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Introduction
The new study item on Artificial Intelligence (AI) / Machine Learning (ML) for NR air interface has been approved in [1]. One of the study objectives includes the analysis of solutions for positioning accuracy enhancements in the scenarios with heavy NLOS conditions:
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.
Use cases to focus on:
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1]


In this contribution, we express our views on solutions for AI-based NR positioning.
Considerations on Application of AI/ML Framework for NR Positioning
Technical Problems for AI/ML Positioning
In this section, we consider technical problems related to positioning that can be solved applying Artificial Intelligence (AI) / Machine Learning (ML) framework, including the multipath super resolution in time and spatial domain, utilization of the Non-Line of Sight (NLOS) links for positioning, path reflection order classification, and joint path timing, angle and power estimation using AI/ML methods. 

Multipath Super Resolution in Time and Angular Domain
Multipath Super Resolution in Time
The estimation accuracy of DL-TDOA, UL-TDOA, and Multi-RTT positioning methods using timing-based estimates may be degraded for the bandwidth limited signals. The bandwidth limitation may result in insufficient time resolution for multipath components with fractional sample time delay. For the accurate/precise positioning the fractional sample time delay estimation of the channel multipath components is important and may lead to significant performance improvement. 
Figure 1 shows an example of channel impulse response realization in continuous time and two examples for the sampling time Ts equal to T1 = 0.5 and T2 = 1.0. It may be noted, that the T1 is sufficient for the resolution of all paths in the channel impulse response realization and is equal to the minimal time delay between the channel paths. However, usage of T2 as a sampling time does not allow to resolve the first two paths of the dominant power and causes a fractional sample time delay. 



[bookmark: _Ref99445375]Figure 1: Example of channel impulse response in continuous time

The fractional sample time delay of the multipath components results in channel distortion and appearance of additional channel paths which are not present in the original channel impulse response. 
Figure 2 illustrates an impact of the limited signal bandwidth by example of sampling the original channel impulse response shown in Figure 1 with sample time duration T1 = T2/2 (see Figure 2 a) and T2 = 2×T1. 
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	[image: ]

	(a) Sample time duration – T1 = T2 / 2
(Integer sample delay illustration)
	(b) Sample time duration – T2 = 2×T1
(Fractional sample delay illustration)


[bookmark: _Ref99445975]Figure 2: Impact of limited signal bandwidth and fractional sample delay effect

In the first case, the channel impulse response does not change the shape and all paths present in the original channel realization in Figure 1 can be perfectly resolved.
However, in the second case, the main taps of the channel impulse response are significantly distorted, and additional “tail” path delays appear with respect to the original channel realization shown in Figure 1.
This effect can be further described analytically by using the channel realization in frequency domain, written as follows:
	
,
	(1)


where H(k) is the channel response in frequency domain at the kth frequency subcarrier, Am is the channel amplitude of the mth path, φm is the phase of the mth path, Tm is the time delay of the mth path, Ts is the sampling time duration, D is the total number of channel paths, and N is the total number of subcarriers in the signal spectrum. 
Applying inverse Fourier transform, the discrete time channel impulse response can be found as:
	
,
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where h(n) is the channel coefficient for the nth time sample. The outer sum is taken over the total number of subcarriers N and the inner sum is taken over the total number of channel paths D.
Changing the order of summation in (2), the following equation can be written for the discrete channel impulse response:
	
.
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Finally, introducing the time spreading function σm:
	
,
	(4)


where tm is the fractional time delay equal to the ratio of Tm to the Ts and the equation (3) can be simplified as:
	
.
	(5)


The function σm describes the time spreading of the channel paths with the fractional time delays over the taps in the discrete channel impulse response realization. 
Two limit cases are possible with respect to the channel time delays Tm.

Case 1 – integer time delay:
In the first case, the channel time delay Tm is the multiple integral of the sample time duration Ts:
	
.
	(6)


In that case, the time spreading function σm is reduced to be a Dirac Delta function and the mth channel impulse response coefficient h(m) has a true amplitude Am and phase φm of the continuous time channel impulse response (see example in Figure 2 a). 
The discrete channel impulse response is defined as follows:
	
.
	(7)


Therefore, all path time delays are orthogonal and can be perfectly distinguished. 

Case 2 – fractional time delay:
In the second case, the channel time delay Tm is a fraction of the sample time duration Ts: 
	
.
	(8)


In that case the spreading function σm cannot be reduced to the Delta function and the multipath components with different delays cannot be orthogonalized (see example in Figure 2 b). It means that each discrete time sample h(n) carriers on the information of continuous time delay Tm. 
The equation for h(n) in that case is written in general form as follows:
	
.
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To distinguish the multipath components in (9), the estimation of the σm time spreading functions corresponding to each time delay Tm is required. 
It can be achieved by using the super resolution techniques like Multiple Signal Classification (MUSIC) algorithm, [2]. However, it may be shown, that application of AI-based algorithms can be used to improve the legacy state of art MUSIC like algorithms performance. 

Based on the provided considerations, we have the following proposal:


Study benefits of using AI/ML for timing estimation of multipath components with fractional sample delay (super resolution in time)

Multipath Super Resolution in Space
The multipath resolution in spatial domain is another important area for application of AI-based techniques to improve the performance of the DL-AOD and UL-AOA positioning methods. It is well known that the spatial antenna resolution (beamwidth) is inversely proportional to the aperture size of the antenna array. The antenna aperture size reduction may result in insufficient spatial resolution for the multipath components with the directions of departure/arrival within the antenna pattern beamwidth. 
For the accurate/precise positioning, the angle of departure/arrival estimation of the channel multipath components is important and may lead to significant performance improvement. The problem is very similar to a fractional sample delay estimation in time domain considered earlier but is formulated in spatial domain using azimuth and zenith angles. For simplicity of further consideration, we use a linear vertical antenna array aligned over the z axis that can be characterized by the zenith angle only. 
Figure 3 shows an example of the linear antenna array with N elements spaced by the distance dz and the resulting aperture of size Dz = dz × N and antenna pattern beamwidth Δθ proportional to the ratio λ/Dz characterizing its spatial resolution. It shows the spatial channel structure of four paths coming from different spatial directions defined by the zenith angles (θ0, θ1, θ3, θ4) and two examples for the angle spatial resolution Δθ equal to Δθ1 and Δθ2 (Δθ1 = Δθ2/2). 
It may be noted, that the Δθ1 is sufficient for the resolution of all paths in the spatial channel realization and it is equal to the minimal angle difference between the channel paths. However, usage of Δθ2 as a spatial resolution does not allow to resolve the first two paths with angles of arrival θ0 and θ1. 



[bookmark: _Ref99449774][bookmark: _Hlk98249165]Figure 3: Example of vertical linear antenna array and spatial channel structure

The effect can be further described analytically by using the channel realization in spatial domain, written as follows:
	
,
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where h(k) is the channel coefficient for the kth antenna element, Am is the channel amplitude for the mth path, φm is the phase of the mth path, and θm is the zenith angle of arrival for the mth path. The channel coefficient for the kth antenna element has the additional phase shift equal to:
	
,
	(11)


where dz is the distance between the adjacent equally spaced antenna elements and λ is the wavelength.
Using aperture definition considered earlier, (10) can be modified as:
	
,
	(12)


where Dz is the aperture size of the linear antenna array and N is the total number of antenna elements. 
Applying the beamforming pattern using discrete Fourier codebook, the spatial channel realization is modified as follows:
	
,
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where h(n) is the spatial channel coefficient corresponding to the nth beam in a discrete Fourier codebook. The total number of beams is equal to the total number of antenna elements and represent an orthogonal basis in space. 
The outer sum in (13) is taken over the total number of antenna elements N and the inner sum is taken over the total number of channel paths D.
Changing the order of summation in (13), the following equation can be written for the discrete spatial channel response:
	
.
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Finally, introducing the spatial spreading function σm:
	
,
	(15)


where θm is the zenith angle of arrival and the equation (14) can be simplified as:
	

	(16)


The function σm describes the spatial spreading of the channel paths with the zenith angels θm over the beams in the discrete spatial channel response realization. 
Two limit cases are possible with respect to the zenith angles θm.

Case 1 – integer spatial resolution:
In the first case, the cosine function of θm is multiple integral of the spatial resolution Δθ proportional to the ratio λ/Dz:
	

	(17)


In that case, the spatial spreading function σm is reduced to be a Dirac Delta function and the mth channel coefficient h(m) has a true amplitude Am and phase φm of the original spatial channel realization.
The discrete spatial channel response is defined as follows:
	

	(18)


Note that, the direction corresponding to the maximum for one beamforming vector corresponds to the null values for all other beamforming vectors in the codebook. Therefore, all spatial paths are orthogonal and can be perfectly distinguished. 

Case 2 – fractional spatial resolution:
In the second case, the cosine function of θm is a fractional of the spatial resolution Δθ:
	

	(19)


In that case the spreading function σm cannot be reduced to the Delta function and the multipath components with different zenith angles cannot be orthogonalized. It means that each spatial channel coefficient h(n) corresponding to the nth beam carriers on the information of the zenith angle of arrival θm.
The equation for h(n) in that case is written in general form as follows:
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To distinguish the multipath components in (20), the estimation of the σm spatial spreading functions corresponding to each zenith angle θm is required. 
It can be achieved by using the super resolution techniques like MUSIC algorithm. However, it may be shown, that application of AI-based algorithms can improve the legacy state of art MUSIC like algorithms performance. 

Based on the provided considerations, we have the following proposal:


Study benefits of using AI/ML for angles estimation of multipath components with fractional spatial resolution (super resolution in space)

Multipath Utilization for NR Positioning Based on Image Sources
The legacy positioning methods rely on the Line of Sight (LOS) links where the timing and angular estimations are performed to compute the coordinates of the user device (UE) using measurements acquired with multiple Transmission Reception Points (TRPs). The measurements associated with the Non-Line of Sight (NLOS) links are discarded or their weights are reduced in the positioning equations. 
Although the LOS links provide a reliable estimate of the temporal and spatial parameters, the number of LOS links can be limited especially in the indoor environment. This leads to the substantial reduction of the number of positioning equations and corresponding accuracy degradation of the UE coordinate estimation.
One example could be the Indoor Factory use case scenario with High Density of industrial clutter (InF-DH), where the percentage of LOS links is quite small compared to the percentage of NLOS links. In such environment the multipath (NLOS) components can be used to improve the overall accuracy of NR positioning, if the reflected paths can be considered as additional signals coming from the virtual TRPs (or image sources). This enables to increase the number of positioning equations and improve the positioning accuracy. 
The major problem in this case is determination of the coordinates for the image sources which is not easy, especially in case of an arbitrary and changing indoor environment. The AI/ML based solutions can be effectively used to find the reliable reflections, classify the reflection order, and eventually determine the image sources coordinates. 
Figure 4 shows virtual TRP (or image source) utilization for UE coordinate estimation by example of the first order reflection. 



[bookmark: _Ref99465360]Figure 4: Illustration of virtual TRP (image source) utilization for UE coordinate estimation by example of first order reflection from the wall

The lth TRP with the coordinates (xl, yl, zl) transmits the signal to the UE and the signal propagates through the LOS path and the first order reflection from the wall. The signal propagating through the NLOS incident path (D1) and then reflected path (D2) travels the same distance as the one transmitted by the virtual TRP with the coordinates (Xl, Yl, Zl) and propagated through the LOS path. Therefore, the NLOS path can be represented as the LOS path where signal propagates from the virtual TRP with the coordinates (Xl, Yl, Zl). 
Using this approach, the channel impulse response can be represented as a superposition of the LOS paths, where all paths can be distinguished in time and spatial domain, and each path is associated with the TRP (for the LOS link) or virtual TRP (for the NLOS link) with its own coordinate. 
Figure 5 shows an example of UE indoor positioning using one TRP and four virtual TRPs representing the first order reflections from the walls in the room.



[bookmark: _Ref99469911]Figure 5: UE positioning utilizing the first order reflection paths

A similar approach can be applied for the high order reflections representing multiple reflections from the walls/objects in the room. The coordinates of the virtual TRPs will be determined in a different way compared to the first order reflections, however, the general principle will be the same. 

Although we believe that the considered method of image sources can be applied to an arbitrary reflection order, as a first step, we suggest starting the study for the first order reflections and have the following proposal:


Study application of AI/ML methods to determine the coordinates of the virtual TRPs (image sources) associated with the 1st order reflections of multipath channel impulse response components

Path Reflection Order Classification
As it was discussed in the previous section, the NLOS paths can be represented as the LOS paths associated with the virtual TRPs with estimated coordinates. Usage of NLOS paths for positioning allows to improve accuracy of the UE coordinate estimation by increasing the number of positioning equations, especially for indoor environments with limited number of LOS links.
The virtual TRP coordinate estimation requires link type and reflection order classification. Classification of propagation link LOS/NLOS type is a well-known problem for AI-based solution in application to positioning framework. As a next evolutionary step, the AI-based methods can be applied to perform reflection order classification on the per path basis. 
Figure 6 shows an example of per path reflection order classification.
[image: ]
[bookmark: _Ref99483984]Figure 6: Illustration of per path reflection order

Th red line in Figure 6 shows the LOS path corresponding to the 0th order reflection. The blue line corresponds to the NLOS 1st order reflection path that was reflected one time before arrival at the receiver. The green line highlights a general case of the 2nd order reflection path that was reflected two times before arrival at the receiver.
In general case the Kth reflection order can be considered, however, the reflection order prediction will be more complicated in that case.

For Rel.18, we suggest focussing the study on the 0th and 1st order reflection paths classification and their usage for NLOS positioning and have the following proposal:


Study application of AI/ML methods for determination of per path reflection order (at least 0th and 1st orders)

AI-based Estimation of Path Timing, Angle(s) and Power
To implement the approach for UE coordinate estimation using NLOS multipath channel components an Artificial Neural Network (ANN) can be applied. The joint path timing, angle, power, reflection order, and virtual TRP (or image source) coordinate can be realized by using the ANN performing feature extraction for the measured space-time channel impulse response. 
Figure 7 shows an example of the Feature Extraction Neural Network (FE-NN) which takes as an input a two-dimensional space-time channel impulse response and produces at the output the set of N vectors, where each vector contains a tuple of parameters estimated per path. 



[bookmark: _Ref99530189]Figure 7: Feature extraction neural network for positioning

The input represents a two-dimension array, where the column vector contains a measured channel impulse response realization in time for a given beam index corresponding to the kth beamforming vector from the codebook. While the row vector contains a spatial channel response realization corresponding to the nth time sample. 
The ith output vector contains a tuple of estimated parameters for the ith path, including the following:
Path timing (DL RSTD, UL RTOA, gNB/UE Rx-Tx time difference)
Path angle (DL-AOD, UL-AOA)
Path power (DL RSRPP, UL RSRPP)
Path reflection order
Path virtual TRP (image source) coordinate

The estimated set of parameters can be used by the conventional positioning algorithms solving the non-linear set of positioning equations (for example, Gauss-Newton method) to infer the UE coordinate. An alternative way is to supply the estimated set of parameters to the dedicated ANN, which produces UE coordinate estimation.

Based on the provided considerations, we have the following proposal:


Study benefits of using AI/ML methods for estimation of per path signal location parameters (feature extraction) for NR positioning, including but not limited to the following:
Path timing (DL RSTD, UL RTOA, gNB/UE Rx-Tx time difference)
Path angle (DL-AOD, UL-AOA)
Path reflection order
Path power (DL RSRPP, UL RSRPP)
Path virtual TRP (image source) coordinate

AI-based Coordinate Estimation
The AI-based coordinate estimation is an additional aspect that can be studied to improve the performance of the positioning algorithms. Two basic approaches are possible, including the separation of the ANN into two dedicated parts implementing the Feature Extraction (FE) and Coordinate Inference (CI) networks and a joint neural network performing both functions at a time with no explicit division into two parts.
Figure 8 shows an example of the ANN that is divided into Feature Extraction Neural Network (FE-NN) and Coordinate Inference Neural Network (CI-NN). The input of the network is similar to that shown in Figure 7, the difference is that the measured space-time channel impulse response is supplied for each TRP/gNB used in the estimation. This results in a three-dimensional input with the third dimension corresponding to the TRP index. 



[bookmark: _Ref99532855]Figure 8: Concatenation of dedicated feature extraction and coordinate inference networks

The interface between the FE-NN and CI-NN represents the set of N vectors containing a tuple of parameters estimated per path. The output of CI-NN is the three estimated coordinates (x, y, z) of the UE. 
Figure 8 shows an example of the ANN that is not explicitly divided into the FE-NN and CI-NN parts and directly provides the UE coordinate estimate for the input three-dimensional channel realization. In that case the interface between the FE-NN and CI-NN is not specified and is hidden by implementation. 



Figure 9: Joint artificial neural network

The advantage of the first approach is that the CI-NN can be replaced by the legacy conventional method for UE coordinate estimation. If CI-NN is till used for the coordinate inference, then the FE-NN and CI-NN can be trained jointly or separately, that provides additional flexibility in implementation. Moreover, assuming that the UE coordinate inference method is out of scope in the standard, this could be a reasonable division. 
The advantage of the second approach is that the intermediate parameters (or features) specified as an interface between the FE-NN and CI-NN can be left up to implementation. This enables more flexible ANN architecture not limited to the specific choice of the features. 

Based on the provided considerations we have the following proposals:


Study benefits of the ANN architecture, where the ANN is divided into two parts, including the Feature Extraction Neural Network (FE-NN) and Coordinate Inference Neural Network (CI-NN) with the specified interface between these two parts


Study benefits of the ANN architecture, where coordinate inference is performed by the ANN for the input channel estimate without explicit division into the Feature Extraction Neural Network (FE-NN) and Coordinate Inference Neural Network (CI-NN) parts

Considerations on AI/ML Architecture for NR Positioning
In this section we provide the considerations on the AI/ML architecture including the distributed, centralized, and federated approaches with respect the UE-based and NW-based positioning. We consider a supervised learning approach to train the Artificial Neural Network (ANN) by using the reference nodes with ideally known coordinates and regular UEs with the estimated coordinates acquired using legacy positioning methods.

Distributed, Centralized and Federated Architectures
Distributed Architecture
Figure 10 shows the distributed artificial neural network architecture for positioning. 



[bookmark: _Ref99551909]Figure 10: Distributed artificial neural network architecture for positioning

In the provided architecture the Feature Extraction Neural Network (FE-NN) resides at the gNB/TRP and UE entities and the Coordinate Inference Neural Network (CI-NN) resides at the LMF entity. As the name suggests different parts of the neural network are distributed across the network entities. 
The FE-NN is used to estimate a vector of parameters (or features) based on the observation of the channel impulse response realization and then supply the extracted features to the CI-NN for the UE coordinate inference. 
This type of architecture is similar to the legacy NW-based architecture, when the gNB estimates the (UL RTOA, gNB Rx-Tx time difference, UL-AOA) parameters or UE estimates the (DL RSTD, UE Rx-Tx time difference, DL-AOD) parameters and then report them to the LMF entity for the UE coordinate inference. 
The difference is that the number of reported parameters can be extended to support reporting of the reflection order and virtual TRP coordinates to support NLOS positioning as it was discussed in the previous section. 

Network-based Architectures
Figure 11 shows the NW-based centralized artificial neural network architecture for positioning.



[bookmark: _Ref99552899]Figure 11: NW-based centralized artificial neural network architecture for positioning

In contrast to the distributed architecture shown in Figure 10, both FE-NN and CI-NN reside at the LMF entity. The gNB and UE are used to estimate the propagation channel using the UL SRS and DL PRS reference signals. 
The gNB and UE do not estimate the parameters (feature extraction), but rather estimate the raw channel impulse response realization. In addition to the first arrival path, the additional paths are reported.
The reporting format still can be extended to support reporting not only the relative path delay and RSRPP value but include the per path phase reporting. In that case a full information on the channel impulse response will be available at the LMF entity to perform parameters estimation (or feature extraction). 

Figure 12 shows the NW-based distributed artificial neural network architecture for positioning. 



[bookmark: _Ref99553519]Figure 12: NW-based distributed artificial neural network architecture for positioning

In the considered architecture the FE-NN resides at the gNB/TRP entity and the CI-NN resides at the LMF entity. The gNB performs estimation of the parameters (or feature extraction) and UE does not perform any estimations in that case and transmits the reference signal only. This architecture type can be seen as a subtype of the distributed architecture shown in Figure 10.

Figure 13 shows NW-based federated artificial neural network architecture for positioning.



[bookmark: _Ref99554098]Figure 13: NW-based federated artificial neural network architecture for positioning

It is assumed that the LMF entity is collocated with the gNB and both FE-NN and CI-NN parts reside at the LMF similar to the centralized architecture considered earlier. 
The gNBs may exchange the trained set of parameters including the weights and biases (W(l), b(l)) if they have the same configuration of the Artificial Neural Network (ANN). It allows to enrich the test statistics, reduce the amount of time required for the training and improve the overall performance. 

UE-based Architecture
Figure 14 shows UE-based centralized artificial neural network architecture for positioning. 



[bookmark: _Ref99615189]Figure 14: UE-based centralized artificial neural network architecture for positioning

In the provided architecture both FE-NN and CI-NN reside at the UE entity. The UE still may receive the assistance information, including the TRP coordinates. 

Figure 15 shows UE-based federated artificial neural network architecture for positioning. 



[bookmark: _Ref99615478]Figure 15: UE-based federated artificial neural network architecture for positioning

Similar to the centralized architecture, both FE-NN and CI-NN reside at the UE entity. In addition to that the UEs may exchange the trained set of parameters including the weights and biases (W(l), b(l)) if they have the same configuration of ANN. It allows to enrich the test statistics collected with other UEs in the network, reduce the amount of time required for the training and improve the overall performance. The parameters exchange can be performed through the LMF or serving gNB.
The weights and biases exchange may require implementation of the efficient schemes for feedback compression to reduce the associated overhead.

The different types of architectures need to be considered to select the optimal configuration for AI-based positioning and identify the potential impact of RAN1 specification work. Based on the provided considerations, we have the following proposal:


Study benefits of the distributed, centralized, and federated architectures for AI/ML based positioning and identify the potential impact on RAN1 specification work

Artificial Neural Network Training
Supervised Learning Based on Reference Nodes with Known Coordinates
To train the ANN for positioning applications the reference nodes with ideally known coordinates can be used. These nodes may transmit the reference signals as well as perform measurements and report measurement results. The Positioning Reference Unit (PRU) considered during specification work in Rel.17 can ideally fit the AI-based positioning approach for RAT-dependent positioning. 
Figure 16 illustrates the supervised learning using PRUs with known coordinates by example of NW-based distributed architecture considered earlier. 



[bookmark: _Ref99618069]Figure 16: Supervised learning using positioning reference units with known coordinates

The network can control these nodes and issue the commands to change positioning and transmit the reference signals or perform the measurements and report them back for the purpose of the ANN training.

Supervised Learning Based on UEs with Estimated Coordinates
An alternative approach is to use the regular UEs for the training instead of or in addition to the PRUs. In that case LMF can perform UE coordinates estimation using conventional NR RAT-dependent positioning methods and then use these coordinates for the purpose of ANN training. 
Figure 17 illustrates the supervised learning using regular UEs with estimated coordinates by example of distributed architecture considered earlier.



[bookmark: _Ref99618764]Figure 17: Supervised learning using UEs with estimated coordinates

The training procedure is accomplished in two steps in that case, first, estimating the UE coordinates using conventional methods, and second, utilizing the collected statistics in the ANN supervised learning procedure.

Based on the provided considerations with respect to the ANN training for AI-based positioning, we have the following proposals:


Study benefits of the ANN supervised learning using Positioning Reference Units (PRUs) with known coordinates for AI-based positioning


Study benefits of the ANN supervised learning using regular UEs with estimated coordinates for AI-based positioning
The initial coordinate estimation is performed using conventional NR RAT-dependent positioning methods

Conclusion
In this contribution, we provided our views on the aspects for potential study in application to AI-based positioning. In summary, we have following proposals:

Proposal #1: 
Study benefits of using AI/ML for timing estimation of multipath components with fractional sample delay (super resolution in time)

Proposal #2: 
Study benefits of using AI/ML for angles estimation of multipath components with fractional spatial resolution (super resolution in space)

Proposal #3: 
Study application of AI/ML methods to determine the coordinates of the virtual TRPs (image sources) associated with the 1st order reflections of multipath channel impulse response components

Proposal #4: 
Study application of AI/ML methods for determination of per path reflection order (at least 0th and 1st orders)

Proposal #5: 
Study benefits of using AI/ML methods for estimation of per path signal location parameters (feature extraction) for NR positioning, including but not limited to the following:
Path timing (DL RSTD, UL RTOA, gNB/UE Rx-Tx time difference)
Path angle (DL-AOD, UL-AOA)
Path reflection order
Path power (DL RSRPP, UL RSRPP)
Path virtual TRP (image source) coordinate

Proposal #6: 
Study benefits of the ANN architecture, where the ANN is divided into two parts, including the Feature Extraction Neural Network (FE-NN) and Coordinate Inference Neural Network (CI-NN) with the specified interface between these two parts

Proposal #7: 
Study benefits of the ANN architecture, where coordinate inference is performed by the ANN for the input channel estimate without explicit division into the Feature Extraction Neural Network (FE-NN) and Coordinate Inference Neural Network (CI-NN) parts

Proposal #8: 
Study benefits of the distributed, centralized, and federated architectures for AI/ML based positioning and identify the potential impact on RAN1 specification work

Proposal #9: 
Study benefits of the ANN supervised learning using Positioning Reference Units (PRUs) with known coordinates for AI-based positioning

Proposal #10: 
Study benefits of the ANN supervised learning using regular UEs with estimated coordinates for AI-based positioning
The initial coordinate estimation is performed using conventional NR RAT-dependent positioning methods
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