Page 1
[bookmark: _Hlk495298459]3GPP TSG RAN WG1 #109-e	R1-2205023
e-Meeting, May 9th – 20th, 2022

Agenda item:	9.2.1
Source: 	Qualcomm Incorporated
Title: 	General Aspects of AI/ML Framework
Document for:	Discussion/Decision
Introduction
At RAN #94, a new study on artificial intelligence/machine learning for NR air interface has been approved [1], with the main goal of exploring the benefits of augmenting the air interface with features enabling improved support of AI/ML-based algorithms for enhanced performance and/or reduced complexity/overhead.
Through studying a few carefully selected use cases, the goal is to identify a common AI/ML framework, including functional requirements of AI/ML architecture, which could be used in subsequent projects. The study should also identify areas where AI/ML could improve the performance of air-interface functions.
The study will serve to identify what is required for an adequate AI/ML model characterization and description establishing pertinent notation for discussions and subsequent evaluations. Various levels of collaboration between the gNB and UE are identified and considered.
Specification impact will be assessed in order to improve the overall understanding of what would be required to enable AI/ML techniques for the air interface.

The SI consists of studying individual use cases as well as deriving a general framework for AI/ML. Below we summarize the goal of the study as shown in [1] relevant to the general framework:
AI/ML model, terminology, and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g.,
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting separate or joint ML operations.
· Characterize lifecycle management of AI/ML model: e.g., model training, model deployment, model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference
· Identify common notation and terminology for AI/ML related functions, procedures, and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate
Terminologies
RAN3 study FS_NR_ENDC_data_collect [2] captures basic terminology on AI/ML:
· Data collection: Data collected from the network nodes, management entity or UE, as a basis for AI/ML model training, data analytics, and inference.
· AI/ML Model: A data driven algorithm by applying machine learning techniques that generates a set of outputs consisting of predicted information and/or decision parameters, based on a set of inputs
· AI/ML Training: An online or offline process to train an AI/ML model by learning features and patterns that best present data and get the trained AI/ML model for inference.
· AI/ML Inference: A process of using a trained AI/ML model to make a prediction or guide the decision based on collected data and AI/ML model.
These are commonly understood, generic definitions, that RAN1 can continue to use without ambiguity. As the above descriptions are rather specific to RAN3 objectives, we propose to adopt these definitions with the following modification in order to better reflect the broader objective of the RAN1 study involving network, devices, and air-interface:
· Data collection: Data collected from the network nodes, management entity, UE, or over-the-top servers, as a basis for AI/ML model training, data analytics and inference.
· AI/ML Model: A data driven algorithm by applying machine learning techniques that generates a set of desired outputs based on a set of inputs. An AI/ML Model may be a deep neural network, a classical model such as regression, SVM, decision trees, or any other data driven algorithm.
· AI/ML Training: An online or offline process to train an AI/ML model by learning the input/output relationship in a data driven manner and get the trained AI/ML model for inference. This includes both initial training and adaptation of the AI/ML Model. Methods of AI/ML Training include (but are not limited to) supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning.
· AI/ML Inference: A process of using a trained AI/ML model to produce a set of outputs based on a set of inputs.
[bookmark: _Ref101884208][bookmark: _Ref102056311][bookmark: p1][bookmark: _Toc102120426][bookmark: _Toc102122800]Proposal 1: The following terms should be adopted and defined accordingly.
- Data collection
- AI/ML Model
- AI/ML Training
- AI/ML Inference

Further, there are some terminologies that may be interpreted differently by different companies, where RAN1 may want to converge on clear definitions. These include:
· On-device Model: AI/ML Model whose inference happens in the UE
· [bookmark: _Hlk102052679]On-network Model: AI/ML Model whose inference happens at the network side
· [bookmark: _Hlk102052687]Cross-node (X-node) Model: AI/ML Model whose inference happens jointly across the UE and the network
· On-device Training: AI/ML Training in the UE (as opposed to AI/ML training at the MNO network, infra-vendor network, or an over-the-top server)
· Online Training: AI/ML Training approach where AI/ML Model used for inference is updated while data are being observed (as opposed to Offline Training where the AI/ML Training is performed based on a sufficient amount of prior data collection)
Note 1: Depending on context, the definition of On-device Model (on-network Model) may include the UE-side (network-side) AI/ML Model of a cross-node AI/ML model.
Note 2: Online Training of an On-device Model most likely requires On-device Training capability.
Note 3: Offline Training is applicable not only for an initial AI/ML Model training, but also for retraining and/or continual update of the AI/ML Model.

[bookmark: _Ref101884215][bookmark: _Ref102057236][bookmark: p2][bookmark: _Toc102120427][bookmark: _Toc102122801]Proposal 2: The following terms should be adopted and defined accordingly.
- On-device Model
- On-network Model
- Cross-node (X-node) Model
- On-device Training
- Online Training

Throughout the document, we will often use ML in place of AI/ML as shorthand.

As the Rel-18 study will be on AI/ML for air-interface, it will cover aspects related to on-device, on-network, and cross-node models.
As it will be the first time that 3gpp studies on-device and cross-node models, we will start off by providing, in Sections 3-5, backgrounds and observations on on-device and X-node models, concrete understanding of which we believe will be important for discussion of the Rel-18 study.
After that, we will cover, in Sections 6-9, AI/ML frameworks and specification aspects for AI/ML for air-interface, applicable across on-device, on-network, and X-node models.

[bookmark: _Ref101724358]Model development framework for On-device Models

[image:]
[bookmark: _Ref101709195]Figure 1: Model development framework for On-Device Models

Figure 1 illustrates a typical model development process for On-Device Models. On-Device Models for PHY/MAC functionalities require careful optimization for power consumption, hardware area, latency, and concurrency with other PHY/MAC functionalities and require extensive testing. As such, they require elaborate offline design process for the ML model design, training, compilation to a target-device-specific run-time image, and testing.
As the first step, data may be collected from devices. It is highly desirable that data be collected in large scale from commercially deployed devices across diverse network deployments, devices, and environments. Such a large-scale data collection from commercially deployed devices is important for commercial-grade ML model development, in order to ensure proper performance, robustness, and coverage of the developed ML Model(s).
Assistance information for dataset collection could be helpful in the model development process. For example, a family of ML models may have to be developed for the given functionality (e.g., site-specific ML Models for positioning), and the decision of how many models to develop in the family can be aided by meta-information provided during the dataset collection process.
ML model development is typically an iterative process of data collection, model design, training, and performance validation.
After one ML Model or a family or ML Models are developed, they need to be compiled for on-device inference. This step may include model quantization and compression for a fixed-point inference. The fixed-point ML Models go through standalone and end-to-end performance evaluations for target KPIs such as throughput and BLER. The designed ML Models then may be mapped to a sequence of operations for execution targets (e.g., hardware, firmware, DSP, neural accelerator) and converted into run-time binary images. This process involves various optimization for power, area, and latency, via various levels of parallelism and optimization decisions. The model compilation process is often target-device specific. That is, multiple run-time images may have to be generated for a single ML Model. Finally, the run-time images are tested for correctness, and the UE with the run-time image goes through extensive modem testing to ensure error-free operations in conjunction with the rest of the modem implementation.
The entire process from data collection, model design, training, compile, and testing is an iterative engineering process, and key decisions are often made in the context of the overall modem and UE design in consideration of optimization across performance, power consumption, chip area, latency, concurrency, memory efficiency, hardware reuse, etc.

[bookmark: _Ref101890791][bookmark: o1][bookmark: _Toc102120478][bookmark: _Toc102122619]Observations 1: Development of On-device Models is an iterative and extensive engineering process of data collection, model design, training, compile, and testing.

[bookmark: _Ref101890798][bookmark: _Toc102120479][bookmark: _Toc102122620][bookmark: _Hlk101723468][bookmark: o2]Observations 2: Model development can benefit from training data assistance.

While the above illustration was given for initial model development, the same engineering process (i.e., further data collection, model re-design, re-training, and testing) can be repeated for model re-training and/or new model development after initial models are deployed. That is, after initial ML Models are deployed at UEs, the models may be re-trained as needed, and updated models may be deployed to the UEs. The model re-training can be based on continual or on-demand data collection and could be aided/triggered by results from model performance monitoring. Framework-wise, the model re-training framework is mostly an offline engineering procedure, akin to initial model development.

[bookmark: _Ref101890849][bookmark: _Toc102120480][bookmark: _Toc102122621]Observations 3: Once initial On-Device ML Models are deployed, the initial models may be tuned via re-training or updated via newly developed models through offline engineering process.

[bookmark: _Ref101884233][bookmark: p3][bookmark: _Toc102120428][bookmark: _Toc102122802][bookmark: _Hlk102117814]Proposal 3: Rel-18 study should take into account offline-engineering nature of On-device Model developments, so that concrete specification recommendations could be derived toward Rel-19 WI.

[bookmark: _Ref101724396]On-device Model life cycle management (LCM)
Once On-Device ML Models are deployed and operational in commercial UEs, we may want to monitor their performance. Reasons for model performance monitoring may include:
· Data-driven models may not have performance guarantee.
· Data distribution may shift after deployment due to e.g., environment changes
· A family of models has been deployed, and we want to make model selection decision (i.e., decision on which model among a family of models to use for inference) based on performance.
· Over time, models and/or their parameters may be updated by further engineering without indicating the change to the network.
· Models may not have been fully developed at the time of initial UE deployment

Certain decisions, either dynamically or offline, may be made based on the model performance monitoring result. The ML Model may be deactivated upon performance issue. Further engineering decisions may be made such as further data collection and/or model retraining or re-development. Based on UE mobility or other considerations, a model used for inference may be switched from one model to another within a family of models for the same functionality.

There are several different ways based on which the performance of an On-device Model may be monitored.
· Firstly, the performance may be monitored by the UE running the inference.
· Secondly, the UE may occasionally send inference results or inference related KPIs to an over-the-top (OTT) server(s) managed by the UE vendor or other entities, where performance dashboards may be monitored across UEs and decisions such as model re-training or re-development may be made autonomously or by engineering teams. New data may be continuously collected and sent to the OTT server(s) for performance monitoring, re-training, and model re-development. Decisions to fallback to a non-ML model may be made based on coverage areas, performance monitoring, or other factors. Similarly, model switching decisions within a model family can be made based on coverage areas, performance monitoring, or other considerations.
· Thirdly, 3gpp network (e.g., MNO or infra-vendor network) may explicitly monitor the On-device Model performance. In this scenario, 3gpp network may configure the ML Model inference at UE, activate the ML model, switch inference to another ML model within a model family, and deactivate the ML model. These decisions can be made by several factors such as the serving cell ID, coverage region, performance monitoring results, or other considerations.
KPIs for performance monitoring will be use-case specific, and in case performance monitoring by 3gpp network is desired, 3gpp may define use-case-specific reporting from the UE to aid performance monitoring. For example, in case of beam prediction, the network may ask the UE to occasionally perform and report an actual measurement in addition to a predicted measurement, which would allow the network to assess the accuracy of prediction by comparing the actual and predicted measurements.
Performance monitoring results by a 3gpp network and performance KPIs may be communicated back to the UE. This can in turn be sent to OTT server(s) managing the model for further decision on model re-training or model re-development.

[bookmark: _Ref101890922][bookmark: _Toc102120481][bookmark: _Toc102122622][bookmark: o4]Observations 4: On-device Model life cycle management (LCM) includes model activation, model switching, model deactivation, and performance monitoring.
[bookmark: _Ref101890927][bookmark: _Toc102120482][bookmark: _Toc102122623][bookmark: o5]Observations 5: On-device Model performance monitoring may be performed at the UE, at the proprietary OTT server(s) managed by the vendor or other entities, and/or at the 3gpp network (e.g., MNO or infra-vendor network).
[bookmark: _Ref101890938][bookmark: _Toc102120483][bookmark: _Toc102122624][bookmark: o6]Observations 6: On-device Model update, such as model re-training and new model development may be performed offline, similar to the initial model development. On-device model update decision may be based on performance monitoring results. New data may be continually collected from the device for performance monitoring, Model update decision, re-training, and new model training.

[bookmark: _Ref102053759]Model development and LCM for cross-node ML models
In cross-node (X-node) ML, inference happens jointly across the network and the device. An example is cross-node ML CSF, where an “encoder” and “decoder” ML Models work in tandem to compress and reconstruct the channel state information.
As a X-node ML Model includes an On-device Model as one component, discussions in Section 3 on the On-device Model development framework also apply for X-node ML models. Namely, cross-node ML model development, including initial development, re-training, and new model development, is an iterative and extensive engineering process of data collection, model design, training, compile, and testing. Cross-node ML model development can benefit from training data assistance.
As X-node ML Model involves a model pair working in tandem at the device and the network sides, development of a X-node ML model requires joint training of the model pair. This may be done in any manner between the two involved parties (e.g., between the device vendor and the gNB vendor) or in multi-party agreement (e.g., via agreement among multiple device and gNB vendors) in their offline engineering.
Discussions in Section 4 on the LCM still apply for X-node ML models.
Therefore, it will be understood that, unless otherwise stated, On-device Models also include device-side Models of X-node Models.
[bookmark: _Ref101890966][bookmark: _Toc102120484][bookmark: _Toc102122625]Observations 7: Aforementioned model development and LCM discussions equally apply to X-node ML models.

[bookmark: _Ref102053807]Potential specification impacts and Rel-18 study focus
[bookmark: _Ref101734658]On-device Model (including the device-side model of a cross-node model)
From the SID RP-213599, one of the study objectives is identify various levels of collaboration between UE and gNB in order to facilitate the framework discussion and identification of standards impact.
For On-device Models (including the device-side model of cross-node models), its standardization impact is directly related to the degree of network’s assistance for training/inference and the network’s involvement in the operation of the On-device Models. Toward this end, we can envision two different model management scenarios:
· Unregistered On-device Models: ML models that are managed proprietarily outside 3gpp (e.g., by the device vendor)
· Registered On-device Models: ML models that are registered to and managed by the 3gpp network

	On-device model type
Impact
	Unregistered On-device Models
	Registered On-device Models

	Model performance monitoring
	By UE or proprietary OTT server(s)
	By UE, proprietary OTT server(s), or 3gpp network

	Model activation, switching, and deactivation
	Proprietary by UE or OTT server(s)
	3gpp network

[bookmark: _Ref101884237][bookmark: p4][bookmark: _Toc102120429][bookmark: _Toc102122803]Proposal 4: Consider registered On-device Models and unregistered On-device Models as two On-device Model categories for Rel-18 study and discussion.

Unregistered On-device Models may have standardization impact including assistance during dataset collection and/or assistance information for training/inference.
For both unregistered and registered on-device models, assistance during dataset collection could be provided. Further, assistance information for training/inference could be provided.

[bookmark: _Ref101890996][bookmark: _Toc102120485][bookmark: _Toc102122626][bookmark: o8]Observations 8: For unregistered On-device Models, potential specification impact includes training data assistance and assistance information for training/inference.

[bookmark: _Ref101891016][bookmark: _Toc102120486][bookmark: _Toc102122627][bookmark: o9]Observations 9: For registered On-device Models, potential specification impact includes, in addition to training data assistance and assistance information for training/inference, activation / deactivation, model switching, UE capability, and model performance monitoring.

Unregistered on-device models can naturally remain proprietary. That is, the 3gpp network does not need to know the model design (i.e., model structure and associated parameters).
Registered on-device models may also remain proprietary, at least for the purpose of model activation, switching, deactivation, and performance monitoring. Specifically, the On-dive Model may be assigned an ID, and the 3gpp network can use the ID to refer to the model for the purpose of activation, switching, deactivation, and performance monitoring. Thus, the 3gpp network does not need to know the model design (i.e., model structure and associated parameters).
Likewise, X-node ML models, which would typically be Registered Models, may remain proprietary. That is, for the purpose of model activation, switching, deactivation, and performance monitoring, the model structure and parameters need not be known at the 3gpp network. In fact, the model structure and parameters do not need to be revealed outside the party (parties) that were involved in designing the model. It is up to the arrangement between the party (parties) that were involved in designing the model, whether the UE-side model (the gNB-side model) should be known at the gNB vendor (the UE vendor).

[bookmark: _Ref101884251][bookmark: p5][bookmark: _Toc102120430][bookmark: _Toc102122804]Proposal 5: For both Registered and Unregistered On-device Models, the model can remain proprietary, and its structure and parameters need not be revealed for the purpose of model activation, switching, deactivation, and performance monitoring.

[bookmark: _Ref101884255][bookmark: p6][bookmark: _Toc102120431][bookmark: _Toc102122805]Proposal 6: For X-node ML models, the model can remain proprietary, and its structure and parameters need not be revealed for the purpose of model activation, switching, deactivation, and performance monitoring. It is up to the arrangement between the party (parties) that were involved in designing the model, whether the UE-side model (the gNB-side model) should be known at the gNB vendor (the UE vendor).

Below are some examples of on-device (and X-node) ML models with various amounts of network’s involvement. These are illustrative examples for the purpose of identification of spec impact for various levels of collaboration and are not meant to provide exhaustive combinations of collaboration aspects. We believe that it may be unproductive for 3gpp to try to list and agree on exhaustive combinations of collaboration aspects. Rather, we believe that it should be sufficient to discuss each identified specification aspect (as identified in this discussion and summarized in Proposal 7) separately and study their applicability for each (sub)-use case under discussion.

	Example
	Potential spec impact

	Pure UE implementation
The model is unregistered. The model is proprietary, its development and training are outside 3gpp, and the model is fully tested offline for inference capability at UE by the UE vendor. The model inference is pure UE implementation. The network is unaware of the AI/ML model running at UE.
	-

	AI/ML assistance
The model is unregistered. The model is proprietary, its development and training are outside 3gpp, and the model is fully tested offline for inference capability at UE by the UE vendor. The model inference is pure UE implementation.
The network provides assistance data/signaling for training/inference. However, the network is unaware of the AI/ML model running at UE.
	· Training data assistance
· Assistance data for training/inference

	AI/ML monitoring
The model is proprietary, its development and training are outside 3gpp, and the model is fully tested offline for inference capability at UE by the UE vendor.
Unlike the above examples, the model is registered. That is, the 3gpp network activates/deactivates the inference at UE and monitors its performance. The network knows the model via an ID but does not know the model structure nor parameters.
	· UE capability for inference
· Model activation, deactivation, switching, performance monitoring

	X-node ML model with AI/ML monitoring
The X-node model is proprietary, its development and training are outside 3gpp, and the model is fully tested offline for inference capability at UE and gNB by the UE vendor and the gNB vendor.
The model is registered. That is, the 3gpp network activates/deactivates the inference at UE and gNB and monitors its performance. The network knows the model via an ID but does not know the model structure nor its parameters.
Model activating, switching, and deactivation requires coordination of a right model pair across UE and gNB. Inference operation requires joint UE and gNB operation.
	· UE capability for inference
· Model activation, switching, deactivation, performance monitoring
· Joint inference operation

In summary, typical model development and management flow may look like the following:
· Dataset collection
· Offline model development, run-time binary image generation, testing, and deployment at UE (outside 3gpp)
· Inference operation
· Model activation / switching / deactivation
· Life cycle management after deployment
· Performance monitoring and related signaling support (during inference)
· Further data collection
· Offline model re-training and/or new model development (outside 3gpp)

[bookmark: _Ref101883539][bookmark: _Ref101884261][bookmark: _Ref102056813][bookmark: p7][bookmark: _Toc102120432][bookmark: _Toc102122806]Proposal 7: Study the following aspects for general specification frameworks for On-device Models
- Training data assistance
- Assistance information for training and inference
- Model activation, switching, and deactivation
- Model performance monitoring and related signaling support
- UE capability
- X-node inference operation (for X-node models)

Network-controlled On-device Model download/training and Rel-18 study scope

Beyond what was discussed in previous sections, one could also think of the following aspects for On-device Models, where the 3gpp network is involved in On-device Model generation to varying degrees:
· Model parameter download at UE from 3gpp network
· This requires the On-device Model to be known at the network.
· The structure of the On-device Model may be developed and tested offline outside 3gpp.
· Network-managed On-device Training, including federated learning
· This requires the On-device Model to be known at the network.
· This requires On-device Training capability at UE.
· The structure of the On-device Model may be developed and tested offline outside 3gpp.
· Unseen model structure download at UE from 3gpp network
· This requires advanced UE capability description.

While the above 3gpp-network-controlled On-device Model download/training frameworks may look attractive on the surface, we do not expect UEs in the 5G-Advanced timeframe to be able to support them. This is because, as elaborated earlier, On-device Models today and in the near future need offline engineering for model development and testing. This includes model development, training, quantization, compiling the model to hardware primitives with power, area, and latency consideration, target-chip-specific run-time binary image generation, and going through full UE testing. Note that non-ML algorithms running at the device go through similar offline development and extensive UE testing, and ML algorithms will not be exceptions.
Moreover, the run-time image may be target specific, and the model downloading procedure may also be proprietary and specific to each target-device. Inputs to an On-device Model is also implementation specific (see Observations 11), so, the On-device Model training and update is better handled by the UE vendor.
We also need to think of what benefits the network-controlled On-device Model download/training provides. As discussed earlier, proper performance monitoring and model activation, switching, and deactivation procedures can be defined to ensure robust On-device Model performance, and if needed, performance issues and KPIs can be notified to the UE or the OTT server managing the On-device Model that would trigger offline engineering efforts to address the performance issue by re-training the model or re-developing a new model. In summary, we do not see strong reason why managing On-device Models by the 3gpp network would bring benefits, compared to managing them by a proprietary UE-side OTT server that has better knowledge of the models, considering all the practical challenges mentioned in the preceding paragraphs. Even if the challenges for On-device Training and On-device Model downloading are addressed in the future, proprietary OTT servers can equally, if not better, manage the On-device Training and On-device Model downloading for the On-device Models.
Therefore, in terms of concrete outcome that can lead to specification work in the potential Rel-19 WI, we believe that 3gpp should focus on the offline model development scenario mentioned up to Subsection 6.1. In other words, the On-device Model is proprietary, its development and training are outside 3gpp, and the On-device Model is fully tested offline for inference capability at UE.

[bookmark: _Ref101884265][bookmark: p8][bookmark: _Toc102120433][bookmark: _Toc102122807]Proposal 8: For On-device Models, focus on offline model development and training in the Rel-18 SI, where models are designed and trained outside 3gpp. The Rel-18 SI may still scope out, if sufficient benefits are identified, network-controlled on-device model generation to give guidance for future study, with the understanding that such scoping may be highly speculative and unlikely to be realizable within the 5G-Advance timeframe.

Network-side models
For network-side models, the standardization impact for network-side models is directly related to the degree of UE’s providing assistance for training/inference and UE’s involvement in the models’ performance monitoring.
In certain use cases, UE may provide assistance data/measurement for training/inference of network-side models.
In certain use cases, it may be beneficial for UEs to be aware of the AI/ML model running at the network. The activation/deactivation of the AI/ML model may be signaled to the UE, along with a mode identification, and UE may be involved in directly monitoring or in providing feedback needed for performance monitoring of the model.

[bookmark: _Ref101884270][bookmark: p9][bookmark: _Toc102120434][bookmark: _Toc102122808]Proposal 9: For network-side AI/ML models, study scenarios where UE may be aware of AI/ML models running at the network, and study model monitoring procedure as applicable. Study related specification impacts.

[bookmark: _Ref101736028]More details on some specification aspects
Training data assistance
Training data assistance refers to various types of assistance information that could be used during model development process. Below we provide several illustrative examples.

Meta-data for data collection
Model development process for On-device Models may involve decision on whether one ML model or a family of ML models should be used. For example, a model developer (e.g., a UE vendor) may decide in favor of developing one large model across various deployment scenarios or several smaller models one for each deployment scenario. As another example, a model developer may want to develop one model across SNRs or two separate models for high and low SNRs. As yet another example, a model developer may want to develop one model across different CSI-RS beam configurations or several smaller models one for each CSI-RS beam configuration. For these model development purposes, it will be helpful if certain meta-data is made available at the UEs collecting data. While certain meta-data, such as a serving cell ID, RSRP, etc., may be readily available, other information such as CSI-RS beam configuration may not be known at UEs. In such a case, it may be beneficial to introduce signaling of such meta-data (such as CSI-RS beam configuration) to UEs as assistance signaling for data collection.
As an example, consider X-node CSF as an example, and suppose that a given gNB site may use several different CSI-RS beam configurations. These could include, for example, combinations of antenna to TxRU mapping, digital/analog precoding, and downtilt angles. In this scenario, a given CSI-RS port would present different channel distributions observed at UE, just like different deployment scenarios or different SNRs would do. In this case, it may be beneficial to let UE know which underlying beam configuration was used for the given CSI-RS instance. Suppose the gNB uses N different beam configurations for CSI-RS and that the configuration ID is signaled to UE as a meta information. This would allow the model developer to categorize the collected CSI-RS observations into N different groups and help the model developer determine whether one model or a family of K<=N models may have to be developed.
If the model developer decides to develop K>1 different models in the family, then at inference time, the right model would have to be chosen during inference time that matches with the CSI-RS beam configuration used at inference. This may be done by either gNB or UE. In case the K models are Registered, the configuration IDs {1,...,N} that each of the K models supports could be provided to the network during the model registration, so that the gNB may know which of the K models to activate at UE in preparation for a CSI-RS beam configuration the gNB intends to use. Alternatively, the configuration ID {1,...,N} could be signaled to UE during inference time as meta information, so that UE can autonomously select the right model among the K models.

[bookmark: _Ref101884363][bookmark: _Ref102057611][bookmark: p10][bookmark: _Toc102120435][bookmark: _Toc102122809]Proposal 10: Study meta-data assistance signaling for UE’s training data collection for On-device Model development. Here, meta-data refers to auxiliary information about data. An example meta-data for CSI-RS is its beam configuration ID.

(Noisy) ground truth
Example 1: For UE-based positioning, ground truth information may be provided by the network to the UE to aid On-device Model development and training. The ground truth may be approximate or noisy, and the model development can utilize ML training techniques involving noisy ground truth. Confidence level of the ground truth (such as its variance) may also be provided.
Example 2: For UE-assisted positioning where UE is using On-device Model to report measurements, network may provide measurement error feedback to the UE. The measurement error feedback may be based on approximate ground truth the network has, and the model development can utilize ML training techniques involving noisy ground truth.

[bookmark: _Ref101884368][bookmark: p11][bookmark: _Toc102120436][bookmark: _Toc102122810]Proposal 11: Study (noisy) ground truth assistance signaling for UE’s training data collection of On-device Models

Assistance information for training and inference
Assistance information for training and inference refers to various types of assistance information that may be used as input to the ML Model.

Example: Beam information, such as boresight angle, 3dB beam width, and/or beam shape information, could be provide as assistance information to UE. Such assistance information may be used as an auxiliary input to On-device Models for beam prediction.
It is noted that the use of more explicit input such as beam information, as opposed to logical beam IDs, as an input to an ML Model has several well-known benefits, such as
· Better sample efficiency, i.e., requires a smaller number of training samples
· Better model generalization performance, i.e., allows a single model to cover diverse scenarios, and avoids the need of developing multiple models across different beam codebook deployments.

[bookmark: _Ref101884374][bookmark: p12][bookmark: _Toc102120437][bookmark: _Toc102122811]Proposal 12: Study assistance information signaling to UE for On-device Model training and inference.

Signaling for performance monitoring
Performance monitoring of On-device Models may be facilitated by introducing the following types of signaling:
· Dedicated RS for the purpose of performance monitoring
· Feedback needed for performance monitoring
· Indication of performance monitoring result to UE or UE vendor (3gpp or outside 3gpp)
· Could be used by the UE vendor to re-train the model or train a new model.

[bookmark: _Ref101891095][bookmark: _Toc102120438][bookmark: _Toc102122812]Proposal 13: For performance monitoring of On-device Models, study the following aspects:
- Dedicated RS for the purpose of performance monitoring
- Feedback needed for performance monitoring
- Indication of performance monitoring result to UE or UE vendor (3gpp or outside 3gpp)

For performance monitoring of network-side models:

[bookmark: _Ref101884273][bookmark: p9b][bookmark: _Toc102120439][bookmark: _Toc102122813]Proposal 14: For performance monitoring of network-side models, study the following aspects for general specification frameworks
- Dedicated RS for the purpose of performance monitoring
- Feedback needed for performance monitoring (in case the performance monitoring is done at gNB)
- Reporting of performance monitoring result to gNB (in case the performance monitoring is done at UE)

General observations and principles for AI/ML framework

Dataset-first principle
It is well known that data are very important and a major determining factor for ML Model performance and robustness. As such, it is highly desirable that data be collected on a large scale from commercially deployed devices across diverse network deployments, devices, and environments. Such a large-scale data collection from commercially deployed devices is important for commercial-grade ML model development, in order to ensure proper performance, robustness, and coverage of the developed ML model(s). Therefore, for a given use case, training data assistance may have to be in place first, before On-device Models for the use case may be able to be developed offline and deployed at UEs.
[bookmark: _Ref101891137][bookmark: _Toc102120487][bookmark: _Toc102122628][bookmark: o10]Observations 10: Dataset may have to be collected first at UEs, and have training data assistance in place, before corresponding On-device Models are developed.

Input to on-device model is implementation-specific
For proprietary On-device Models, input to the model cannot be specified, because specific input and its format to the model is up to UE implementation. For example, for “CSI-RS channel” input, UE may want to use either time or frequency domain inputs, apply certain averaging across subcarriers, apply certain timing and frequency offset correction, certain scaling, and certain noise whitening. All those decisions are implementation-specific and cannot be mandated. UE may also want to use other auxiliary inputs, such as an SNR estimate, a Doppler estimate, sensor measurements, map information, etc. Whether to use any of these auxiliary inputs to the model is implementation-specific and cannot be mandated. Similarly, any pre-processing or post-processing UE performs is up to UE implementation. Also, whether UE uses an end-to-end ML approach, or a conventional signal processing for feature extraction followed by an ML model that takes the features as input, is also up to UE implementation. Therefore, input to On-device Model cannot be specified.
We note that, for 3gpp study purpose, 3gpp may discuss and agree on a nominal input for the evaluation purpose (such as “CSI-RS channel observations from a reference resource”).
[bookmark: _Ref101886002][bookmark: _Ref101891149][bookmark: o11][bookmark: _Toc102120488][bookmark: _Toc102122629]Observations 11: Input to a proprietary On-device Model cannot be specified. 3gpp can only agree on nominal input for the purpose of evaluation study.

RAN4 tests vs. performance monitoring
Given that On-device Models may be updated rather frequently, 3gpp may want to consider how to define core requirements for devices with frequently updated AI/ML models. In particular, we propose that 3gpp study model performance monitoring.
[bookmark: _Ref101884378][bookmark: _Ref102057670][bookmark: p13][bookmark: _Toc102120440][bookmark: _Toc102122814]Proposal 15: Consider the role of model performance monitoring in relation to RAN4 tests.

[bookmark: _Ref102053814]Aspects related to RAN 1 study

Dataset
[bookmark: _Ref101884382][bookmark: _Ref102056198][bookmark: p14][bookmark: _Toc102120441][bookmark: _Toc102122815]Proposal 16: Rel-18 RAN1 study dataset principles:
- Strive to use 3gpp channel models from TR 38.901 for the Rel-18 evaluation study.
- Careful consideration on spatial consistency in use cases such as positioning
- Agree on evaluation methodology rather than on dataset
- Companies may voluntarily share dataset, either synthetic or real-world dataset
- Companies are encouraged to share sufficient details on the evaluation assumptions, statistics, and/or experiment setups for the dataset, as otherwise evaluation results based on the dataset may be hard to assess and questionable to be accepted for the study.

AI/ML model

[bookmark: _Ref101884387][bookmark: _Ref102056218][bookmark: p15][bookmark: _Toc102120442][bookmark: _Toc102122816]Proposal 17: Rel-18 RAN1 study AI/ML model principles:
AI/ML models remain proprietary and are not specified in 3gpp.
For the 3gpp study,
- Companies are encouraged to share description of their AI/ML model and training procedure.
- Companies may voluntarily share their AI/ML models.

For Rel-18 evaluation study, we do not see a strong reason to agree on a baseline AI/ML model for a calibration purpose. Even if Rel-18 agrees to use an agreed-upon baseline AI/ML model, the model should be simple enough and shall be used only for the calibration purpose and shall have no bearing on performance requirement or RAN4.

Conclusions
In this paper, we discussed general aspects for AI/ML framework for Rel-18 SI and made the following observations and proposals.
Proposal 1: The following terms should be adopted and defined accordingly. - Data collection - AI/ML Model - AI/ML Training - AI/ML Inference
Proposal 2: The following terms should be adopted and defined accordingly. - On-device Model - On-network Model - Cross-node (X-node) Model - On-device Training - Online Training
Proposal 3: Rel-18 study should take into account offline-engineering nature of On-device Model developments, so that concrete specification recommendations could be derived toward Rel-19 WI.
Proposal 4: Consider registered On-device Models and unregistered On-device Models as two On-device Model categories for Rel-18 study and discussion.
Proposal 5: For both Registered and Unregistered On-device Models, the model can remain proprietary, and its structure and parameters need not be revealed for the purpose of model activation, switching, deactivation, and performance monitoring.
Proposal 6: For X-node ML models, the model can remain proprietary, and its structure and parameters need not be revealed for the purpose of model activation, switching, deactivation, and performance monitoring. It is up to the arrangement between the party (parties) that were involved in designing the model, whether the UE-side model (the gNB-side model) should be known at the gNB vendor (the UE vendor).
Proposal 7: Study the following aspects for general specification frameworks for On-device Models - Training data assistance - Assistance information for training and inference - Model activation, switching, and deactivation - Model performance monitoring and related signaling support - UE capability - X-node inference operation (for X-node models)
Proposal 8: For On-device Models, focus on offline model development and training in the Rel-18 SI, where models are designed and trained outside 3gpp. The Rel-18 SI may still scope out, if sufficient benefits are identified, network-controlled on-device model generation to give guidance for future study, with the understanding that such scoping may be highly speculative and unlikely to be realizable within the 5G-Advance timeframe.
Proposal 9: For network-side AI/ML models, study scenarios where UE may be aware of AI/ML models running at the network, and study model monitoring procedure as applicable. Study related specification impacts.
Proposal 10: Study meta-data assistance signaling for UE’s training data collection for On-device Model development. Here, meta-data refers to auxiliary information about data. An example meta-data for CSI-RS is its beam configuration ID.
Proposal 11: Study (noisy) ground truth assistance signaling for UE’s training data collection of On-device Models
Proposal 12: Study assistance information signaling to UE for On-device Model training and inference.
Proposal 13: For performance monitoring of On-device Models, study the following aspects: - Dedicated RS for the purpose of performance monitoring - Feedback needed for performance monitoring - Indication of performance monitoring result to UE or UE vendor (3gpp or outside 3gpp)
Proposal 14: For performance monitoring of network-side models, study the following aspects for general specification frameworks - Dedicated RS for the purpose of performance monitoring - Feedback needed for performance monitoring (in case the performance monitoring is done at gNB) - Reporting of performance monitoring result to gNB (in case the performance monitoring is done at UE)
Proposal 15: Consider the role of model performance monitoring in relation to RAN4 tests.
Proposal 16: Rel-18 RAN1 study dataset principles: - Strive to use 3gpp channel models from TR 38.901 for the Rel-18 evaluation study. - Careful consideration on spatial consistency in use cases such as positioning - Agree on evaluation methodology rather than on dataset - Companies may voluntarily share dataset, either synthetic or real-world dataset - Companies are encouraged to share sufficient details on the evaluation assumptions, statistics, and/or experiment setups for the dataset, as otherwise evaluation results based on the dataset may be hard to assess and questionable to be accepted for the study.
Proposal 17: Rel-18 RAN1 study AI/ML model principles: AI/ML models remain proprietary and are not specified in 3gpp. For the 3gpp study, - Companies are encouraged to share description of their AI/ML model and training procedure. - Companies may voluntarily share their AI/ML models.

Observations 1: Development of On-device Models is an iterative and extensive engineering process of data collection, model design, training, compile, and testing.
Observations 2: Model development can benefit from training data assistance.
Observations 3: Once initial On-Device ML Models are deployed, the initial models may be tuned via re-training or updated via newly developed models through offline engineering process.
Observations 4: On-device Model life cycle management (LCM) includes model activation, model switching, model deactivation, and performance monitoring.
Observations 5: On-device Model performance monitoring may be performed at the UE, at the proprietary OTT server(s) managed by the vendor or other entities, and/or at the 3gpp network (e.g., MNO or infra-vendor network).
Observations 6: On-device Model update, such as model re-training and new model development may be performed offline, similar to the initial model development. On-device model update decision may be based on performance monitoring results. New data may be continually collected from the device for performance monitoring, Model update decision, re-training, and new model training.
Observations 7: Aforementioned model development and LCM discussions equally apply to X-node ML models.
Observations 8: For unregistered On-device Models, potential specification impact includes training data assistance and assistance information for training/inference.
Observations 9: For registered On-device Models, potential specification impact includes, in addition to training data assistance and assistance information for training/inference, activation / deactivation, model switching, UE capability, and model performance monitoring.
Observations 10: Dataset may have to be collected first at UEs, and have training data assistance in place, before corresponding On-device Models are developed.
Observations 11: Input to a proprietary On-device Model cannot be specified. 3gpp can only agree on nominal input for the purpose of evaluation study.

References
[1] [bookmark: _Ref101451885]RP-213599, “New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface”, 3GPP RAN Plenary
[2] [bookmark: _Ref101453495]3GPP TR 37.817, Technical Specification Group RAN; Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Study on enhancement for Data Collection for NR and EN-DC (Release 17)

2/9
image1.png

