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Introduction
The new study item on Artificial Intelligence (AI) / Machine Learning (ML) for NR air interface has been approved in [1]. One of the study objectives includes the analysis of solutions for CSI feedback enhancements:
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.
Use cases to focus on:
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels
Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project


In this contribution, we express our views on the CSI use-case description and AI/ML architecture and training aspects for CSI.

CSI Use Case description

CSI (channel state information) is a terminology used to describe a wide variety of UE feedback components in RAN1 specifications including - RI, PMI, CQI, L1-RSRP, L1-RSRQ. Another way to describe CSI feedback is explicit vs implicit. Explicit CSI feedback is considered as channel information (e.g. Covariance matrix) where gNB/TRP requires additional processing to determine RI/PMI/CQI for PDSCH precoding. Implicit CSI feedback is one where a gNB/TRP can directly use UE CSI feedback to transmit PDSCH. 

Proposal-1: Consider defining a scope of CSI use-case based on explicit vs implicit CSI feedback and also whether components like L1-RSRP, L1-RSRQ are in scope

In the following we describe our views on the following sub use-cases with respect to codebook design for implicit CSI feedback (PMI feedback).
CSI feedback with SD+FD compression

As part of Rel-16 Type II CSI codebook, a precoder in SD (spatial dimension) and FD (frequency dimension) can be represented by a linear combination of DFT vectors as shown below:


where,
·  is a precoder vector and , ,  represents the polarization, layer and FD compression unit indices respectively 
· ,  are mutually orthogonal number of selected SD and FD DFT vectors and indices are reported by the UE
·  is the total number of FD-compression units 
· ,   and  represents the indices of the SD DFT vectors in the azimuth and elevation dimensions
·  are the indices of the FD DFT vectors
·  is the coefficient down-selection bit reported by the UE
·  is the reference polarization amplitude reported by the UE
·  are the amplitude and phase coefficients reported by the UE which is a function of beam, delay, polarization and layer dimensions

We note that a codebook (of precoders) design problem in SD+FD dimensions is a compression problem involving dimension reduction and quantization that is achieved via DFT transforms and scaler quantizers in Rel-16 where each of the components are optimized separately. A neural network optimized for CSI (let us say CSI-NN) has the ability to exploit non-linear transforms, joint optimization of dimension reduction and quantization, and to perform quantization in a space that is not physically well-defined (based on hidden or latent variables). A CSI-NN may also be able to take advantage of adapting to channel and noise conditions. Therefore we propose the following: 

Proposal-2: Study benefits of using AI/ML for implicit precoder feedback with SD/FD domain compression using Rel-16 codebook as a baseline

Time-domain CSI compression

Time-domain CSI compression is a natural extension of SD and FD domain CSI compression. In terms of formulation of a framework to apply AI/ML to the air-interface, time-domain CSI compression does not bring much new aspects to the table. It also overlaps with Rel-18 MIMO objective. Further it is unclear if evaluation of time-domain CSI compression can be meaningfully achieved without modelling spatial consistency for UE mobility. We also believe AI/ML based CSI can be easily extended to time-domain in a WID phase.

Proposal-3: Benefits of using AI/ML for time-domain CSI compression for the purposes of formulation of an AI/ML framework is not clear and can be evaluated at a later stage

Considerations on AI/ML Architecture for CSI

In this section we provide the considerations on the AI/ML architecture including a joint, NW-centric, and UE-centric approaches with respect to CSI use-case. We consider both a supervised and an unsupervised learning approach to train a CSI-NN.

Joint UE/gNB Architecture
Figure 1 shows a joint artificial neural network architecture for CSI use-case. 
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[bookmark: _Ref99551909]Figure 1: Joint artificial neural network architecture for CSI

In this case a CSI-NN resides both at the UE and at the gNB/TRP – conceptually an Encoder Network resides at the UE that terminates with a “bottleneck” layer which is a lower dimensional hidden layer while a Decoder Network resides at the gNB/TRP that reconstructs the CSI from the output of the bottleneck layer. As the name suggests different parts of the neural network are distributed across the RAN entities. 
The Encoder Network is used to estimate a reduced dimension and quantized representation of the CSI based on the measurements from a CSI-RS and then supply the reduced dimensional vector to the Decoder Network at the gNB/TRP for reconstruction. 
This type of architecture is similar to the legacy codebook-based feedback design where a precoder in spatial and frequency – domain in represented by a linear combination of a set of SD-DFT and FD-DFT vectors using quantized complex coefficients that are reported to a gNB/TRP (an encoding operation). A gNB/TRP then reconstructs a precoder for a given rank in a given sub-band from the received DFT indices and the complex coefficients (a decoding operation). 

Unsupervised Learning Based on Reconstruction Loss

Unsupervised learning methods are used for jointly training an Encoder and a Decoder Network to minimize reconstruction loss while optimising a “bottleneck” layer to achieve compression efficiency. Availability of downlink channel information is needed for training that can be obtained at the gNB/TRP for properly calibrated TDD systems. Availability of channel information for various propagation environments can impart robustness to a trained model, perhaps at the expense of added model size/complexity. This presumably requires standardizing a characterization of models/parameters so as to allow a UE to download a model that is trained by a NW and operate efficiently with such a model (a non-proprietary model) such that all L1-timelines can be met.  

Network-centric Architecture
Figure 2 shows a NW-based ANN architecture for CSI.
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[bookmark: _Ref99552899]Figure 2: NW-based artificial neural network architecture for CSI

In contrast to a joint architecture as shown in Figure 1, in this case a CSI-NN resides only at the gNB/TRP side. In this case, a coarsely quantized set of “points” in the precoder space can be reported by the UE over the air-interface – which are then interpolated to a much higher fidelity by a CSI-NN at the gNB/TRP.
This architecture relies on the fact that the precoding on the PDSCH is not required to be known at the UE and link adaptation is able to take care of the difference in precoding fidelity known to the UE and the gNB. In order to optimize such an operation, assistance information may be needed to be exchanged between a gNB and a UE.

UE-centric Architecture
Figure 3 shows an UE-based ANN for CSI. 
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[bookmark: _Ref99615189]Figure 3: UE-based artificial neural network architecture for CSI

In this case a CSI-NN resides only at the UE side. A UE has access to uncompressed CSI information (with no added air-interface latency) and is able to use a CSI-NN for CSI prediction. In this case, more accurate CSI can be delivered to a gNB/TRP for high mobility UEs using traditional codebooks for CSI compression.   


Supervised Learning
In NW centric or UE centric architectures supervised learning can be used – and there is no requirement for standardization of a characterization of models/parameters because the nature and complexity of a model can remain implementation-specific while some properties like timelines may need to be disclosed to the NW as part of UE capability. Availability of downlink channel information is needed for training that can be obtained at the gNB/TRP for properly calibrated TDD systems and at the UE from downlink RS.   

Proposal-3: Study benefits of joint, NW centric and UE centric architectures for AI/ML based CSI feedback and identify the potential impact on RAN1 specifications


Conclusion
In this contribution, we provided our views on the aspects of AI/ML-based CSI enhancement. In summary, we have following proposals:

Proposal-1: Consider defining a scope of CSI use-case based on explicit vs implicit CSI feedback and also whether components like L1-RSRP, L1-RSRQ are in scope

Proposal-2: Study benefits of using AI/ML for implicit precoder feedback with SD/FD domain compression using Rel-16 codebook as a baseline

Proposal-3: Study benefits of joint, NW centric and UE centric architectures for AI/ML based CSI feedback and identify the potential impact on RAN1 specifications
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