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Introduction
Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, agreed in [1], includes a use case of positioning accuracy enhancement, and the exact objectives are as follows: 
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
·  Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference),  and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced




In this contribution, we discuss potential specification impact and finalization of representative sub-use cases for AI/ML for positioning accuracy enhancements. 
[bookmark: _Hlk510705081]Representative sub use-cases and further analysis
In the following, a set of non-exhaustive representative sub use cases for AI/ML in positioning are identified. Specification impact is also discussed. 
Overcoming NLOS and harnessing multipath
Background and Motivation  
Classical approaches to positioning such as time of arrival, angle of arrival methods typically rely on direct path characteristics between the transmitter and the receiver of the refence signal used for positioning. Performance of these methods is highly prone to NLOS conditions on the channel, which may occur due to either full blockage or severe attenuation of direct path – see Figure 1. Under these conditions, the network and users need to find alternative methods to classical ones. To this end, ML-based solutions have demonstrated high level of positioning accuracy (e.g., cf. [2], [4]).
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[bookmark: _Ref101874045]Figure 1: NLOS multipath channel (a) Direct path is attenuated but detectable (b) Direct path is completely blocked or non-detectable
Observation 1: Using ML-based solutions to estimate a target UE’s location in NLOS conditions and/or using multipath information may be beneficial to the final location estimate. 
ML considerations for NLOS and harnessing multipath
We consider three main approaches to the problem of positioning under NLOS conditions, by means of ML-based solutions: 
1. LOS/NLOS path detection 
2. LOS/NLOS indication
3. NLOS-based localization

For the above approaches, it may be required to define new interactions between the UE and the network (e.g., gNB or LMF). The possible interaction between UE-network considering AIML framework is outlined in our accompanying contribution [3]. In the following, we discuss the details of UE-network interaction considering the above-mentioned approaches. 
LOS/NLOS path detection
As propagation condition being LOS or NLOS affect the channel response or the received waveforms, it is possible to classify the positioning measurements as LOS or NLOS by analyzing/processing channel responses. It is difficult to model the complex nature of the effects of propagation conditions on channel responses. Machine learning techniques, being data driven, can deliver a high classification performance rather than hypothesis testing techniques based on thresholding or on probabilistic models. 
Supervised LOS/NLOS classification
Depending on the availability of labeled measurements, supervised learning techniques can be used for the classification. Depending on the UE capability, it is possible to utilize simple or complex supervised learning techniques. One option is to extract some features (such as delay spread, maximum amplitude, average energy, kurtosis, peak-to-mean ratio etc.) from the channel measurements as part of the pre-processing and to utilize supervised ML (e.g., SVMs, small neural networks) to map the extracted feature to the estimated class, i.e., LOS or NLOS. Another option is to feed the channel response directly to a deep neural network (e.g., a deep CNN) which performs the classification.
Unsupervised LOS/NLOS classification
When labeled data is not available, unsupervised ML techniques can be employed for the classification. The LOS detector may receive as input the full received signal samples, CIR, or a processed version of either (e.g., a set of extracted features such as delay spread, rise time, RSRP, ToA, AoA, etc.) and return an LOS binary indication or probability. 
As an example, some features that are expected to exhibit different behavior for LOS vs NLOS propagation can be extracted from the channel measurements, e.g., NLOS measurements are expected to have a larger delay spread, larger rise time, weaker peaks compared to LOS measurements. The extracted features can be clustered into two using unsupervised ML such as k-means clustering, gaussian mixture models etc. And the clusters can be matched to LOS and NLOS classes depending on the feature values of the cluster centroids. 
An ML-based LOS/NLOS detector may, for example, be implemented, e.g., as a classifier or regressor by means of:
· neural networks (e.g., CNN, ResNet) with an activation function that produces either a probability, or a binary output, e.g., softmax, sigmoid, or 
· decision trees, SVMs. 

Multi-class classification
It is also possible to study multi-class classification as the binary classification, i.e., LOS/NLOS, might lead to a limited representation of the propagation channel. Inclusion of further classes such as obstructed-LOS might yield a better representation and a higher degree of information extraction.
Joint ML operation
Furthermore, a joint ML operation can take place between the network and the UE for LOS detection. For example, different ML models can be trained and configured on different entities, e.g., in the UE and the network. These models can further interact with each other, e.g., output of one ML model can be used as input to the other ML model. 
Proposal 1: Study ML-based techniques for LOS detection as a representative sub use case of positioning accuracy enhancements use case, including joint ML operation between the network and UE.
Interactions between the UE and the network
Between the UE and the respective entities at the network side (for example the location management function -LMF), interactions regarding the ML model(s) may take place with respect to the following two steps:
A. Training data collection (including metadata or assistance data)
B. Generation (at least partial) of the model.
Point A may be realized fully/partly offline or online, and in the latter case, it may require UE or the network to:
· Provide the ML-based LOS detector with diverse training data, e,g, balanced (associated with similar number of LOS and NLOS observations), collected in various SNR regimes, etc.
· Activate and deactivate the training period of an ML model. 
· Activate and deactivate the usage of an ML model once the model has been trained. This may occur when the network detects systematic errors of the location estimates and associates said errors with poor quality LOS reports. 

Point B may be realized offline or online, and in the latter case it may require UE or the network to:
· Provide ML model parameters, including:
· The maximum number of inputs (e.g., the size and shape of the input features) required by the detector, when such inputs are to be provided partly by the network.
· A set of common elements for a supervised learning LOS detector, e.g., the same input/output layer.
· Provide a common cost function (used to train the model) and assess if the cost function is using:
· the output of the ML-detector directly or
· the output of another function (performed at the same or different entity side) which itself is using the output of the ML-detector.
· The latency associated with (re)training the model due to e.g., the additional signaling required to trigger retraining, collecting additional training data and the retraining process itself.

Proposal 2: Study possible interactions between the UE and the network for training and deploying an ML-based LOS detector. The interactions between the respective entities (i.e., network – LMF and UE/TRP) should include the following information:
· The acquisition and transfer of training and/or inference data between relevant entities. 
· This would facilitate to assess whether these require different definitions depending on whether the LOS detector resides at TRP side, LMF side, or at the UE side. 
· Network-based model generation and exchange. 
· Model activation, deactivation, update, and testing 
· Including model assessment in terms of validity of output, and that the model output leads to actions/outcomes that ensures a minimal performance target.

LOS/NLOS Indication based on ML classifier
In Rel-17, it was agreed to standardize LOS identification by allowing the UE to report the LOS probability and/or LOS indicator. However, this was agreed in Rel.17 without defining and/or controlling how such indication may be obtained. Without clarifying the latter aspect, the LMF does not know how reliable such indication is, and to what extent to utilize it when computing the target UE location. 
To better understand this, let us consider the case where positioning receivers in an area (i.e., TRP in UL, UE in DL) use different approaches to compute the LOS indicator for a positioning link. For example, some receivers may use simple hypothesis testing-based methods with input such as RSRP to compute a LOS indication for a positioning link, while other receivers may employ advanced processing such as ML-based solutions and/or utilize more channel metrics such as the channel impulse response, to compute the same indicator towards the same target. The former receivers have inherently a higher error rate than the latter, but both reports may be trusted similarly by the LMF, or even worse, the former receivers’ reports may weigh more in the location estimation, hampering the final positioning accuracy. 
Observation 2: There is a need for assessing whether and to what extent such LOS report may be trusted by the network - including both cases of binary LOS classification report and LOS probability report. 
To address the need to assess LOS indicators with regard to their trust level, an additional indicator should be provided to the network along with the LOS indicator. This additional indicator should reflect the level of trust of the LOS indicator based on the utilized input features and the deployed detector. 
Proposal 3: An additional indicator to the LOS indicator may be provided to the network along with the LOS indicator. The additional indicator should reflect the level of trust of the LOS indicator based on the utilized input features and the deployed classifier at the UE side. 

NLOS-based localization
The entity computing the UE location estimate may employ an ML-based solution to combine positioning measurements associated with different types of LOS indication, for e.g., some with binary LOS/NLOS, while others with probability of LOS.
Use of ML to directly estimate the position
Channel measurements as well as LOS indication with regards to several TRPs can be input to an ML algorithm (using CNN, ResNet, RNN, etc.) to directly estimate UE location information in location coordinates, i.e., (x, y, z) in a 3D environment. Training can be done offline, and the trained ML can be used to estimate the UE position online. The performance of such solution would depend heavily on the similarity between training and test environments as the trained model inherently utilizes the TRP locations and the general propagation environment. In case the propagation environment is changed, e.g., objects are moved, transporting vehicles arrive, or TRPs are moved, the training scenario deviates from the test scenario yielding positioning accuracy degradation.
Furthermore, ML-based models harnessing multipath measurements may be employed to compute UE location, and they are expected to be particularly beneficial in NLOS scenarios. Such solutions may be implemented by means of supervised or unsupervised learning. For example, a multipath-based location estimator may be implemented as a neural network receiving as input, the characteristics of the strongest N>1 paths per TRP, where N is implementation specific, and outputting a 2D/3D location. The characteristics may refer to the tuple (amplitude, phase, delay).  
Use of ML to aid conventional techniques for position estimation
Alternatively, ML techniques (e.g., based on CNN, ResNet, RNN etc.) can be used to correct estimation errors of conventional techniques, e.g., peak detection used for ToA estimation, especially under unfavorable propagation conditions. In this approach, ML algorithm is trained with channel measurements provided as inputs with the associated label indicating ground-truth positioning measurements, such as ToA or TDoA. The training can be done offline, and the trained ML algorithm can be used for online ToA estimation.
Proposal 4: Study ML-based techniques for UE location estimation using channel information pertaining to NLOS conditions as a representative sub use case of positioning accuracy enhancements use case. 
Interactions between the UE and the network
To realize the ML-based estimation of the positioning information, for example, in case of UE-assisted positioning, the LMF may include the LOS report as an additional input feature to an ML-based model that utilizes the time/angle-based positioning measurements to multi-laterate the UE location. To train such solution, the LMF may require assistance from other entities in the network in acquiring a diverse set of training data.
Proposal 5: To cope with NLOS conditions and/or harness multipath information, study possible interactions between the UE and the network for training and deploying an ML-based localization method, including input feature definition, training data collection, model tuning after deployment, etc. 
Positioning measurement reporting enhancements
Background and Motivation
One of the Rel. 17 positioning enhancements agreements requires a fixed multipath reporting by the UE/TRP with the purpose of assisting the LMF in either performing LOS detection or multipath-based localization. However, the channel richness in delay domain e.g., number and density of relevant reflections is dependent on the environment and so, in some situations, the channel may be either:
A. much denser than N=8 paths (required to be reported) or
B. much sparser e.g., consisting of only a couple of relevant reflections.

In case A, the UE/TRP may report an insufficient number of paths for the LMF to be able to correctly conclude on the LOS state, while in case B, the UE/TRP may report many entries below the noise floor, increasing the reporting overhead, without improving the final positioning accuracy. Furthermore, if the target UE is deemed static, the report may not be needed to contain a repetition of the same N measurements as in a past report, but a reduced version of the latter.
Observation 3: To strike the right balance between reporting overhead and location accuracy, the UE/TRP may assess whether it is beneficial, and how often to report all/some of the N required paths.
Observation 4: To decrease reporting overhead, the UE may apply an ML based method to compress the reported data e.g., sending K samples instead of N samples (with K < N).
Proposal 6: For UE-assisted positioning, study possible interactions between the UE and the network for training and deploying an ML-based solution that allows for a flexible UE/TRP positioning measurement reporting including tuning the frequency, payload size and content (measurement types) of the report. 
Based on the discussions in this contribution, we think it is important to prioritize sub-use cases related to LOS detection, NLOS-based localization and harnessing multipath information, and optimization of positioning related feedback and measurement reporting.
Proposal 7: Prioritize the study of the following sub-use cases in Rel-18:
· LOS/NLOS detection
· NLOS-based localization and harnessing multipath information
· Optimization of positioning related feedback and measurement reporting

Conclusion
In this contribution we make the following observations and proposals:
Observation 1: Using ML-based solutions to estimate a target UE’s location in NLOS conditions and/or using multipath information may be beneficial to the final location estimate. 
Observation 2: There is a need for assessing whether and to what extent such LOS report may be trusted by the network - including both cases of binary LOS classification report and LOS probability report. 
Observation 3: To strike the right balance between reporting overhead and location accuracy, the UE/TRP may assess whether it is beneficial, and how often to report all/some of the N required paths.
Observation 4: To decrease reporting overhead, the UE may apply an ML based method to compress the reported data e.g., sending K samples instead of N samples (with K < N).

Proposal 1: Study ML-based techniques for LOS detection as a representative sub use case of positioning accuracy enhancements use case, including joint ML operation between the network and UE.
Proposal 2: Study possible interactions between the UE and the network for training and deploying an ML-based LOS detector. The interactions between the respective entities (i.e., network – LMF and UE/TRP) should include the following information:
· The acquisition and transfer of training and/or inference data between relevant entities. 
· This would facilitate to assess whether these require different definitions depending on whether the LOS detector resides at TRP side, LMF side, or at the UE side. 
· Network-based model generation and exchange. 
· Model activation, deactivation, update, and testing 
· Including model assessment in terms of validity of output, and that the model output leads to actions/outcomes that ensures a minimal performance target.

Proposal 3: An additional indicator to the LOS indicator may be provided to the network along with the LOS indicator. The additional indicator should reflect the level of trust of the LOS indicator based on the utilized input features and the deployed classifier at the UE side.
Proposal 4: Study ML-based techniques for UE location estimation using channel information pertaining to NLOS conditions as a representative sub use case of positioning accuracy enhancements use case.
Proposal 5: To cope with NLOS conditions and/or harness multipath information, study possible interactions between the UE and the network for training and deploying an ML-based localization method, including input feature definition, training data collection, model tuning after deployment, etc.
Proposal 6: For UE-assisted positioning, study possible interactions between the UE and the network for training and deploying an ML-based solution that allows for a flexible UE/TRP positioning measurement reporting including tuning the frequency, payload size and content (measurement types) of the report.
Proposal 7: Prioritize the study of the following sub-use cases in Rel-18:
· LOS/NLOS detection
· NLOS-based localization and harnessing multipath information
· Optimization of positioning related feedback and measurement reporting
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