the agreed KPIs 

Proposal 15: RAN1 should study methods for non-codebook-based spatial domain beam prediction and identify aspects of non-codebook-based spatial domain beam prediction where AI/ML-assisted methods are beneficial.

Proposal 16: RAN1 to use channel model in TR 38.901 for the evaluations on AI/ML for non-codebook-based spatial domain beam prediction 
Proposal 17: RAN1 to study the trade-off between signalling overhead needed for enabling non-codebook-based spatial domain beam prediction and the resulting performance gains.
Proposal 18: Using the agreed KPIs RAN1 should compare the performance of non-codebook-based spatial domain beam prediction to codebook-based methods and identify the deployments/scenarios/use cases for which non-codebook-based spatial domain beam prediction is beneficial.

Observation 1: Leveraging historical information about beams (e.g., strongest beam IDs along with their associated RSRPs) to predict information about beams in the future (e.g., best beam IDs or predicted L1-RSRP values) can help reduce reference signal overhead and/or the L1 reporting periodicity without adversely impacting performance (e.g., throughput). This would in turn lead to reduced UE power consumption and reduced UE-specific reference signal overhead.

Observation 2: Leveraging the measurements on a first set of beams (optionally over multiple past measurement instances) to predict measurements on a second set of beams can lead to reduced number of UE measurements, lower RS overhead and hence UE power saving. 

Observation 3: Estimating information about underlying raw mmwave channel (such as channel AoA/AoD information associated with strongest channel clusters) can help in tailoring the beam management procedure to the estimated information and enhance performance (e.g., spectral efficiency) compared to using pre-defined codebooks at UE and gNB.

6. References
1. RP-213599, “New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface”, 3GPP RAN Plenary
1. TR 38.901, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3GPP, 2019.
1. R1-2205027, “Other aspects on AI-ML for beam management” Qualcomm Incorporated.
1. R2-2203315, “Introduction of R17 Positioning Enhancements in LPP”, 3GPP TSG-RAN WG2 #117e, Feb. 2022.
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1.


 


Introduction


 


 


At RAN #94, a new study on artificial intelligence/machine learning for NR air interface has been approved [1] with the follo


wing goals 


briefly summarized as below.


 


 


Study the 3GPP framework for AI/ML for air


-


interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specificatio


n impact.


 


 


Use cases to focus on: 


 


-


 


Initial set of use cases includes: 


 


o


 


CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]


 


o


 


Beam management, e.g., beam prediction in time,


 


and/or


 


spatial domain


 


for overhead and latency reduction, beam selection accuracy i


mprovement 


[RAN1]


 


o


 


Positioning accuracy enhancements for different scenarios including, e.g., those with


 


heavy NLOS conditions [RAN1] 


 


-


 


Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#9


8


 


o


 


The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB


-


UE collaboration levels


 


Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative 


set:


 


o


 


Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 


 


§


 


Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.


 


§


 


Wh


ether field data are optionally needed to further assess the performance and robustness in real


-


world environments should be discussed as part of the 


study. 


 


§


 


Need for common assumptions in dataset construction for training, validation and test for the sele


cted use cases. 


 


§


 


Consider adequate model training strategy, collaboration levels and associated implications


 


§


 


Consider agreed


-


upon base AI model(s) for calibration


 


§


 


AI model description and training methodology used for evaluation should be reported for 


information and cross


-


checking purposes


 


o


 


KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use


-


case specific KPIs and benchmarks of the 


selected use


-


cases.


 


§


 


Performance, inference latency and computational


 


complexity of AI/ML based algorithms should be compared to that of a state


-


of


-


the


-


art baseline


 


§


 


Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given process


ing delays) associated 


with enablin


g respective AI/ML scheme, as well as generalization capability should be considered.


 


In this document, we discuss various aspects of the above


-


mentioned goals for the beam management use case


 


evaluation


.


 


 


2.


 


Beam Prediction in Time Domain


 


Leveraging historical information about beams (e.g., strongest beam IDs along with their associated RSRPs) may be useful in p


redicting information about beams in future time 


instances. This prediction task can be carried out at UE based on previous beam me


asurements and/or at gNB based on previous beam measurement reports from UE. Depending on 


where the prediction task is carried out, the study should focus on evaluating the performance gains


 


, and then study the associated trade


-


offs


 


(


after agreement on KP


Is


)


 


accordingly. 


The purpose of this section is to discuss


 


proposed


 


evaluation methodology and KPIs for


 


temporal beam prediction


,


 


as well as potential benefits and trade


-


offs.


 


 


A sub use case of temporal beam prediction is beam blockage 


prediction,


 


which i


s suggested to be 


studied and evaluated


, as a topic for future study


. Example: Let us assume that a UE 


can predict blockage based on the history of beam measurements. One of the ways that this UE capability could be useful is th


at UE can 


proactively indicate to gNB that a blockage is 


imminent, and the gNB can take this information into account and proactively switch the downlink beam to a secondary beam. Th


e existing methods for beam failure detection and 


recovery are reactive in nature, i


n which the blockage event is detected first, and then the beam failure recovery procedure is initiated.


 


 


 


Observation 1


:


 


Leveraging historical information about beams (


e.g., strongest beam IDs along with their associated RSRPs


) to predict information abou


t beams in the future (e.g., 


best beam IDs or predicted 


L1


-


RSRP values) can help reduce reference signal overhead and/or the L1 reporting periodicity without adversely impacting perfor


mance (e.g., throughput). 


This would in turn lead to reduced UE power co


nsumption and reduced UE


-


specific 


reference signal


 


overhead


.


 


 


Proposal 1: RAN1 should evaluate temporal beam prediction and identify aspects of temporal beam prediction where AI/ML


-


assisted methods are beneficial.


 


·


 


Aspects of temporal beam prediction may in


clude prediction of future strongest beam


-


ID(s) and/or future L1


-


RSRP values associated with strongest beam IDs.


 


·


 


FFS: 


Evaluate and identify 


performance


 


benefits


 


related to beam blockage/failure prediction


 


 


2.1.


 


Evaluation methodology


 


Let us review the 


features


 


that have already been agreed by 3gpp in


 


TR 38.901


 


[2]


 


and can be leveraged for 


studying and evaluating temporal beam prediction problem


:


 


 


Spatial consistency


 


The 


spatial consistency procedure


 


is laid out in Section 


7.6.3.1 of 


[2]


 


which enables the generation of 


cluster


-


specific and ray


-


specific random variables


 


in channel generation process


 


in such a 


way that they are spatially consistent for 


drop


-


based


 


simulations.


 


Later


, in section


 


7.6.3.2


, 


two procedures 


(Procedure A and Procedure B) 


are 


defined for spatially consistent 


UE


/gNB mobility modelling.


 


Procedure A


 


generates channel realizations


 


incorporating the 


time evolution of the channel


 


and


 


in procedure B, spatial or time evolution of the 


channel 


is obtained by generating channel realizations separately for all links to different Rx positions


. In the case of mobility, 


these positions may be a function of time along one or more Rx 


trajectories.


 


 


 


UE rotation


 


UE rotation modeling is a feature


 


that 


is included in


 


Section 7.6.7


 


of


 


[2]


. 


One scenario of interest 


for temporal beam prediction is how UE rotation would impact 


future beam 


measurements


 


considering history of beam measurements,


 


that can be modeled and evaluated using 


this 


established feature in 


[2]


.


 


 


Blockage model


 


In 


Section 7.6.4


 


of 


[2]


, 


two alternative models (Model A and Model B) are provided for the blockage modelling. Both approaches have their own use case


s. Model A is applicable 


when a generic and computationally efficient blockage modelling is desired. Model B is applicable when a s


pecific and more realistic 


physical 


blocking modelling is desired.


 


For the 


sub use case of blockage prediction, 


these blockage models can be utilized for evaluation purposes.


 


 


We believe these aspects provide reasonable tools for 


evaluation of temporal bea


m prediction


 


within the scope of Rel


-


18 SI.


 


System


-


level simulations


, 


e.g., for 


i


n


door hotspot (InH)


 


and


 


urban micro


 


(


UMi


)


 


deployments


,


 


are suggested to evaluate the system performance of temporal beam prediction.


 


 


Given the 


tools put forward in [2]


 


which enable different aspects related to temporal beam prediction, a set of simulation 


assumptions need to be agreed upon for the purpose of


 


calibrating simulation results. 


Some of the proposed aspects are:


 


 


·


 


Consider different scenarios for UE mobility and identify for which scenarios temporal beam prediction 


may


 


be


 


beneficial


 


through evaluations


.
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