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Introduction 
In frequency division duplex (FDD) systems, due to the lack of channel reciprocity, the channel state information (CSI) is first estimated by the user equipment (UE) exploiting the reference signal transmitted from the gNB,  then, implicit or explicit CSI is returned to the gNB. The more accurate CSI obtained at the gNB, the better performance of the system in the downlink (DL) mode. The conventional method conducted in Rel. 15 and Rel. 16 is Type I and Type II CSI feedback [1], where implicit CSI is fed back to the gNB. Specifically, instead of the explicit and full CSI, a precoder matrix index (PMI) is fed back to the gNB. The PMI is calculated based on the CSI codebook, which is designed to express channel eigenvectors. Therefore, the overhead is reduced at the cost of performance degradation due to the lack of full knowledge of CSI at the gNB. 
In order to achieve higher performance in DL, explicit CSI knowledge at the BS is required. Two main approaches are proposed to keep the overhead reasonably low while the full CSI is transmitted to the gNB. First approach is to use traditional compressive sensing (CS) methods e.g., LASSO, AMP, TVAL3 [2]. The other approach is the algorithms based on deep learning and deep neural networks (DNNs). Obviously, these both approaches can be implemented simultaneously. Nevertheless, traditional CS methods not only work inefficient because of the sparsity assumption of the channel, but also are complex and time consuming to implement and execute in real time.  On the other hand, the methods based on machine learning (ML) has been gradually developed recently and are capable of solving challenging problems which are complicated to formulate in exact mathematical expression. Several methods has been proposed to compress an image and reconstruct it based on an autoencoder. Assuming the channel response in time-frequency or angular-delay domain as an image provides the opportunity to apply the ML-based approaches which are developed for finding features and image compression for efficient channel compression at the UE and reconstruction at the gNB. 
In this document, the ML-based method CsiNet [2] is utilized and modified shown in Figure 1. If DFT is applied on the channel matrix before the encoder, the algorithm is referred to as CS-CsiNet which only learns to recover CSI from CS measurements. Then, the performance of the system in the DL mode applying the ML-based method and the traditional Type II CSI are compared when spectral efficiency is considered as measure.
In this document, we assume a single-cell downlink massive MIMO system with  transmit antenna ports at the gNB and  UE antenna ports, and there are  subbands in an OFDM system.
The total channel matrix is represented by . The precoding matrix  is designed based on the received CSI feedback at the gNB. Without any compression the total number of feedback parameters are  complex values which must be reduced by compression methods. To reduce the feedback parameters, the channel matrix can be transformed to the angular-delay domain by a discrete Fourier transform (DFT). For simplicity, we assume that the channel matrix is represented in angular-delay domain unless it is stated otherwise. 

Comparison between enhanced Type II CSI and CsiNet
As it is stated in Introduction, Type II CSI is an implicit method for CSI feedback and the full channel knowledge is not available at the gNB. Therefore, the traditional Normalized Mean Squared Error (NMSE) defined as 

where  is the reconstructed channel matrix at the gNB, is not a proper measure. We propose to use the spectral efficiency of the downlink instead of NMSE. The normalized spectral efficiency (NSE) for multiuser system is defined as follows

where  is the precoder matrix corresponding to Type II CSI,  is the calculated precoder matrix at the gNB based on the explicit CSI knowledge e.g., zero forcing (ZF), is the identity matrix, and  is the noise power. 
Figure 1: Architecture of CsiNet [image: ]
In Figure 2, the NMSE for conventional compressive sensing methods and the CsiNet based approach is shown.  denotes the total number of  bits allocated for CSI feedback. The CSiNet is trained over 50000 channel snapshots generated based on Table 1 parameters.  
Figure 2: NMSE for explicit CSI feedback methods 
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Observation: CSI feedback method based on AI/ML outperforms the traditional compressive sensing approached when NMSE is considered as the measure.  
[bookmark: _GoBack]Figure 3 shows the comparison of the performance of CsiNet and Type II CSI. CsiNet is trained for indoor and outdoor scenarios separately, each scenario with 50000 samples, generated based on Tables 1 and 2. Then, for each scenario the specific parameter set is used for the trained network. The test set has 10000 samples for each scenario and the average is taken over all cases. 
[image: ]Figure 3: Normalized spectral efficiency of CsiNet feedback methods 
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The NSE denotes the normalized spectral efficiency of the ML-based method to that of Type II CSI for the same total number of feedback bits. 
Observation: CsiNet-based methods outperform Type II CSI when the total number of bits allocated for the compression is large. 
The main drawback of the the CSI feedback methods based on the autoencoders is the offline overhead. In other words, the UE and the gNB need to be informed about the encoder and the decoder parameters before any transmission. In addition, when the channel environment or the system parameters (e.g., antenna configurations at UE or gNB side, number of subbands, etc.) change, different network parameters are required which increases the offline overhead. In order to reduce the overhead cost, it is proposed to train the network globally for all scenarios and observe how the performance degrades. The floating point operations (FLOPs) for the encoder and the decoder are approximately in order of  and , respectively. In addition, the total trainable parameters of the encoder and decoder are in order of  and , respectively.
Observation: The number of trainable parameters of the CsiNet layers for CSI compression and reconstruction can be staggeringly large and increases with the number of total feedback bits, number of subbands and the number of CSI-RS ports. However, the time complexity and trainable parameters for the encoder are much lower than that of the decoder, which facilitates the deployment of the encoder at the UE side.
In Figure 4, the comparison between the performance of CsiNet which is trained separately for each scenario and the Global CsiNet (G-CsiNet) trained once for all channel environments and one parameter set is shown. It is observed that Global CsiNet still outperforms Type II CSI for medium-to-high total overhead bits, however, it has worse performance than CsiNet.
Figure 4: Normalized spectral efficiency the CsiNet feedback methods.
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Observation: Global CsiNet still outperforms Type II CSI for medium-to-high total overhead bits, however, it has worse performance than CsiNet. 
According the results obtained in this contribution, AI-based approaches, especially CsiNet, have great potential for CSI feedback enhancements, however, more investigations and evaluations are necessary for further evaluations. 
Proposal:  Further studies on the link-level based on block error rate (BLER) are required for comparison between AI-based schemes and Type II CSI. Offline overhead and coordination between the UE and gNB for the parameters of the encoder and the decoder should be studied as well. 
Conclusions
Based on the above discussions, we have the following observation about the advantages of AI-based methods.
Observation: CSiNet-based method outperforms Type II CSI based on spectral efficiency measure at the cost of offline training and the offline overhead. The suboptimal version G-CSiNet is proposed for all channel environments to reduce the training overhead when offline training for each scenario is not possible.
On the other hand, ML-based methods based on autoencoders have some fundamental challenges as follows.
Observation: The offline training has two issues, large number of trainable parameters and high training complexity.
Observation: The encoder and the decoder are trained and designed simultaneously offline for each set of channel parameters e.g., number of transmit and receive antenna ports, number of subnands and the compression ratio. In other words, if one of these parameters changes, the CsiNet should be trained completely which costs extra offline overhead. 
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Table 1: Channel parameters for indoor scenarios.
	Parameter
	Value

	Delay Spread
	50ns

	UE speed
	3km/h

	Interval sampling slots
	100

	Carrier frequency
	3.5 GHz

	Bandwidth
	10 MHz

	Subcarrier spacing
	15 KHz

	Transmit antenna ports
	(1,1,4,8,1), (1,1,4,4,1)

	Subbands
	12

	Channel estimation 
	Ideal

	Quantization
	4








Table 2: Channel parameters for outdoor scenarios.
	Parameter
	Value

	Delay Spread
	300ns

	UE speed
	30km/h

	Interval sampling slots
	100

	Carrier frequency
	3.5 GHz

	Bandwidth
	10 MHz

	Subcarrier spacing
	15 KHz

	Transmit antenna ports
	(1,1,4,8,1), (1,1,4,4,1)

	Subbands
	12

	Channel estimation 
	Ideal

	Quantization
	4
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