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Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]Potential Rel-18 study item on AI/ML air interface was discussed in the email thread [RAN94e-R18Prep-08]. The potential SID was drafted by the moderator after summarized companies’ views [1].
	Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· RS overhead reduction [RAN1]
· RRM Mobility, e.g., prediction in time or frequency for robustness, interruption and overhead reduction [RAN2]
Finalize representative set of use cases (reduced from the initial set and minimizing sub use cases) for characterization and baseline performance evaluations


Later, RS overhead reduction was removed from the scope of Rel-18 AI/ML air interface [2] and may be studied in the future. In this contribution, LLS evaluation results, demo with channel emulator and demo over the air are provided for AI/ML used for DMRS overhead reduction. 

LLS Evaluations
DMRS is used to obtain the channel information of the frequency-time domain, without which the data signal could not be demodulated correctly. Thus DMRS is necessary in data transmission and the overhead of DMRS is considerable. It is important to use less DMRS resources to recover the channel of all REs with better performance. In common linear algorithms, based on the frequency correlation and time correlation of DMRS resources, linear filters, such as Wiener filtering, are adopted to interpolate the channel information of all REs. TRS is also needed to assist the deriving of frequency correlation.
Figure 2-1 is the illustration of AL/ML algorithm for DMRS overhead reduction. The channel information on DMRS resources is the input of the AI model, without the power delay profile obtained from TRS. The output of AI model is the channel information on all resources.
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Figure 2-1: The illustration of AL/ML algorithm for DMRS overhead reduction
Simulation assumptions
For DMRS overhead reduction, the AI/ML algorithm is evaluated in LLS, as well as non-AI linear algorithm.
Detailed simulation assumptions are provided in the following table:
Table 2-1: LLS Simulation assumptions of AI/ML for DMRS overhead reduction
	Parameter
	Value

	Channel model
	TDL-A 300ns, TDL-B 100ns

	Carrier Frequency
	3.6GHz

	Subcarrier spacing
	15KHz

	RB number
	32

	DMRS overhead
	6 subcarriers in 1 RB, 2 symbols in 1 slot

	Speed
	3km/h, 90km/h

	The number of transmit antenna
	1

	The number of receive antenna
	1



BLER is one of the final results for the performance evaluations in MIMO and positioning, then BLER is used for the evaluation of this contribution. 
Since the AI algorithm is used to interpolate the channel information of all REs, the NMSE between the estimated channel information and the ideal channel information is the direct performance indicator of the AI algorithm and can be used as the loss function. NMSE is also considered for the evaluation.

Performance results
The simulation results are provided as the following figures.

Figure 2-2: Throughput for TDL-B 100ns and speed 90km/h.
The performance at high speed and high SNR are evaluated in Figure 2-2, in which the channel is modeled by TDL-B model with the parameters of 100ns delay spread and the speed is 90km/h. One common AI model is used for all the considered SNRs ranged from 18dB to 34dB.
The performance at low speed and low SNR are studied in Figure 2-3 and 2-4, in which the scenario of TDL-A channel with the delay spread of 300ns and the speed of 3km/h is considered. The range of SNR is [0dB, 10dB] for MCS 7 while it is [-5dB, 5dB] for MCS 0. The same model is used for different SNRs of the same DMRS overhead configuration. However, different AI models are used for different DMRS overhead.
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Figure 2-3: NMSE and BLER results for TDL-A 300ns, MCS 7 and speed 3km/h.
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Figure 2-4: NMSE and BLER results for TDL-A 300ns, MCS 0 and speed 3km/h.
It can be seen from the simulation results that with 50% DMRS (i.e., the configuration of 6/12) overhead, AI algorithm could achieve better NMSE and BLER performances than non-AI algorithm, for different speed, SNR and scenario. Moreover, AI algorithm does not need the assistance of TRS.
The near-optimal AI/ML network largely reduces the MSE with lower DMRS overhead and without assistance of TRS, for 3GPP TDL channel models.

Demo with channel emulator
It is known that AI/ML algorithms can provide considerable gain in SLS or LLS. The results of SLS or LLS would be not enough to find whether AI/ML algorithms can work well in practical wireless systems. Then we make an AI demo for DRMS overhead reduction.
Demo exhibition
[image: ]
Figure 3-1: The overview of the demo with channel emulator
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Figure 3-2: The detailed modules of the demo with channel emulator
Figure 3-1 and 3-2 are the photos of the AI DMRS demo with the channel emulator. The detailed modules of the demo have been listed and the functions of the modules are introduced in the following.
Signal generator: The signal is generated in this module and then sent to the channel emulator.
Channel emulator: The channel emulator simulates the standard 3GPP channel models, such as TDL and CDL. The detailed channel conditions can be set, such as delay spread, speed and SNRs.
Signal transceiver: The signal passes through the channel simulated by the channel emulator, and then is received by the signal transceiver. The received signal is sent to X86+FPGA.
X86+FPGA: The signal is estimated, equalized, demodulated and decoded in this module. The performance result is obtained in this module. FPGA is used to accelerate some complex calculations, such as LDPC decoding.

Simulation assumptions
Channel emulator supports the standard 3GPP channels, such as TDL and CDL. All 5 kinds of TDL models are used. To simulate the variability of wireless environment, delay spread is assumed to have a wide range, as well as SNR and speed.
Detailed simulation assumptions are provided in the following table.
Table 3-1: Simulation assumptions for demo with channel emulator.
	Parameter
	Value

	Channel model
	TDL-A/B/C/D/E, delay spread 0~300ns

	Carrier Frequency
	3.6GHz

	Subcarrier spacing
	15KHz

	RB number
	16

	DMRS overhead
	6 subcarriers in 1 RB, 2 symbols in 1 slot

	Speed
	0~90km/h

	The number of transmit antenna
	1

	The number of receive antenna
	4

	SNR
	-5~30dB



AI model details
Only one AI model is trained for all scenarios and channel conditions. The training data is collected by the mixed data set. In each sample, the scenario, SNR, and speed are randomly generated. The i.i.d. method is used for different samples. Using this mixed data set, the AI model can work well in all conditions in Table 3-1 and have good generalization performance.
In the demo, the synchronization is not perfect and there is linear phase shift in the frequency domain. The imperfect synchronization has large impact on the DMRS channel estimation and is considered in generating the training data.
Note that AI model does not need the information from TRS.
Performance results
Different scenarios, speeds, SNRs and MCSs are tested in the following figure. Figure 3-3 (a)  shows the results of TDL-B 100ns, 3km/h and MCS 5. Figure 3-3 (b) shows the results of TDL-C 100ns, 3km/h, MCS 12. Figure 3-3 (c) is the results of TDL-D 100ns, 3km/h, MCS 5. Figure 3-3 (d) is the results of TDL-C 100ns, 90km/h, MCS 5. The SNR values for about BLER of 10% are chosen.
The results of all figures are similar to our LLS results. That is, with 50% DMRS overhead and no assistance of TRS, AI algorithm could achieve better BLER performance than non-AI algorithm for all listed scenarios and channel conditions.
In our expectation, AI algorithm would achieve more gain in high speed than that in low speed. However, the results are reverse. There may be other practical factors related to speed that have not been discovered, which may reduce the performance of AI algorithm.
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(a) TDL-B channel with delay spread 100ns, speed 3km/h and MCS 5
[image: ]
(b) TDL-C channel with delay spread 100ns, speed 3km/h and MCS 12
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(c) TDL-D channel with delay spread 100ns, speed 3km/h and MCS 5
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(d) TDL-C channel with delay spread 100ns, speed 90km/h and MCS 5
Figure 3-3: Simulation results for different scenarios, speeds, SNRs and MCSs.
It can be seen from the demo with channel emulator that the near-optimal AI/ML network largely reduces the MSE, without assistance of TRS, with half overhead compared to Rel-15 NR design.

Demo over the air
In the above section, the demo with channel emulator is introduced. Standard 3GPP TDL channel models are used for the demo with channel emulator. Even though various kinds of channel conditions are tested, the variety of simulated channel is less than that in practical wireless environment. Then we take a step further to make the demo over the air.
Demo exhibition
Figure 4-1 shows the demo over the air. The main modules of the demo over the air are similar to the demo with channel emulator. Since the channel emulator is replaced with wireless environment, the received antennas are placed in different positions to represent different channel conditions. 4 different positions are shown in Figure x, where positions 1, 2, 3 are NLOS with different kinds of blockage and position 4 is LOS.
The received signal of one slot is used twice, where one copy is processed by AI algorithm and the other copy is processed by non-AI algorithm. So the fairness between AI algorithm and non-AI algorithm has been guaranteed.
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Figure 4-1: The overview of the demo with channel emulator

Simulation assumptions
Actual wireless channel of a meeting room is used for this demo. The transmit antenna is equipped on the signal transceiver and then can not move. Moving the receive antennas will cause the antennas shake and the performance will largely decrease. Then the receive antennas also can not move. Other parameters are similar the demo with channel emulator.
Detailed channel conditions are provided in the following table:
Table 4-1: Channel conditions for demo over the air
	Parameter
	Value

	Carrier Frequency
	3.6GHz

	Subcarrier spacing
	15KHz

	RB number
	48

	DMRS overhead
	6 subcarriers in 1 RB, 2 symbols in 1 slot

	Speed
	0

	The number of transmit antenna
	1

	The number of receive antenna
	4



AI model details
Only one AI model used in this demo. In the beginning, field data of the meeting room is collected and used for AI model training. However, the wireless environment changes with time, objects and people in the meeting room. It takes great effort to collect enough and sufficient field data samples. Then similar mixed data construction method as the demo with channel emulator is tried. LLS channel data samples are generated, in which SNR 0~34dB, UE speed 0~1km/h, TDL model with random delay and random power for each path, maximum delay spread 0~200ns. With this mixed data construction method, the variety of training data samples has been improved.

Performance results
Different positions and SNRs are tested in the following figure. The SNR condition is set by changing the transmit power and the SNR values for about BLER of 10% are chosen.
The results of Figure 4-2 are similar to our previous results. With 50% DMRS overhead and no assistance of TRS, AI algorithm could achieve better BLER performance than non-AI algorithm in actual wireless environment.
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(a) BLER of position 1
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(b) BLER of position 2
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(c) BLER of position 1
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(d) BLER of position 4
Figure 4-2: Simulation results for different positions and SNRs
For better demonstration, the BLER of total history slots and the BLER of recent 500 slots are both obtained. The former shows the overall performance and the latter shows the time-varying performance. The constellation points of recent 500 slots have been superposed in one figure, from which the dispersion of the constellation points can be seen. Note that AI algorithm and non-AI algorithm uses the copies of the same received signal, and then both algorithms have the same input. 
Figure 4-3 shows some samples of BLER and constellation results. The BLER results are similar to the previous results. Focusing on the constellation results, it is seen that the constellation points of AI algorithm is less dispersive and then the probability of successful LDPC decoding will be higher, compared to non-AI algorithm.
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Figure 4-3: BLER and constellation results of different time
The model is trained with limited LLS generated data set, but still show performance gains when directly applied over the air.

Conclusions
1. The near-optimal AI/ML network largely reduces the MSE with lower DMRS overhead and without assistance of TRS, for 3GPP TDL channel models.
1. It can be seen from the demo with channel emulator that the near-optimal AI/ML network largely reduces the MSE, without assistance of TRS, with half overhead compared to Rel-15 NR design.
1. The model is trained with limited LLS generated data set, but still show performance gains when directly applied over the air.
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Tput for TDL-B 100ns, 90km/h

AI, 50% overhead	18	22	26	30	34	1160109.285714	1512688.285714	1781904.714286	1929178.142857	2037041.285714	No AI, 100% overhead	18	22	26	30	34	1160720.857143	1512032.571429	1779348	1923738.571429	2016582.857143	AI, 25% overhead	18	22	26	30	34	1113307.857143	1475140.285714	1727353.142857	1881596	1978446.857143	No AI, 50% overhead	18	22	26	30	34	1155213.857143	1495197.571429	1766084.142857	1917181.714286	2012833.142857	No AI, 25% overhead	18	22	26	30	34	1109002.285714	1461792.428571	1706889.142857	1848651.142857	1927434	
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