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1. [bookmark: _Toc120549591]Introduction
In RAN#94-e meeting, new SID on AI/ML for NR Air Interface is determined, three target use cases (i.e. CSI feedback enhancement, beam management, positioning accuracy enhancements) and regarding aspects such as performance, complexity, potential specification impact need to be studied. 
The following SI objectives regarding performance evaluation of three use cases are proposed [1]. 
· Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
In this contribution, we concentrate on simulation methodology and performance results of spatial domain beam prediction sub use case to exercise the attainable gains of AI/ML based techniques for beam management use case.
2. Performance evaluation of spatial domain beam prediction
In this section, simulation assumption, AI model structure, KPI, baseline and simulation results of spatial domain beam prediction with P1 and P2 process will be discussed. The procedure description of spatial domain beam prediction sub use case can refer to [2]. 
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Simulation assumption
The simulation scenario, parameters and construction of data set are summarized as in Table 1.
Table 1 Simulation parameters
	Parameter
	Value	

	Scenario
	TR38.901: InH, 12 sites, 3 cells per site

	SCS
	120kHz

	Bandwidth
	40MHz

	Carrier Frequency 
	30GHz

	Tx power
	20dBm

	BS antenna config
	[Mg Ng M N P] = [1 1 16 4 2]

	UE antenna config
	[Mg Ng M N P] = [1 3 1 4 2]

	BS Tx beam pattern
	64 Tx = 16 horizontal * 4 vertical
Azimuth angle = [-16*pi/32, -14*pi/32, …, 0, …, 12*pi/32, 14*pi/32]
Zenith angle = [2*pi/8  3*pi/8  4*pi/8  5*pi/8]
(azimuth, zenith) = (0, pi/2) is the direction perpendicular to the array

	BS mech. tilting
	20 degree

	UE Rx beam pattern
	4 Rx per panel = 4 horizontal * 1 vertical
UE panels deployment [-90, 0, 90]
Azimuth angle = [-3*pi/8, 1*pi/8, pi/8, 3*pi/8]
Zenith angle = [pi/2]

	UE height
	1.5

	Beam selection method
	L1-RSRP

	Data set
	39600 samples = 12 sites * 3 cells per site * 100 UE per cell * 11 drops


The dataset we used is downloaded from wireless intelligence website (wireless-intelligence.com). InH scenario in TR38.901 is considered, where 12 sites with 3 cells per site are deployed. Carrier frequency considers the high frequency band of 30GHz, the subcarrier spacing is 120kHz. The base station is equipped with 128 antennas and has 64 transmit beams, including 16 horizontal beams and 4 vertical beams. The UE is equipped with 3 arrays, each array has 8 antennas, and there are 4 reception beams. Data set includes 39600 samples coming from 11 drops in 12 sites scenario with 3 cells per site and 100 UE per cell, each sample includes L1-RSRP of all 256 beam pairs.
AI model
When the number of transmit beams at gNB M and reception beams at UE N is large, measuring the L1-RSRP of all M×N beam pairs and selecting the optimal beam will lead to large beam measurement overhead. To reduce beam measurement overhead, AI-based scheme selects a part of beam pairs for measurement and predicts the index and L1-RSRP of top K beams pairs among all M×N beam pairs. The beam pattern of the selected beam pairs is fixed. In our simulations, 8 fixed transmit beams and 4 fixed reception beams are chosen to predict the top K beam pairs from all 64×4 beams.
When predicting top 1 best beam pair, to reduce the complexity of AI model, two AI models are considered. AI model 1 takes the measured L1-RSRP of selected 8Tx*4Rx beam pairs as the input and outputs the index of top 1 best beam, AI model 2 takes the measured L1-RSRP of selected 8Tx*4Rx beam pairs as the input and outputs only the largest L1-RSRP. AI model 1 adopts CNN and fully connected layer structure, AI model 2 adopts fully connected network.
When predicting top K (K>1) best beam pairs, AI model 3 is considered, which takes the measured L1-RSRP of selected 8Tx*4Rx beam pairs as the input and outputs the L1-RSRP of all beam pairs. Top K best beam pairs are determined by comparing L1-RSRP of all beam pairs.
KPI and baseline
We consider L1-RSRP of best beam pair, prediction accuracy rate of best beam pair, overhead of beam measurement as KPI. Since the number of measured beams of traditional non-AI method depends on gNB configuration, there are tradeoff between performance and overhead under different gNB configurations, it is hard to determine which gNB configuration is the best and is used as baseline. Thus, the baseline of this sub use case needs to be aligned.
Three options of baseline of spatial domain beam prediction sub use case are considered:
· Option 1: gNB performs exhaust beam sweeping, UE selects best beam pair among all beam pairs.
· Option 2: gNB performs sparse beam sweeping with fixed sparse pattern, UE selects best beam pair among measured beam pairs.
· Option 3: gNB performs sparse beam sweeping with variable sparse pattern, UE selects best beam among measured beam pairs.
With option 3, whether one AI model has generalization capability to be applicable to variable sparse beam pattern still needs evaluation. In our simulation, we consider fixed sparse beam pattern and take both option 1 and option 2 as baseline.
Proposal 1: Baseline of spatial domain beam prediction needs to be studied, the following three options of baseline can be considered:
‐	Option 1: gNB performs exhaust beam sweeping, UE selects best beam pair among all beam pairs.
‐	Option 2: gNB performs sparse beam sweeping with fixed sparse pattern, UE selects best beam pair among measured beam pairs.
‐	Option 3: gNB performs sparse beam sweeping with variable sparse pattern, UE selects best beam among measured beam pairs.
Simulation results
In Fig. 1 and Fig. 2, we respectively compare L1-RSRP, selection accuracy of top 1 best beam pair of our scheme, with baseline option 1 and option 2. 


Fig. 1 L1-RSRP of top 1 best beam pair (dBm)



Fig. 2 selection accuracy of top 1 best beam pair
Compared with baseline option 1, AI based best L1-RSRP prediction is close to the result of exhaust beam sweeping, , 86.52% selection accuracy of top 1 best beam is achieved but can save 87% beam sweeping overhead. 
Compared with baseline option 2, AI based beam prediction achieves 7.83 dB gain on L1-RSRP of top 1 best beam, enhances selection accuracy of top 1 best beam pair selection by 62.58% under the same low beam sweeping overhead.
Above all, AI based spatial beam prediction can largely reduce beam sweeping overhead with minor loss of selection accuracy of top 1 best beam pair, and can attain considerable gain on selection accuracy of top 1 best beam under the same beam sweeping overhead.
Observation 1: Compared with baseline option 1, AI based spatial beam prediction has 13.48% loss of selection accuracy of top 1 best beam pair but has 87% beam sweeping overhead reduction.
Observation 2: Compared with baseline option 2, AI based spatial beam prediction enhances selection accuracy of top 1 best beam pair by 62.58% under the same beam sweeping overhead.
[bookmark: _GoBack]In Table 1, we compare prediction accuracy of top K (K>1) best beam pair of our scheme with baseline option 1 and option 2. 
Table 1 prediction accuracy of top K (K>1) best beam
	K
	prediction accuracy

	2
	0.947

	3
	0.970

	4
	0.979


With the increase of K, the prediction accuracy of AI model improves significantly, while the increased beam sweeping overhead originating from P2 process is small. Selecting appropriate K value can achieve a tradeoff between prediction accuracy and beam sweeping overhead. The prediction accuracy of top K best beam pairs may further increase through optimizing AI model or selecting appropriate sparse beam pattern. 
Observation 3: The increase of K significantly improves the prediction accuracy while leads to a small degree of increased beam sweeping overhead. 

3. Conclusion
In this contribution, simulation methodology and performance results of spatial domain beam prediction sub use case is discussed, and the following observations and proposals are made.
Observation 1: Compared with baseline option 1, AI based spatial beam prediction has 13.48% loss of selection accuracy of top 1 best beam pair but has 87% beam sweeping overhead reduction.
Observation 2: Compared with baseline option 2, AI based spatial beam prediction enhances selection accuracy of top 1 best beam pair by 62.58% under the same beam sweeping overhead.
Observation 3: The increase of K significantly improves the prediction accuracy while leads to a small degree of increased beam sweeping overhead. 
Proposal 1: Baseline of spatial domain beam prediction needs to be studied, the following three options of baseline can be considered:
‐	Option 1: gNB performs exhaust beam sweeping, UE selects best beam pair among all beam pairs.
‐	Option 2: gNB performs sparse beam sweeping with fixed sparse pattern, UE selects best beam pair among measured beam pairs.
‐	Option 3: gNB performs sparse beam sweeping with variable sparse pattern, UE selects best beam among measured beam pairs.
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