Page 8
3GPP TSG-RAN WG1 Meeting #109-e		R1-2204063
e-Meeting, May 9th – 20th, 2022

[bookmark: Source]Agenda item:	9.2.2.1
Source:	Charter Communications
Title:	Performance evaluation of ML techniques for CSI feedback enhancement
[bookmark: DocumentFor]Document for:	Discussion
Introduction
In RAN#94, it was proposed to study the benefits of augmenting the air-interface with AI/ML algorithms for enhanced performance. Three main use cases are carefully selected to examine such benefits, including CSI feedback, beamforming and positioning. Enhanced performance under each of these use cases could be different, including but not limited to reduced overhead, improved throughput, increased accuracy and higher reliability [1].
The goal is to assess the performance of ML methods in comparison with traditional methods and also consider the associated potential specification impacts that leverage ML methods. First step is to establish a general model characterization and description with proper notation for subsequent discussions. Next step is to acquire a better understanding of achievable gains and also associated complexity by running extensive Link level and system level simulations for each use case.
Last but not least, specification impact will be assessed in order to improve the understanding of requirements for enabling AI/ML techniques such as potential specification of new signalling, assistance information, measurement, and feedback, AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases.
One of the suggested use cases is CSI feedback. CSI feedback report can include various parameters including RI, CQI, PMI, SSBRI, etc. The largest overhead corresponds to codebook-based PMI feedback. Specifically, Type II and eTypeII requires large overhead to send the information on singular vectors (SV) back to gNB. The current codebook-based methods use projection onto DFT basis which is suboptimal in various scenarios. Instead, ML techniques can exploit the underlying structure of channel models to optimally choose the basis. Notably, autoencoders, a type of neural networks (NNs), can enhance the compression/decompression process with reduced overhead.
Background
Beamforming is an important part of NR and can provide directivity, that is, to focus the transmitted power in a certain direction. Such directivity can increase the received power at the destination and thus increase achievable data rates and range. Directivity will also reduce the unwanted interference to other users, hence improving the overall spectrum efficiency of the network. In addition, beamforming enables spatial multiplexing, that is, transmission of multiple layers in parallel using the same time/frequency resources. Both directivity and multiplexing can increase the achievable data rate and based on Shannon capacity formula, the optimal solution for maximizing capacity is to decompose the channel into interference-free sub channels and perform water-filling power allocation.
Singular value decomposition (SVD) can decompose the channel matrix into orthogonal, interference-free sub-channels. However, to perform SVD beamforming, the gNB requires the information about SVs. In channel settings with no uplink/downlink reciprocity, UEs are required to feedback information of singular vectors to gNB for efficient beamforming. With increased number of transmit antennas at gNB and also increased bandwidth, the overhead for feedbacking SVs for all subcarriers and all layers has become too large. The current solution is to use the projection of SVs in both spatial and frequency domain onto a predefined set of vectors, i.e., codebooks.
There are three main codebook-based methods including Type I, Type II and Type II enhanced (eType II). In Type I, the singular vectors are projected onto oversampled DFT vectors and the best beam is selected for the whole bandwidth. The selected beam is used in wideband fashion while phase adjustments can be applied for each subband. Type II provides further granularity in both spatial and frequency domain in expense of higher overhead. In Type II, the SVs are projected onto oversampled DFT vectors, and up to four beams are selected and linearly combined. The combination amplitudes and phases can be chosen per-subband. Although Type II codebook improves the performance of Type I codebook, it adds larger overhead. The main reason for large overhead is that the compression is performed solely in spatial domain and not the frequency domain. The eType II codebook, introduced in Release 16, resolves the limitation of Type II by performing projection of combinatory weights (in frequency domain) onto another DFT basis. The simplified comparison of Type II and eType II is shown in Fig. 1.

[image:]Figure 1: Illustration of Type II and eType II codebooks

The main drawback of described codebook-based methods is that they all use a fixed basis for projection, independent of underlying channel model. To further improve existing methods, the chosen basis can be optimized based on the channel. In addition, the bit allocation for quantization of phases and amplitudes can be intelligently optimized based on SVs’ distributions. If some sort of structure exists in the data (e.g., correlations in spatial and frequency domain), this structure can be implicitly learned by ML techniques and consequently leveraged when compressing the SVs at UEs and decompress them at gNB.
Autoencoder is an unsupervised learning technique in which neural networks are used for the task of representation learning. SVs can be used as an unlabeled dataset to an autoencoder denoted as , as shown in Fig. 1. The output of the autoencoder is a reconstruction of the original input denoted as . This network can be trained by minimizing the reconstruction error, , which measures the differences between the original input and the consequent reconstruction. If there is no constrains on the hidden layers, the network simply memorizes the inputs to minimize the reconstruction error. However, by constraining the hidden layers, e.g., the number of elements in sparse representation [bottleneck in Fig. 2], the model learns to maintain only the variations in the data required to reconstruct the input without preserving redundancies.
In addition, autoencoders are able to exploit nonlinearities in the input data for providing a compressed representation of data with less dimension. In fact, an autoencoder without the use of nonlinear activation functions at each layer would obtain a similar dimensionality reduction as obtained in Principal Component Analysis (PCA) methods. Flexible structure and exploiting both linear and nonlinear mappings make autoencoder a great candidate for compression/decompression processes.
[image:]

Figure 2: An autoencoder with one hidden layer

Simulation Methodology

In this contribution, we use a simple simulation framework to show the potential benefits of ML techniques in reducing the CSI feedback overhead while provide a better performance. The simulation includes a single gNB and a single UE which communicate in an environment with CDL channel model. The UE is assumed to have the perfect knowledge of CSI. The UE compresses the best singular vector of channel matrix and sends it back to the gNB. In turn, the gNB can use the compressed PMI to calculate the beamforming vectors.
The goal is to feedback the direction of the best singular vectors in least number of overhead bits while the reconstruction error is minimized. The metric for evaluating the reconstruction is cosine similarity which mainly compares the direction of the reconstructed vector and the original singular vector. The CDL channel model is used to generate synthetic training and testing sets. First, the neural network is trained using 60,000 training samples generated by CDL-C channel model, then, 10,000 test samples generated by CDL-A,B,C channel models are used to evaluate the performance of trained neural network. Summary of training specifications are listed in Table 1.

Table 1: Training specifications
	Data generation [PHY spec]
	Training features

	nRB = 52, nSubbands = 13
	Test samples = 10000

	Fc = 4 GHz, scs = 15 kHz,
	Training samples = 60000

	Delay Profile = CDL-C
	Epochs = 100

	Delay Spread = 300 ns
	Batch size = 2048

	UE Velocity = 30 km/h
	Metric = MSE

	Antennas = 8
	Optimizer = Adam

Autoencoders encompasses two parts, encoder which is responsible for compressing the input, and decoder which attempts to reconstruct the original input given the compressed representation. Although encoder and decoder are trained jointly, they are used separately at UE and gNB, respectively. If the training is performed at UE, then the coefficients of decoder should be transferred to the gNB to perform reconstruction. Conversely, if the training is performed at gNB, then the coefficients of encoder should be transferred to the UE to perform encoding. In this contribution, we solely focus on the potential overhead reduction provided by autoencoders and assume the gNB and UE have access to NN’s coefficients after training.
Neural Network architecture

To construct the autoencoder various layers can be used including dense, convolutional and recurrent. In dense layers, every input feature is connected to every node in the layer, or, in other words, output of each node is a linear combination of all input features. Dense layers are not well-suited for exploiting underlying structure in multi-dimensional data such as images, videos. In such scenarios, convolutional networks are used which can take multi-dimensional data as input and apply various kernels to extract and expose underlying data structures. Recurrent networks are neural networks with memory, meaning that, output of each node depends not only on input but also previous state of each node. Recurrent layers are suitable for processing sequential data such as voice, handwriting, etc.
In this contribution, we use convolutional layers in encoder to fully exploit existing spatial and frequency correlation among input data. In decoder, we use large degrees of freedom available in dense layers to reconstruct the original singular vectors. The structure of the autoencoder is shown in Fig. 3.
[image:]

Figure 3: Designed autoencoder for CSI compression/decompression

In the proposed structure, the best singular vector for all subbands is concatenated to create a matrix of size where represents the number of transmit antennas and represents the number of subbands. Since neural networks can process real data, the real and imaginary parts of input data are separated and concatenated vertically to create a matrix of size . The input first is sent through encoder to compress and quantize the input data, and then, the compressed/quantized representation is sent through decoder to generate the reconstructed version. Mean Square Error (MSE) is used as the reconstruction error and Adam optimizer is used to optimize the trainable parameters.
In encoder, the first layer is a convolutional layer with two filters to extract the spatial and frequency correlations existed in the data. The second layer is a convolutional layer with one filter to recombine the extracted features and prepare the data for the last layer which is a dense layer with a custom activation replicating quantization process. The custom activation function is a Tanh function with large slope (10000) to replicate quantization process. The third layer include nodes each activated by a custom tanh function to generate quantized bits. Then, the bits are feedback to gNB and are processed in decoder to reconstruct the best singular vector. The input bits go through three dense layers in the decoder. The first two layers include nodes activated by relu function while the last dense layer include with tanh activation function to reconstruct the best singular vector for all subbands.
To compare the proposed NN method with legacy methods in NR, cosine similarity between reconstructed samples and original singular vectors is considered. The comparison results are listed in Table 2. Although Type II codebook improves Type I’s performance, it generates large overhead. The eType II codebook further enhances the performance and also adds flexibility in terms of number of feedback bits by introducing various quantization parameters. To achieve a reliable performance, i.e., , eTypeII requires around 200 bits of overhead. However, the proposed NN can achieve with only 60 bits of feedback, i.e., 70% decrease in overhead. To achieve the best performance, i.e., , the NN requires 169 bits which is 50% less than the required overhead for eType II.

Table 2: Performance comparison of Type I, Type II, eTypeII and NN methods
	Type I
	Type II
	eTypeII
	NN

	bits
	cosine similarity ()
	bits
	cosine similarity ()
	bits
	cosine similarity ()
	bits
	cosine similarity ()

	32
	0.7125
	221
	0.8052
	58
	0.7514
	39
	0.8948

	
	
	
	
	114
	0.7854
	65
	0.9105

	
	
	
	
	199
	0.8464
	91
	0.9322

	
	
	440
	0.8448
	281
	0.9264
	113
	0.9551

	
	
	
	
	307
	0.9474
	143
	0.9717

	
	
	
	
	357
	0.9833
	169
	0.9888

Observation 1: Autoencoders can provide great overhead reduction by exploiting implicit linear and nonlinear relations in both frequency and spatial domains. Up to 70% overhead reduction can be achieved while providing reliable performance. Around 50% overhead reduction can be achieved while providing peak performance.
Observation 2: Autoencoders can provide flexibility in terms of number of feedback bits.

Unmatched Testing and Training Data
In the previous section, we showed that NN can provide significant gain compared with the conventional codebook-based methods. The key factor in success of the NN is to exploit the underlying structure of training data and apply it to the upcoming input. As long as the new data has the same statistical features as the training data, then the NN can provide anticipated performance. However, in a fast-changing environment, where the channel statistics can be drastically changed, the NN might fail to provide good performance. In this section, we examine the Generalizability capability of the proposed NN by testing it with different CDL channel models.
The proposed NN, shown in Fig.3, is trained based on CDL-C training data and is tested on different data sets generated by CDL-A, CDL-B and CDL-C. The results are shown in Table 3.

Table 3: Performance of a NN trained with CDL-C data set on different channel models
	CDL-C
	CDL-B
	CDL-A

	bits
	cosine similarity ()
	bits
	cosine similarity ()
	bits
	cosine similarity ()

	39
	0.8948
	39
	0.8766
	39
	0.8874

	65
	0.9105
	65
	0.9023
	65
	0.9111

	91
	0.9322
	91
	0.9189
	91
	0.9254

	113
	0.9551
	113
	0.9305
	113
	0.9406

	143
	0.9717
	143
	0.9412
	143
	0.9515

	169
	0.9888
	169
	0.9478
	169
	0.9638

It can be observed that even when the channel model differs, the NN can maintain its generalizability and provide good performance, better than legacy codebook-based methods. Obviously, CDL-C test data shows the best performance since it has the most similarity to the training data. However, CDL-A and CDL-B test data show minor degradation due to structural differences compared with CDL-C. CDL-B channel model shows more degradation compared with CDL-A

Observation 3: The autoencoder could preserve its generalizability under various CDL channel models.

Conclusions
In this contribution, we showed that autoencoders can exploit the implicit linear and nonlinear relations in spatial and frequency domain to greatly reduce the CSI feedback overhead. We suggested an autoencoder design including convolutional layers in encoder and dense layers in decoder. The simulation results show that by using the autoencoder up to 70% overhead reduction can be achieved while providing better performance compared with codebook-based methods in NR. The generalizability of the autoencoder is also evaluated by considering various CDL channel models.

Observation 1: Autoencoders can provide great overhead reduction by exploiting implicit linear and nonlinear relations in both frequency and spatial domains. Up to 80% overhead reduction can be achieved while providing reliable performance. Around 50% overhead reduction can be achieved while providing peak performance.
Observation 2: Autoencoders can provide flexibility in terms of number of feedback bits.
Observation 3: The autoencoder could preserve its generalizability under various CDL channel models.
[bookmark: _Ref510768421][bookmark: _Ref47473470]References

[1] RP-213599, Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, 3GPP TSG RAN Meeting #94e

1/4
image1.png
N Antennas

K Subbands

singular vectors: Hy x

Type II:
spatial compression
—

Basis: Wy
w, =
bo, b1 0
0 b, byq

2L
spatial domain

K Subbands

projected weights
w, =WiH

$

Type II feedback:
w=WwWw,

eType Il
frequency compression
—

Basis: Wy
Wy =[fo.fi s fu-1

-
N

M
frequency domain

spatial domain

projected weights
W, = wW,Wwy

$

eType II feedback:
W =w,W,w}

image2.png
Input Layer Output Layer

Hidden Layer %

bottleneck

image3.png
2N, -

Input
1 filter

Conv
Layer

2 filters
(3.3)

Relu
activation

Encoder

Conv
Layer

1 filter
(33)

Relu
activation

Dense Dense Dense Dense
Layer Layer Layer Layer

L 8NNy 8NNy 2N N;
Nodes Nodes Nodes Nodes

custom Relu Relu Tanh
activation activation activation activation

Decoder

