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Introduction
In this paper, we present initial views on the study of AI/ML applications to physical layer for beam management based on the objectives in the Rel-18 NR study item on AI/ML [1]:
	 Use cases to focus on: 
· Initial set of use cases includes: 
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels



We discuss initial evaluation methodology to commence the study and steps needed to align results across participating companies for meaningful comparison. We also present initial evaluation results for spatial domain beam prediction with specification impact and sub-use-case discussion provided in our companion contribution [5].
[bookmark: _Hlk47732020]Evaluation Methodology
The beam management use case for AI/ML study can be broadly divided into two sub-cases i.e., spatial domain beam management and temporal domain beam management. Regardless of the specific use case, a common evaluation methodology can be considered with respect to the AI/ML model training and deployment. 


[bookmark: _Ref101998927]Figure 1: AI/ML Model Training and Deployment
An example is shown in Figure 1, where a supervised machine learning model with offline training/validation is considered. In the first step, a dataset should be generated based on the specific use case being considered. The dataset should contain beam-specific information including inputs for the AI/ML model as well output labels for training, validation, and testing. The dataset is usually split into non-overlapping portions for training and testing.  The next step is data pre-processing and normalization to ensure that the data is in the proper value range for the considered AI/ML model. Note that it may also be necessary to normalize the output labels depending on the problem formulation and type of output layer activation function being used. Based on this normalized input (output) data, the AI/ML model is trained and validated. As part of training to ensure better accuracy hyperparameter tuning is also an important step but care should be taken to ensure that the model is not overfitted to the training data. In this example, the dataset generation as well the model training is assumed to be an offline non-real-time process. Once the model is trained, the held-out test data is used for determining the model accuracy. Once the model accuracy is acceptable, the model can be deployed in a real-time environment to aid in specific beam management tasks. 
Although more sophisticated online training methods including reinforcement learning exist in literature, the current study item should first concentrate on the offline training methodology with bigger emphasis on realistic evaluation assumptions and use-cases. Online models, if required, can be studied in future. 
Proposal 1: For AI/ML evaluation for beam management use cases, including spatial and temporal domain beam management, consider only offline training of AI/ML models.

For evaluation of AI/ML models for beam management use cases, along with the use case definition and problem formulation, a critical step is the generation of datasets which would determine the ability of physical layer protocols in current RAN architectures to properly leverage AI/ML. To this end, a robust dataset generation for each use case is important and may be achieved by compiling a common dataset across companies which can be used for model training and testing. This would also ensure that fair comparison of proposed AI/ML models is possible.
Proposal 2: A common dataset across companies should be considered for each use-case to ensure robustness and fair comparison of AI/ML model performance taking into account, a reasonable dataset size.
It should be noted however that a reasonable size of dataset should be maintained such that evaluation is practical. Multiple large datasets across different companies would lead to fragmented results which would be very difficult to compare. 
Baseline Schemes for Performance Comparison
For both sub-use cases, the baseline schemes should be based on exhaustive beam search which can provide an upper bound on performance at the cost of maximum complexity and hierarchical beam search which provides realistic performance at acceptable complexity. The goal of AI/ML based models could be to reduce the complexity of the prediction while providing performance identical to or close to exhaustive search. The complexity gains could be in the form of lesser number of measurements performed for the beam prediction leading to significant gains in latency. When considering hierarchical beam search procedures, the goal of the AI/ML algorithms should be to provide better performance i.e., more optimal beam selection with similar or lesser complexity in terms of the number of measurements and reporting. 
Proposal 3: Baseline performance evaluation schemes for benchmarking the performance of AI/ML tools should be based on exhaustive beam search and more practical hierarchical beam search procedures.
In the next sections some details on dataset generation and evaluation assumptions specific to the spatial and temporal domain beam management use cases are provided.
Spatial Domain Beam Prediction
Spatial domain beam prediction should aid in mmWave beam tracking or initial beam acquisition. More details on sub-use-cases and models are provided in [5]. One possible sub-use case is spatial domain beam prediction at the UE, which is conditioned on a fixed gNB transmit beam as shown in Figure 2. This is a simplified sub-use case described below to motivate our EVM proposals, other sub-use cases targeting specification impact are provided in Section 4, [5]

[image: ]
[bookmark: _Ref102023544]Figure 2: Set up for spatial domain beam prediction at the UE conditioned on fixed gNB beam
For this category of use cases, we assume that during training the AI/ML model has access to data from exhaustive beam search. For example, if the UE has 8x8 2D planar array and uses a DFT grid-of-beams with 64 orthogonal beams, then conditioned on the fixed gNB transmit beam, the RSRP values on each of the 64 UE beams is needed. To this end, to generate a synthetic dataset for this task, channel model assumptions need to be agreed. Additionally, for creating a common dataset, some baseline assumptions on BS and UE antenna array and beamforming are also required. To this end, 3GPP CDL channel models (LOS/NLOS) should be adopted for this use case with LLS as the main tool for generation of beam specific data.
Proposal 4: [bookmark: _Hlk102181849]For spatial domain beam prediction, CDL channel models should be used for dataset generation and RSRP can be used as the beam specific parameter for the dataset. 

Proposal 5: Assumptions on gNB and UE antenna arrays and beamforming should be aligned across companies for common dataset generation

Based on the above guidelines, normalization methods should also be aligned. For example, for spatial domain beam tracking, the relative performance between the grid-of-beams is important rather than absolute performance in terms of RSRP values. Therefore, when data is generated for UEs with different pathloss due to different distance from gNB, such data should be properly normalized so as not to bias the dataset towards UEs with higher RSRP values due to proximity to the gNB. Additionally, normalization is also needed to match the input dynamic range to the response of the AI/ML model e.g., for DNN with ReLU activation, the input range should be normalized to [0,1] or [-1,1] for efficient training.
Proposal 6: Dataset normalization based on specific sub-use case should be reported by companies
For the spatial domain beam prediction use case, it is important to capture the scattering environment properly hence, for dataset generation, different orientations of the UE antenna array should be used in both azimuth and elevation. This is true for both beam prediction at the UE side as well as beam prediction at the gNB side conditioned on a specific UE beam [5].  
Temporal Domain Beam Prediction
Beam prediction in temporal domain is another sub-use case of beam management. For this case, alignment of evaluation assumptions for dataset generation is even more critical. System level simulations should be used for this purpose along with appropriate deployment and related channel models. The Urban Macro and Dense Urban models [4] are more appropriate for temporal domain beam prediction. 
Proposal 7: For temporal domain beam prediction, system level simulation based urban deployment e.g., dense urban and urban macro and related 3GPP channel models should be used for dataset generation

To evaluate temporal domain beam prediction, some EVM assumptions from Rel-17 feMIMO mobility evaluations should be reused [2]. These details are provided in the Appendix. 

UE Trajectory and Spatial Consistency Modeling 
UE Trajectory Modeling
UE trajectory modeling is an important part of temporal domain beam prediction. In the feMIMO mobility EVM, the trajectories of the UEs along with the starting points and ending points are fixed. Different from the feMIMO EVM, for training AI/ML models more diversity in environment is better. Therefore, we propose a more generic trajectory modeling as shown in Figure 4.
[image: ]
[bookmark: _Ref47722409][bookmark: _Ref47722393]Figure 3: UE Trajectory for travel time of 2sec at 150km/hr
In this model, the UE can be dropped randomly at any location within the deployment and it can be moved in a straight-line trajectory to an end point. The travel time is fixed, and the trajectory is sampled at equal intervals and beam specific data is collected along the trajectory for training the AI/ML model. 
Spatial Consistency Modeling for UE mobility
Since the main goal is to capture the temporal variation of beam performance of a UE under motion, the SLS evaluation for this case is fundamentally different from drop based evaluations performed in the past where UEs are dropped into the system once at the beginning of the simulation and their positions are not changed for the duration of the simulation. In these static use cases, spatial consistency does not have a major impact on the evaluation results. However, in the new evaluation setup, where UEs are moving across the cell, it is very important to properly model spatial consistency for both large-scale as well small-scale fading parameters since this has a major impact on the overall simulation results. For example, if not modeled in a spatially consistent manner, the shadow fading can fluctuate widely over the trajectory of the UE and therefore yield a highly unstable channel realization which manifests itself in the fact that the UE is totally incapable of tracking the beams properly. This is not a desirable phenomenon and would adversely impact the training capabilities of the AI/ML models since the data samples across the trajectory may appear uncorrelated. Therefore, it is of utmost importance to ensure that large- and small-scale parameters are generated such that they vary slowly (within a realistic range). While the implementation of spatially consistent large-scale parameter generation is up to companies, care should be taken to ensure that there is approximately the exponential autocorrelation relationship 



[bookmark: _Hlk47717413]between different points at distance d m in the trajectory as specified in the WINNER II channel model [7], and where is the decorrelation distance. Additionally, there are two spatial consistency models specified in [4]. The spatial consistency model A is meant for a traditional drop-based simulation where UE positions are not changed over the simulation duration. This model is not suitable for the temporal domain beam prediction evaluations, since it is based on extrapolation from the initial dropped location of the UE and does not account for mobility. The spatial consistency model B should be used since this model calculates the small-scale parameters at each point in the trajectory based on a grid of random numbers which is generated once per simulation for each UE and gNB and the random number values are calculated based on the grid and the UE position at each trajectory update. 
Proposal 8: Spatially consistent large-scale parameter generation should be used for mobility evaluations. Additionally, only spatial consistency model B in [4] can be used for mobility evaluation.

The trajectory of the UEs can be sampled at different periodicities and companies should report how often the UE locations are updated in their evaluation assumptions. In order to ensure large scale parameters are updated often enough during the evaluation, it is preferable to update the location every 1m or at least at a distance less than the minimum decorrelation distance of the large-scale parameters for the given evaluation scenario.
Proposal 9: The UE trajectory should be sampled at least at the minimum decorrelation distance of the large-scale parameters corresponding to the scenario of evaluation.

To highlight this importance, results for SLS based spatially consistent UE trajectory sampling is provided below. For this case, a single UE moving in a linear trajectory within a cell as shown in Figure 4 is modeled. The trajectory is shown for 2sec of travel time and the preliminary results for beam tracking are provided over 1sec of travel time on this trajectory. The trajectory is sampled every 1m. The UE has two panels facing 180 apart and system is operating at a CF = 30 GHz and 120kHz SCS. An Urban Micro deployment with 200m ISD and an outdoor UE at a speed of 150km/hr is considered. Detailed evaluation assumptions are provided in the Appendix. 
In this simulation spatial consistency has been modeled for both large scale parameters and small-scale parameters using spatial consistency model B from [4]. The following figures show how the large-scale parameters vary over the trajectory sample points. [image: ]
[bookmark: _Ref47723269]Figure 4: LSP variation over the UE trajectory for 1sec travel time
From Figure 5, it can be seen that the large-scale parameters, especially shadow fading, which has a major impact on RSRP varies slowly over time as the trajectory is sampled. The same holds true for other LSPs. For small-scale fading, the spatial consistency model B is leveraged and the fast-fading RSRP also shows consistent behavior over the UE trajectory. Based on these initial results, proper modeling of parameters for channel modeling is very important for creating a meaningful dataset for AI/ML evaluation for temporal domain beam prediction.  
KPIs for AI/ML Evaluation for Beam Management

For beam management use cases, the KPIs selection can vary somewhat with the exact problem formulation. For traditional classification-based models, KPI could be the accuracy of correct beam index prediction. Other models which can predict not only the best beam index, but top-K beam indexes can use a metric which matches the top-K indexes to the optimal top-K indexes. 
RSRP per beam is also a very important metric for beam prediction evaluations. For example, an optimal RSRP can be known from the labels corresponding to the best beams from the dataset and the predicted RSRP is based on the actual predicted beam from the AI/ML model during the testing or evaluation phase. The difference in RSRP between the optimal label beam and predicted beam is an important KPI which points to the real performance of the beam prediction models. 
[image: ]
[bookmark: _Ref102029655]Figure 5: RSRP difference between predicted beams and optimal beams for the error cases in AI/ML model prediction for UE beam prediction conditioned on a fixed gNB beam
As an example, Figure 6 corresponds to a beam prediction accuracy of around 90% from the AI/ML model. From Figure 6, it can be seen that even for the error cases, most of the predicted beam indexes may still be good enough since the 90th percentile of the RSRP error CDF is around 2dB. Therefore, in practice, the overall performance of the AI/ML model may be better than the 90% accuracy suggested by the hard metric comparing optimal beam indexes. 
Proposal 10: For beam management use cases, hard metric KPIs like accuracy of best beam index or top K beam index prediction can be considered. Additionally, RSRP of predicted beams should also be considered as a key KPI for performance evaluation. 

[bookmark: _Ref102048129]Initial Evaluation Results
In this section, we provide some initial evaluation results for spatial domain beam prediction use case with additional details on problem formulation, dataset generation and AI/ML model assumptions. 
Problem Formulation (Spatial beam prediction at UE)
Traditionally, beam acquisition or tracking would require measurement on all the beams at the UE for any specific gNB transmit beam. The goal of the AI/ML aided beam acquisition and tracking is to use a sub-set of these measurements to predict the best beam. 


[bookmark: _Ref102033413]Figure 6: ML aided beam prediction at UE conditioned on single gNB Tx beam
The proposed problem formulation shown in Figure 7 assumes that the AI/ML model will predict the RSRP values for all the UE beams based on the input of RSRP values from only a few measurement beams. This is different from the traditional classification problem which predicts only the best beam index. In this regression-based formulation, the RSRP values for all the beams are predicted which enables the model to identify not only the best beam index but also the top-K (K=2,3,4, …) beam indexes. 
[image: ]
[bookmark: _Ref102033525]Figure 7: Example DNN for UE beam prediction

An example DNN network is shown in Figure 8, where the hidden fully connected layers use ReLU activation, and the final output layer uses a tanh activation for RSRP prediction for all beams. An alternate CNN was also evaluated where the 1D-conv layers were used. The CNN with same depth as the DNN has 10x less trainable parameters than the DNN.  
Dataset Generation and Training
For the dataset generation, 3GPP CDL channel models were used. The UE panel was assumed to have 8x8 = 64 cross-polarized antenna elements with DFT beams. The fixed gNB beam was assumed to be pointing towards the horizon at 90 degrees from the vertical. Each datapoint consists of RSRP values measured on all the UE beams for a given orientation of the UE antenna array. 1 million data points were generated each with a different UE antenna panel orientation, and the data was partitioned as shown in Figure 8. In order to limit the input data range within (-1,1), each data point was individually normalized by the max absolute value of the RSRP of the input beams. For training the outputs were also similarly normalized. The normalization is performed per data point to ensure there is no cross-UE dependence on the normalization for the case when the model may be deployed in practical networks. 
[image: ]
[bookmark: _Ref102033930]Figure 8: Dataset split for training, validation and testing. The percentages shown are examples.
The DNN was trained for 500 epochs with early stopping. The batch size was kept at 100 and Adam optimizer was used. For this problem, the accuracy of predicting the best beam as well the accuracy for predicting the top K=3 beams were considered. For instance, if the model predicts only one of the best 3 beams, the accuracy is 33.33%, for two of the best beams, the accuracy 66.66% and so on. These hard metrics give an indication of the absolute performance of the network. 
Performance Results
Beam Prediction at the UE with Fixed gNB Beam
The AI/ML model was provided with 8 out of the 64 beams for measurement for different channel models and performance was evaluated with respect to beam prediction accuracy. 
[image: ]
[bookmark: _Ref102035385]Figure 9:ML-aided UE beam prediction with 8 measurement beams and uniform sampling of measurement beams in the index domain
[image: ]
[bookmark: _Ref102035388]Figure 10: ML-aided UE beam prediction with 8 measurement beams and optimized sampling of measurement beams
From Figure 9 and Figure 10, it can be seen that beam prediction in the spatial domain at the UE side has good accuracy even with only 8 beams out of 64 beams measured. It is also seen that sampling the measurement beams plays a role in model accuracy with the more optimized sampling providing even better performance. Note that despite the 10% error rate in LOS case, the actual RSRP difference even in most of the error cases is quite small as shown by Figure 5 which plots the CDF of the RSRP difference matrix for the error cases for the optimized sampling. 
[image: ]
[bookmark: _Ref102037130]Figure 11: ML-aided UE beam prediction with 6 measurement beams and optimized sampling of measurement beams
Figure 11 shows the performance of 6 measurement beams with optimized sampling where the performance is quite close to the case for 8 measurement beams. Note that other sampling methods with 6 beams do not yield good results. 
Next, we can consider a larger antenna array at the UE to check if the results from smaller arrays scale for larger number of antennas. In the following, we consider a 16x16 2D planar array at the UE with 256 non-oversampled DFT beams. 
[image: ]
Figure 12: ML-aided UE beam prediction with 256 UE beams and 32 measurement measuremt beams
It can be seen that NLOS channel models are less accurate than the LOS case, but the accuracy is still within acceptable levels especially considering the overhead reduction from measurements. 
Joint UE-gNB Beam Pair Link Prediction
In this problem formulation, joint beam pair link at UE and BS is predicted by the model. For dataset generation, RSRP across all gNB beams and UE beams is considered with only a subset used for input to the model. The implication of using the subset is that specific UE-gNB beam pair links are measured. Considering a gNB array with 32 DFT beams and UE array with 8 DFT beams, 16 measurement beam pair links are considered. The measurement beams at UE and gNB are shown in Figure 13. Details of problem formulation and impact to specification are discussed in [5]
[image: ]
[bookmark: _Ref102038194]Figure 13: Joint BS-UE beam pair link prediction. The rows correspond to UE beams and the columns correspond to gNB beams with the red boxes representing measurement beam pair links.
From the results it can be seen that performance of AI/ML models for joint beam pair link prediction is very promising both LOS (CDL-E) and NLOS (CDL-A) channels.  
Conclusion
In this paper, EVM and initial results for AI/ML aided beam management procedures are discussed. The main proposals from this paper are outlined here:
Proposal 1: For AI/ML evaluation for beam management use cases, including spatial and temporal domain beam management, consider only offline training of AI/ML models.

Proposal 2: A common dataset across companies should be considered for each use-case to ensure robustness and fair comparison of AI/ML model performance taking into account, a reasonable dataset size.

Proposal 3: Baseline performance evaluation schemes for benchmarking the performance of AI/ML tools should be based on exhaustive beam search and more practical hierarchical beam search procedures.

Proposal 4: For spatial domain beam prediction, CDL channel models should be used for dataset generation and RSRP can be used as the beam specific parameter for the dataset. 

Proposal 5: Assumptions on gNB and UE antenna arrays and beamforming should be aligned across companies for common dataset generation

Proposal 6: Dataset normalization based on specific sub-use case should be reported by companies

Proposal 7: For temporal domain beam prediction, system level simulation based urban deployment e.g., dense urban and urban macro and related 3GPP channel models should be used for dataset generation

Proposal 8: Spatially consistent large-scale parameter generation should be used for mobility evaluations. Additionally, only spatial consistency model B in [4] can be used for mobility evaluation.

Proposal 9: The UE trajectory should be sampled at least at the minimum decorrelation distance of the large-scale parameters corresponding to the scenario of evaluation.

Proposal 10: For beam management use cases, hard metric KPIs like accuracy of best beam index or top K beam index prediction can be considered. Additionally, RSRP of predicted beams should also be considered as a key KPI for performance evaluation. 
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Appendix
	Simulation Parameters
	Dense Urban MICRO eMBB

	Carrier Frequency
	30GHz

	Simulation BW
	50MHz

	Sub-carrier Spacing and Slot Length
	120 kHz SCS, 14 OFDM Symbol slot

	Channel Model
	5G-UMi (LOS)

	Inter-Site Distance
	200m

	BS Antenna Configuration
	(M, N, P, Mg, Ng) = (8,1,2,1,1): Single Panel BS
8 DFT Beams (all elevation)

	UE Antenna Configuration
	(M, N, P, Mg, Ng) = (2,2,2,1,2): 2 Panels (0)  
4 DFT Beams per panel (2 azimuth, 2 elevation)

	BS Height
	10m BS

	UE Deployment
	1 outdoor UE @ 150 kmph

	Latency Impairment Modeling
	UE Beam Acquisition Latency = 40ms
UE Beam Application Latency = 3ms

	UE Rotation
	X RPM Rotation along the -axis of the LCS with X = 0,1

	UE Trajectory Sampling
	Linear Trajectory Sampled every 1m or 192 slots

	Spatial Consistency Modelling
	Decorrelation distance-based Autocorrelation for LSP
Spatial Consistency Model B from TR38.901 for SSP 
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