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1 Introduction

In RAN#94-e, Rel-18 new study item on “Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” is endorsed. One of the objective of the study item [1] is the following:
	*** text omitted***

Use cases to focus on: 

· Initial set of use cases includes: 

· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]

· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98

· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

*** text omitted***

For the use cases under consideration:

1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:

· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 

· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.

· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 

· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 

· Consider adequate model training strategy, collaboration levels and associated implications

· Consider agreed-upon base AI model(s) for calibration

· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes

· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.

· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline

· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.




In this contribution, we will provide our views on the evaluation of AI/ML for CSI feedback enhancement. 

2 Evaluation on AI/ML for CSI feedback enhancement.
Based on the part of SID [1], captured above, the evaluation methodologies (EVMs) and KPIs for the use cases under consideration will be studied. In this regard, this contribution discusses EVMs and KPIs for one of the use cases, namely, CSI feedback enhancement. Moreover, three sub-use cases are considered under CSI feedback enhancement. A brief description of the sub-use cases, which are described in details in [2], is given below. 
a) CSI prediction:  This sub-use case considers the prediction of CSI in time domain. An AI/ML solution located at either the UE or gNB performs CSI prediction based on a set of inputs, e.g. past CSI measurements/reports. 

b) CSI compression: This sub-use case envisions compression of the CSI feedback in spatial and frequency domains. The compression is based on an AI/ML model, referred to as an encoder, at the UE. A parallel AI/ML model at the gNB, referred to as a decoder, decompresses/reconstructs the CSI feedback. The pair of encoder and decoder, hence, is referred to as an auto-encoder (AE). 

c) Joint CSI prediction and compression: This sub-use case considers the compression of CSI feedback in spatial, frequency, and time domains. As this sub-use case considers the three aforementioned compression domains, it can be loosely considered as a combination of the above two sub-use cases.

This contribution considers the following aspects of EVMs for the abovementioned sub-use cases. 

· Scenarios, evaluation assumptions, and benchmark schemes

· Dataset generation for training, testing, and validation 

· Other aspects

Furthermore, the following aspects of the KPIs are discussed per each sub-use case.
· Performance-related KPIs
· Capability related KPIs
· Preliminary results and other aspects

1.1. CSI prediction
As mentioned above, CSI prediction considers the prediction of CSI in the time domain. One option is CSI prediction at the gNB that leverages UL SRS (this would apply to TDD). Another option is CSI prediction at the gNB that leverages (multiple) received CSI reports. Yet another option is CSI prediction at the UE that leverages received CSI-RS; the (quantized) predictions could be fed back to the gNB.

2.1.2 Evaluation methodology
Scenarios, evaluation assumptions, and benchmark schemes
It is useful to align some of the assumptions for mobility modeling, e.g. Doppler spectrum, UE trajectory/spatial consistency, and UE speed. The timescale for CSI prediction is typically on the order of slots, where the Doppler shift is effectively constant. That being said, UE mobility models that capture variations in UE speed are useful, as they can be used to generate datasets with a range of UE speeds (and, hence, Doppler shifts). Such datasets can be used to train CSI predictors with good generalization performance. Examples of these UE mobility models include 1) intra-cell mobility scenarios for Rel-17 multi-beam enhancement [5] and 2) trajectories based on spatial consistency [Section 7.6.3, TR 38.901].

Proposal 1-1: For CSI prediction, to model user mobility, consider the link-level channel model with Doppler information in Section 7.5 of TR 38.901. 
Regarding baseline conventional schemes, Rel-16/17 EVM could be a good starting point (e.g. simply using the feedback based on Rel-16/17 codebooks). There are several options for non-AI predictors, e.g. extrapolation, Kalman filters (where multiple CSI reports are processed), etc.  It may be difficult to align on a baseline predictor since one isn’t specified in the standards.  Moreover, the computational complexity of prediction based baseline schemes cannot be ignored while making complexity comparison between the proposed AI/ML schemes and baseline schemes adds additional evaluation efforts. Moreover, one may also argue that there is no clear line to classify a prediction based baseline schemes as AI-based and non-AI-based. Hence, any predictor based baseline could also be part of this SI rather than a baseline scheme.  In this regard, alignment with the EVM for Rel-18 Type-II DD (Delay-Doppler) CSI compression reduces the EVM design efforts. Moreover, some further study is needed on the baseline selection for AI based CSI prediction, e.g., conventional schemes without CSI prediction or CSI prediction with non-AI predictors.
Proposal 1-2: For CSI prediction, consider Rel-16 CSI feedback and Rel-17 CSI feedback, as benchmark schemes. 

Dataset generation for training, testing and validation 
Regarding dataset generation for training, testing, and validation purposes, the statistical channel models from TR 38.901 could be a good starting point. For a fair comparison, common assumptions can be taken in regards to determining scenarios, values, distribution of parameters, and simulation settings. Other meta properties of datasets, including dataset size, portioning for training, test and validation can also be agreed upon. Moreover, additional training setting-related aspects such as batch size, epochs, etc. can be left to the discretions of companies.  This approach minimizes the efforts for determining datasets as opposed to directly agreeing on common datasets. 

Additionally, the applicability of field data for this SI can be studied. Though, field data might be reliable in the representation of a specific scenario/setting; they limit the scope of the evaluation to the settings/scenarios they are provided. Therefore, to have flexibility in terms of considering various scenarios, synthetic (generated) data are preferred. Additional issues including proprietary issues, hardware dependence, controllability, interpretability, etc. might also arise on applicability of field data. 
Proposal 1-3: For CSI predictions, reuse channel models in TR 38.901 to generate datasets for training/testing/validation in this sub-use case. 
2.1.2 KPIs

Performance related KPIs

NMSE and cosine similarity could be a good starting points. Eventually we’d want to look at user-perceived throughput (UPT) in the SLS, e.g. average UPT, 5% UPT, 50% UPT, 95% UPT.

Proposal 1-4: For KPIs in CSI prediction, proxy metrics such as NMSE and cosine similarity can be considered as intermediated KPIs and   system-level metrics such as UPT can be used for general KPIs.
Capability-related KPIs

In order to clearly identify the benefits of AI/ML based solutions, it is important to consider both performance benefits and its costs, e.g. computational burden. When the AI/ML operations are performed at the UE, it is more important to consider the UE capability-related KPIs such as computational complexity, power consumption, memory storage and other hardware requirements. 
Proposal 1-5: For CSI prediction, consider capability-related KPIs such as computational complexity, power consumption, memory storage, and hardware requirements.
2.1.3 Preliminary evaluation result
Recent research results from both academia and industry indicate that AI-based CSI prediction strategies can significantly reduce prediction error beyond that achieved by the sample-and-hold strategy that is supported by Rel. 15-17.  Many of these results utilize deep learning techniques to learn the temporal channel correlations (and, in some instances, spatial-frequency channel correlations).

Fig. 1 shows the performance improvement that we obtained using a 3D-CNN for CSI prediction, compared to a baseline sample-and-hold predictor.  These results were generated with the following parameters:

· UE speed of 30 km/h

· 3GPP UMi channel model

· Carrier frequency of 2.1 GHz

· Channel bandwidth of 20 MHz

· gNB has Nt = 32 transmit antennas and Nr = 4 receive antennas

· K = 52 resource blocks

· CSI-RS periodicity of 5 ms.
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Fig. 1: AI-based CSI prediction results

The 3D-CNN that we used, along with its inputs, is shown in Fig. X.  We define the following parameters:

· B is the batch size

· L is the number of past channel observations that are input to the 3D-CNN

· X = 2*Nr*floor(Nt/2)*floor(K/4), where floor() is the floor function.

The parameters of the 3D-CNN are shown in Table 1.
Table 1: Parameters of 3D-CNN
	Module
	Parameter
	Value

	Conv Block 1
	Input and output dimensions
	(B, 2*L, Nr, Nt, K) and 

(B, 4*L, Nr, Nt, K)

	
	(Kernel, padding, stride)
	(3, 7, 5) and (1, 3, 2) and (1, 1, 1)

	MaxPool 1
	(Kernel, padding, stride)
	(3, 3, 3) and (1, 1, 1) and (1, 1, 1)

	Conv Block 2
	Input and output dimensions
	(B, 4*L, Nr, Nt, K) and 

(B, 2, Nr, Nt, K)

	
	(Kernel, padding, stride)
	(3, 7, 7) and (1, 3, 3) and (1, 1, 1)

	MaxPool 2
	(Kernel, padding, stride)
	(1, 2, 4) and (0, 0, 0) and (1, 2, 4)

	FC Block
	Input and output dimensions
	(B, X) and (B, 2*Nr*Nt*K)


The hyper-parameters that we used for model training are shown in Table 2.
  Table 2: Hyper-parameters for model training
	Parameter
	Value

	Batch size
	512

	Number of epochs
	300

	Optimizer
	Adam

	Initial learning rate
	0.001

	Learning rate schedule
	0.1 at (100, 200, 250) epochs

	Training/testing split
	70% / 30%


Observation 1-1: AI-based CSI prediction can exploit inherent channel correlations in the frequency, spatial, and temporal domains, yielding a significant improvement over a sample-and-hold predictor at moderate UE speeds.

1.2. CSI compression
2.2.1. Evaluation methodology

Scenarios, evaluation assumptions, and benchmark schemes

 In the AI/ML-based CSI compression, firstly, it is required to evaluate the performance of AI models in terms of simpler metrics such as CSI reconstruction accuracy and feedback overhead reduction. This can be done in Phase I of evaluation. After that, in second phase of evaluation, the MIMO system performance can be evaluated with traditional performance metric such as throughput.
To verify the benefits of AI/ML-based CSI compression, basically, we need to compare the AI approach with the non-AI approach. In this regard, the Rel-16/17 CB-based feedback could be a suitable benchmark conventional scheme.
The SID (RP-213599 [1]) states that the statistical channel models from TR 38.901 are used for the dataset construction. We fully agree that this statement is a basic assumption to construct the dataset for the AI/ML model evaluations. Furthermore, for a fair and transparent comparison with a benchmark conventional scheme, datasets for the model training and model inference need to be generated with common assumptions across companies. In other words, the channel parameters (e.g., delay spread, path loss, angle spread) to generate the datasets need to be common and be agreed upon. 
Consideration of a baseline AI model may allow converged discussion to evaluate the impact of AI in this sub-use case. In the AI/ML-based CSI compression, the AI model at the UE compresses CSI and AI model at the gNB reconstructs the original CSI from the output of UE’s AI model (see Fig. 1). Considering both the compression and reconstruction tasks, an auto-encoder consisting of an encoder and a decoder is a proper baseline AI model. Since the performance of AE depends highly on the type of neural network (e.g., CNN, RNN, LSTM) for encoder and decoder, the specification of the designed AE model including the type and structure of the neural network is needed for the common evaluation. With this information, the AE model needs to be evaluated with the performance-related KPIs (e.g., reconstruction accuracy) and the capability-related KPIs (e.g., computational complexity).

Proposal 2-1: Consider an auto-encoder as a baseline AI/ML model for CSI feedback compression and reconstruction tasks. Further study is needed to select the  baseline type of neural network (e.g. CNN, RNN, LSTM).
Proposal 2-2: For calibration in CSI compression, consider both performance-related KPIs (e.g., reconstruction accuracy) and capability-related KPIs (e.g., computational complexity) for the baseline AI/ML model.
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In the AI/ML field, the quality of model training (e.g., convergence and speed of model training) depends highly on the hyper-parameters (e.g., learning rate, batch size, and the number of epochs) and the loss function (e.g., mean squared error (MSE) and CS). From our perspective, since setting the proper hyper-parameters and designing a useful loss function are purely implementation issues, we do not need to align the loss function and hyper-parameters as long as the common KPIs are used in the evaluation. However, for the model calibration and/or the performance cross-check, companies should report the used loss function and hyper-parameter values with the specification of the AE model.

Proposal 2-3: Only for the model calibration in CSI compression, aligned loss function, hyper-parameter values, and details of the AI model are considered together. 

2.2.2. KPIs

Performance-related KPIs

In order to verify the benefits of CSI compression, firstly, the performance of AE model should be evaluated in terms of CSI reconstruction accuracy and feedback overhead reduction. Specifically, when measuring the CSI reconstruction accuracy, we can use the mean squared error (MSE) and the cosine similarity (CS) between the ground-truth CSI and the reconstructed one. Also, to examine the reduction of feedback overhead, we should examine how many feedback bits can be used to achieve the target reconstruction accuracy. Definitely, these evaluations should be compared to the benchmark scheme (e.g., Type II codebook-based feedback). After identifying the performance of AE model, to verify the impact of AE performance gain on the MIMO system, traditional metrics such as the spectral efficiency or throughput can be considered.
 Proposal 2-4: For CSI compression, consider intermediate performance metrics (e.g., NMSE, CS) and UPT as final metric. 
 Capability-related KPIs

Some of the features of AI models are related to UE capability. To measure these aspects, capability-related KPIs should be introduced. Particularly, as the AE-based CSI compression involves the UE as well, it is important to study the AI processing burden with capability-related KPIs such as computational complexity, power consumption, inference latency, training latency, and memory storage. Moreover, the inter-relations between various capability-related KPIs may not be clear and requires study. For example, due to various levels of the suitability of an AI/ML models, e.g. LSTM, CNN, etc., for parallel processing, the inference latency does not have a direct relationship with computational complexity (number of FLOPs). To this end, a unified capability-related KPI which indicates the various aspects such as computational complexity [in a unit of FLOPs] and the model size [in a unit of bytes]) have to be studied. 

Proposal 2-5: Consider various aspects of AI/ML models including computational complexity and the model size to study the AI processing burden and requirement at the UE.
2.2.2 Preliminary evaluation result
One key issue to generate dataset is that how much randomness of various deployment scenarios is included in the dataset. When the AE model is trained under all possible scenarios for the generalization, it would be difficult to train the AE efficiently and thus the performance of model inference cannot be guaranteed. Consider an exemplary simulation to verify the difficulty of the model generalization, we suggest to using mixed dataset for training, while testing under single scenario.  
Here, we evaluate the cosine similarity (CS) between the ground-truth eigenvector and the reconstructed one (see Table. 3 and Table. 4). For Table 3, two AEs trained with only an outdoor dataset and a mixed (outdoor/indoor) dataset are used. Then, the trained AEs are tested using the outdoor test data. As shown in Table. 3, compared to the AE trained with only outdoor dataset, the CS performance of AE trained with mixed dataset is degraded by around 6%. 

Table 3. CS performance of AE models trained with two different datasets

	
	Outdoor dataset for inference

	AE trained with outdoor dataset
	0.9105

	AE trained with mixed dataset (50% indoor and 50% outdoor)
	0.8554


For Table 4, an AE is trained with the outdoor dataset and then tested with outdoor and indoor test datasets. As shown in Table. 4, the CS in case of cross-scenario training-testing is degraded significantly. For instance, when the AE trained with the outdoor dataset reconstructs the indoor channel, the CS is degraded by around 10% (from 0.9105 to 0.8240). Therefore, if the AI model is trained with the independent dataset not the mixed dataset, it would be better to use multiple models trained with the outdoor dataset and the indoor dataset, separately.

Table 4. Comparison of CS performances for matched scenario and mismatched scenario 

	
	Outdoor dataset for inference
	Indoor dataset for inference

	AE trained with outdoor dataset
	0.9105
	0.8240


From the above exemplary evaluation, in the generation of dataset, identifying the impact of each channel parameter (e.g., Rican K factor, path loss, angles, delays, powers, etc.) on the related KPIs is required. As observed in the above results, it is useful to consider randomness in channel setting, e.g., in terms of scenario mixing, parameter values and distribution mixing, which allows to evaluate the performance in general settings. If generalization of the AE model is important in practice, one of the simple ways for dataset construction with various random channel parameters is to mix various deployment scenarios in TR 38.901. Besides, rather than using the mixture of multiple scenarios, another way for model generalization is to generate multiple datasets with different distribution of channel parameters for each UE in a single scenario.
Observation 2-1: When the AE trained with the mixed dataset of indoor/outdoor scenarios is tested under a single outdoor scenario, the CS performance degrades compare to the case that the AE trained with the outdoor dataset is tested under a single outdoor scenario.
Proposal 2-6: To evaluate the capability of model generalization concerning various channel parameters (e.g., Rician K factor, path loss, angles, delays, powers, etc.)), consider datasets from mixed scenarios or different distributions of channel parameters in a single scenario. 

When designing the AE, various AEs with different neural network structures can be used in encoder and in decoder to achieve the high CSI reconstruction accuracy. Table 5 shows the CS performance (as a performance-related KPI) and the number of FLOPs (as a capability-related KPI) that we obtained using a Vision Transformer (ViT)-based AE, 2D CNN-based AE, and bi-LSTM-based AE. These simulation results were evaluated with the following parameters:
· 3GPP UMa channel model

· Carrier frequency of 3.5 GHz

· Channel bandwidth of 10 MHz

· gNB has Nt = 32 transmit antennas and Nr = 4 receive antennas

· K = 52 resource blocks

· S = 13 subbands

· Quantized bit = 2 bits
Table 5. CS performance for three different AI models
	
	CS performance
	FLOPs

	ViT-based AE
	0.921
	4 MFLOPs

	bi-LSTM-based AE
	0.911
	10 MFLOPs

	2D-CNN-based AE
	0.906
	1 MFOPs


From Table 5, in terms of the CS, the ViT-based AE outperforms the other AEs. However, in terms of the FLOPs, the 2D-CNN-based AE is quite efficient to perform the AI processing compared to other AEs. When deploying the AI model in real world, both the performance requirement and the AI processing burden at UE and/or gNB side can be considered jointly. In this regard, in the evaluation, the performance-related KPI and the capability-related KPI need to be examined comprehensively.
1.3. Joint CSI prediction and compression

2.3.1. Evaluation methodology

Scenarios, evaluation assumptions, benchmark conventional scheme

For the evaluation, a two-phased approach can be considered for this sub-use case too. In the first phase, a high-level evaluation can be performed to identify the alternative AI models and their respective performances. This phase can also help in the selection process of baseline AI model, if required, for calibration purposes. In this phase, non-conventional performance metrics such as NMSE, cosine similarity, etc. can be employed.  The second phase may evaluate the performance of AI-based solutions of this sub-use case in communication systems with a typical EVM considered in NR MIMO. As a starting point, the EVM for Rel.16 codebook enhancement can be considered with some additional consideration on UE’s mobility. Thus, in the second phase, typical performance metrics such as UPT, feedback overhead, etc. can be employed. 

Proposal 3-1.: Consider a two-phased approach for evaluation. Phase I to compare various AI/ML models and their gain for representative sub-use case selection and Phase II to evaluate the gain of AI/ML schemes as compared to conventional benchmark schemes in communication systems.  

One of the potential applications of this sub-use case is in scenarios wherein a user’s mobility shortens the channel coherence time and the legacy CSI framework incurs either high overhead or performance loss due to CSI aging. To model these scenarios, the following channel and mobility modeling assumptions can be considered. 
Frequency range: FR1

UE speed: up to 30kmphr.

Mobility modeling: 

Opt 1: None (rely on Doppler terms of the link-level channel model of Section 7.5 of TR 38.901)

Opt 2: Linear trajectory (similar to mobility modeling for intra-cell mobility scenarios for Rel-17 Multi-beam enhancement [5])
Opt 3: Other trajectories and based on spatial consistency as defined in Section 7.6.3 of TR 38.901
The above three options have their own merits. Opt. 1 has an advantage over Opt. 2 and Opt. 3 as it simplifies the mobility modeling and the evaluation of SLS and LLS. However, Opt. 1 assumes the angular and power properties of multi-path clusters, and the rays (paths) stay the same between two-channel measurements. This assumption is reasonable for moderate UE speed. As an example, if the UE moves at a relative speed of 30kmphr, i.e., 8.33mps, that implies that it covers 0.83m during 100ms. For the considerable distance between the UE and base-station antennas, it is reasonable to assume that the angular and power properties of rays/clusters of a channel do not change significantly. Moreover, it is shown in [6] that the channel stationary time/duration, i.e., the time duration wherein the Doppler components of a channel stays the same, is in the order of several hundred milliseconds. With this assumption, it is reasonable to consider Opt. 1 as it simplifies the evaluation efforts. 

Proposal 3-2: Strive to reuse the evaluation assumptions of Rel. 16/17 codebook enhancement as much as possible with additional mobility modeling. FFS: mobility modeling, and other additional considerations to model time-correlated CSI.
Proposal 3-3: Target moderate UE mobility, e.g., up to 30kmphr for joint CSI prediction and compression.
The benchmark conventional scheme can be set as either Rel-16 or Rel-17 CB while considering identical channel measurement overhead, e.g., CSI-RS resources periodicity, etc., for evaluation of both AI/ML-based solution and benchmark scheme. Moreover, the fair assumption for assistance/side information shall be considered for both benchmark and AI/ML solutions. For example, if the input of the AI/ML solution is channel measurement from precoded CSI-RS ports after the gNB resolves the angle-delay components of the channel leveraging on FDD angle-delay reciprocity, then it is fair to assume the same for the conventional scheme. In this regard, the Rel. 17 port selection codebook can be considered as a benchmark conventional scheme. On the other hand, in the absence of such assistance from gNB, i.e., if the UE performs SVD and projection over DFT-basis to resolve the angle-delay components of the channel before PMI computation, then it is reasonable to consider Rel. 16 CBs (regular codebooks) as a benchmark.

Proposal 3-4: Consider either Rel-16 or Rel-17 CBs as a benchmark conventional scheme for performance comparison purposes. The selection of a benchmark conventional scheme could be based on whether angle-delay reciprocity is exploited in the channel measurement.
Dataset generation 

Sharing a common dataset may allow a fair comparison of various AI/ML-based solutions. However, different issues may arise with common dataset sharing. For instance, agreeing on a common dataset may consume too much time and delay the progress of the study. Other issues may also arise including dataset proprietary rights, the generality of datasets, etc. In this regard, agreeing on common assumptions for dataset generation is sufficient. As the dataset for training and testing purposes is generally large, it sufficiently represents the statistical property of the evaluation scenario. Thus, evaluation based on the common assumption of the generation of dataset provides fairness and facilitates the progress of the study item.  

Others

An auto-encoder based AI/ML solution is considered. This implies that the encoder and decoder part of the AI/ML model is located at the UE and gNB, respectively. One possibility is an offline trained AI/Model can be shared/transferred from gNB to UE. Other training strategies could also be considered.  

Proposal 3-5: Consider an autoencoder-based AI/ML solution for joint CSI compression and prediction.  
2.3.2. KPIs 

Performance-related KPIs

To evaluate various AI/ML models and for better progress in representative (sub) use case selection, it is useful to simplify Phase I of evaluation. In this regard, simple performance metrics such as NMSE, and cosine similarity between input and output vectors/matrices of AE are good choices. Later, in Phase II more traditional EVM and performance metrics, such as UPT vs. CSI feedback overhead can be considered. 

Proposal 3-6: Consider simpler performance metrics, e.g., NMSE, cosine similarity, for Phase I of evaluation. Traditional performance metrics employed for codebook performance evaluation, such as UPT vs. feedback overhead, can be considered for Phase II.
Capability related KPIs

To highlight the various aspect of AI/ML-based joint CSI prediction and compression and assess the real benefits as compared to legacy CSI feedback mechanisms, it is important to consider requirements/overhead related to AI/ML operations and model management. These requirements/overheads can be considered as capability-related KPIs and include, computational complexity, memory storage, inference latency, mode, and/or training data transfer overhead depending on applicability.  
 Proposal 3-7: Consider UE capability-related KPIs for AI/ML-based CSI compression and prediction, including computational complexity, memory storage, inference latency, model/training data transfer overhead, if applicable.
2.3.3 Preliminary evaluation result
Fig. 3 (a) and (b) attempt to give some insight on the channel correlation in the frequency and time domains, respectively. As a reference, the magnitude of cosine similarities for uncorrelated channel measurements is also included in Fig. 3 (b). Here, time-correlated channel is simulated by incorporating the Doppler components of the link-level channel model in the Section 7.5 of TR 38.901. The channel is assumed to be Doppler stationary, i.e., the Doppler components stay the same, within 100 slots (100ms). The power and angular components also stay the same. This is a reasonable assumption as a UE traveling on a linear trajectory at a speed of 10kmphr covers just 0.278m in 100ms. On the other hand, for un-correlated channel, the mean AoD is varied among measurement (periodicity of 5ms). The figure presents the magnitude of cosine similarity 
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 stays in comparable ranges for the frequency-domain correlation within 13 sub-bands (52 RBs) and time-domain correlation within 100slots (100ms). This suggests comparable level of compression can be achieved in the time domain as it is achieved in the frequency domain by Rel. 16/17 CBs. Moreover, it indicates a three-dimensional CSI compression, i.e., in the spatial, frequency, and time domains, could potentially achieve significant CSI feedback overhead reduction. 

Observation 3-1: Three-dimensional CSI compression in the spatial, frequency, and time domains, may potentially achieve significant CSI feedback overhead reduction. 
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Fig. 3: frequency/time correlation in terms of magnitude of cosine similarity, sub-band size=4RBs, Nt=32 [N1,N2,P]=[8,2,2], UE speed 10kmph, DS=300ns, fc=2GHz, channel model CDL-C, 5ms CSI measurement periodicity. 

Fig. 4 (a) and (b) plot the indices of dominant angular components of a time uncorrelated and correlated channel, respectively. The angular components for an 
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 are plotted. In the figure, it is clear that for the time-correlated channel simulated the 4 strongest spatial DFT basis vectors remain the same throughout the 100 slots, even though their relative order changes. For time-uncorrelated channel, however, the dominant spatial DFT basis vectors vary across the CSI measurements. This observation may lead to an inductive argument that the spatial basis vectors indicator in CSI remains the same during channel stationary time. 
Observation 3-2: The spatial DFT basis vectors tend to remain the same within channel stationary time indicating the compressibility aspect of time-correlated channel. 
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Fig. 4: Index of dominant angular components (Spatial DFT beams) in correlated and uncorrelated channels, Nt=32 and 32 DFT orthogonal basis vectors. UE speed 10kmph, DS=300ns, fc=2GHz, CDL-C, Nt=32 [N1,N2,P]=[8,2,2]
3. Conclusion
In this contribution the following proposals are made: 
Proposal 1-1: For CSI prediction, to model user mobility, consider the link-level channel model with Doppler information in Section 7.5 of TR 38.901. 
Proposal 1-2: For CSI prediction, consider Rel-16 CSI feedback and Rel-17 CSI feedback, as benchmark schemes. 

Proposal 1-3: For CSI predictions, reuse channel models in TR 38.901 to generate datasets for training/testing/validation in this sub-use case. 
Proposal 1-4: For KPIs in CSI prediction, proxy metrics such as NMSE and cosine similarity can be considered as intermediated KPIs and   system-level metrics such as UPT can be used for general KPIs.
Proposal 1-5: For CSI prediction, consider capability-related KPIs such as computational complexity, power consumption, memory storage, and hardware requirements.
Proposal 2-1: Consider an auto-encoder as a baseline AI/ML model for CSI feedback compression and reconstruction tasks. Further study is needed to select the  baseline type of neural network (e.g. CNN, RNN, LSTM).
Proposal 2-2: For calibration in CSI compression, consider both performance-related KPIs (e.g., reconstruction accuracy) and capability-related KPIs (e.g., computational complexity) for the baseline AI/ML model.
Proposal 2-3: Only for the model calibration in CSI compression, aligned loss function, hyper-parameter values, and details of the AI model are considered together. 

Proposal 2-4: For CSI compression, consider intermediate performance metrics (e.g., NMSE, CS) and UPT as final metric. 
Proposal 2-5: Consider various aspects of AI/ML models including computational complexity and the model size to study the AI processing burden and requirement at the UE.
Proposal 2-6: To evaluate the capability of model generalization concerning various channel parameters (e.g., Rician K factor, path loss, angles, delays, powers, etc.)), consider datasets from mixed scenarios or different distributions of channel parameters in a single scenario. 

Proposal 3-1.: Consider a two-phased approach for evaluation. Phase I to compare various AI/ML models and their gain for representative sub-use case selection and Phase II to evaluate the gain of AI/ML schemes as compared to conventional benchmark schemes in communication systems.  

Proposal 3-2: Strive to reuse the evaluation assumptions of Rel. 16/17 codebook enhancement as much as possible with additional mobility modeling. FFS: mobility modeling, and other additional considerations to model time-correlated CSI.

Proposal 3-3: Target moderate UE mobility, e.g., up to 30kmphr for joint CSI prediction and compression.
Proposal 3-4: Consider either Rel-16 or Rel-17 CBs as a benchmark conventional scheme for performance comparison purposes. The selection of a benchmark conventional scheme could be based on whether angle-delay reciprocity is exploited in the channel measurement.
Proposal 3-5: Consider an autoencoder-based AI/ML solution for joint CSI compression and prediction.  
Proposal 3-6: Consider simpler performance metrics, e.g., NMSE, cosine similarity, for Phase I of evaluation. Traditional performance metrics employed for codebook performance evaluation, such as UPT vs. feedback overhead, can be considered for Phase II.
Proposal 3-7: Consider UE capability-related KPIs for AI/ML-based CSI compression and prediction, including computational complexity, memory storage, inference latency, model/training data transfer overhead, if applicable.
In addition, the following observations are made.

Observation 1-1: AI-based CSI prediction can exploit inherent channel correlations in the frequency, spatial, and temporal domains, yielding a significant improvement over a sample-and-hold predictor at moderate UE speeds.

Observation 2-1: When the AE trained with the mixed dataset of indoor/outdoor scenarios is tested under a single outdoor scenario, the CS performance degrades compare to the case that the AE trained with the outdoor dataset is tested under a single outdoor scenario.
Observation 3-1: Three-dimensional CSI compression in the spatial, frequency, and time domains, may potentially achieve significant CSI feedback overhead reduction. 
Observation 3-2: The spatial DFT basis vectors tend to remain the same within channel stationary time indicating the compressibility aspect of time-correlated channel. 
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Figure 2. Overall block diagram for the AE-based PMI feedback
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