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Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]It has been agreed that a new study item will be launched in Release 18 towards artificial intelligence (AI)/machine learning (ML) for NR air interface. Specifically, the initial set of use cases are identified to include: 1) CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction; 2) beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement; 3) positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions. For the use case under consideration, the performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set will be evaluated. Details could be referred as follows [4]:
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

For the use cases under consideration:

1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.



Therefore, in this contribution, we would present our views on the aforementioned issues, with a focus on the evaluation methodology, KPI, and initial performance results for CSI feedback enhancement.

Evaluation methodology
In this section, we discuss the dataset construction, calibration and evaluation assumptions for link and system level simulations.
Dataset construction
Dataset Construction for AI-model Training, Validation and Testing
The channel model(s) in TR 38.901 are designed for frequencies from 0.5 GHz up to 100 GHz, with mobile speed up to 500 km/h [3]. The channel model is applicable for link and system level simulations under the following conditions:
· For system level simulations, supported scenarios are urban microcell street canyon, urban macro-cell, indoor office, rural macro-cell, and indoor factory.
· Bandwidth is supported up to 10% of the center frequency but no larger than 2GHz.
The most typical scenarios of interest in the system level simulations are:
· UMi (Street canyon, open area) with O2O and O2I: This is similar to 3D-UMi scenario, where the BSs are mounted below rooftop levels of surrounding buildings.
· UMa with O2O and O2I: This is similar to 3D-UMa scenario, where the BSs are mounted above rooftop levels of surrounding buildings.
· Indoor: This scenario is intended to capture various typical indoor deployment scenarios, including office environments, and shopping malls.
Observation 1: The most typical channel available for the system level simulations can be classified into UMi, UMa, and Indoor scenarios.
The clustered delay line (CDL) models, on the other hand, are defined for the full frequency range from 0.5 GHz to 100 GHz with a maximum bandwidth of 2 GHz, as well [3]. CDL models can be implemented by a simplified version of SLS, based on coefficient generation Step 10 and Step 11. Alternatively, TDL models using spatial filters can be generated with the channel types of CDL-A, CDL-B and CDL-C for NLOS, and the channel types of CDL-D and CDL-E for LOS. Both CDL and TDL can be utilized for link level simulations.
A practical AI-model requires a precise dataset constructed for training, validation and testing. According to the description in TR 38.901 [3], the design of the channel model relies on the collected field data as well as the matured outcomes such as COST 2100 especially for massive MIMO. It is envisioned that the dataset utilized in the system level simulation can be constructed based on the channel model(s) typically with UMi, UMa, and Indoor scenarios defined in TR 38.901. The dataset in the link level simulation, optionally, can be constructed based on the CDL channel model(s). Considering similarity to real channels, the TDL channel models should not be considered for the AI-based performance evaluation.
The dataset for AI-model training, validation and testing can be constructed mainly based on the channel model(s) defined in TR 38.901, namely, UMi, UMa, and Indoor scenarios in system level simulation, and optionally on CDL in link level simulation.
Dataset for generalization
Generalization or overfitting is one of the key issues in AI/ML and should be seriously considered. With overfitting, the model is memorizing the features of the training set, rather than learning how to generalize to unseen samples. As a consequence, AI model works well for training data set but its performance on verification data set would be unacceptable. The generalization performance (or test performance) of AI model is affected by the AI model structure, the variety of training data set and the training strategy. It is better to keep the training loss to be an accurate approximation of the generalization loss uniformly for all hypotheses.
The study of generalization can be divided into two cases:
· Case1: same input data dimension across different scenarios
· Case 2: different input data dimensions across different scenarios. 
Both cases need to be considered. For the case that data dimensions are different across different scenarios, one possible solution is to resize the input dimension with pre-processing.
Observation 2: Pre-processing can be used to resize the input data dimensions.
Consider both cases with same or different input data dimensions for data set construction to verify generalization performance. 
Different levels of generalization may need to be verified. For example, whether the performance maintains from one UE to another, from one cell to another, from one drop to another, or from one scenario to another. Thus the constructed data set should cover these scenarios.
For CSI enhancement, the data set should be constructed in a way that data samples across different UEs, different cells, different drops, different scenarios are all included.
Considering different training methodologies, the case that the training data set is constructed by mixing data from different setup and the case training set and verification data set are from different setups should both be considered.
Both the following two cases should be considered for generalization performance verification
a) Case1: the training data set is constructed by mixing data from different setup
b) Case2: training set and testing data set are from different setups
Specifically for case1, the AI model can be trained with samples from each scenario to remember the characteristics of each scenarios. So the dataset is composed of the samples from a combination of scenarios. The baseline dataset can be made up of samples from all scenarios with the same number of samples. The performance of different combination ratio can be evaluated to compare with the baseline. Also, the dataset composed of samples from each single scenario is need as the upper bound. The total samples number of the upper-bound dataset should be the same as the baseline dataset.
For example, the generalization of UMa and InH can be studied with three basic datasets. The dataset with 10000 UMa samples and the dataset with 10000 InH samples can be the upper-bound datasets and the dataset with 5000 UMa samples and 5000 InH samples can be the baseline dataset.
No matter in which scenario, the number of the samples in dataset can influence the performance of AI model. The AI model can achieve better results with more samples and more epochs. To fairly evaluate the performance of the different scenarios, the evaluations relevant to the different scenarios need to be settled with the same number of samples.
Observation 3: The size of dataset for generalization performance comparison needs to be kept the same
For the case that the training data set is constructed by mixing data from different setup, dataset for generalization can be constructed based on the combination of different scenarios and configurations. Different ratio of data mixture can be evaluated with the same total sample number for each dataset. 
Calibration
To align the performance gain for each sub sub use case between different companies, simulation calibration is important and should be done in the first two RAN1 meetings.
Previously, MIMO evaluations are conducted typically without exposing absolute spectral efficiency. There may potentially be a large difference between companies on the baseline performance. It would be difficult for companies to align on whether AI/ML have gains if there are large differences on the baseline performance.
To alleviate such misaligned understanding on the baseline performance, some intermediate results can be considered for performance evaluation. For example, the results of spectral efficiency for CSI feedback enhancement depend significantly on the design of scheduler and MU pairing, which would make the performance results from different companies drastically different. Also, the rank adaption can also influence the MU pairing and MCS selection, which would finally influence the spectral efficiency.
If intermediate results such as cosine similarity and rank distributions are provided, the chances for companies to align the results would be much higher, which could be helpful for the group to achieve consensus on the final conclusions.
Observation 4: Consider intermediate results including cosine similarity and rank distributions for performance comparison between companies
Also, the MU scheduling algorithm may be different among companies and it may cause the MU pairing different and the resource allocation different. So, the basic calibration can be considered with SU scheduling.
Observation 5: Consider SU scheduling method for calibration.
To evaluate the performance of AI models compared with non-AI methods, calibration across different companies is needed. This makes sure that all the other aspects are similar and the baseline performance is aligned among all company’s simulations. eType II regular codebook can be used as a baseline for evaluation and calibration for non-AI methods.
Observation 6: The eTypeII codebook is used as the baseline for non-AI methods.
Considering generalization performance of AI models, different simulation parameters may lead to different AI performance including scenario, numerology and antenna configuration. Given that the channel state is similar in UMi and UMa, we think the calibration can be divided into two subcases: for UMa and for InH. For each scenario, other simulation parameters can be the same for calibration.
Observation 7: The following simulation parameters combination as shown in Table 1 can be used for calibration and the average SE of 8 parameter combinations of type II codebook can be calibrated in UMa and InH.
[bookmark: _Ref102153871]Table 1: SLS parameter configuration for calibration.
	Scenario
	UMa, InH

	Carrier frequency
	3.5GHz

	Bandwidth
	10MHz

	SCS
	15KHz

	PRB number
	52

	PRB number per subband
	4

	Traffic model
	Full buffer

	Schedular method
	SU

	gNB antenna
	32 TXRU, [1 1 8 8 2; 2 8] or [1 1 2 8 2; 2 8]

	UE antenna
	4 TXRU, [1 1 1 2 2; 1 2]

	metric
	Cosine similarity of the reconstructed PMI based on eType II codebook
Rank distributions



Considering the influence of training dataset to performance, if the AI model needs to be calibrated, the dataset needs to be aligned or at least, the parameters used to construct dataset needs to be aligned. For research purpose, we share our dataset for AI-based CSI feedback and CSI prediction through the link [5] and [6], respectively.
For AI model calibration, the parameters used to construct dataset needs to be aligned.
Companies are encouraged to share the data set and model files in a public accessible way for cross check purposes. Our initial data set file for CSI compression and CSI prediction is on the following link [5] and [6]. 

Evaluation assumptions
Basic SLS assumptions 
The channel fading matrix disturbance caused by channel estimation error exists for AI models and non-AI methods. In Rel-15/16/17 performance comparison for CSI enhancement, ideal channel estimation is typically used. This should be starting point for AI/ML based CSI enhancement. 
Ideal downlink channel estimation is assumed as the starting point for the performance evaluation.
To avoid the influence of irrelevant element, we assume that the UCI feedback is ideal and no CSI bits are failed or wrong both for AI method and non-AI method. For AI model, the output of encoder is just the input of decoder which is also convenient for model training.
Use ideal UCI feedback for the performance evaluation.
Since generalization is an important issue for AI models, one basic evaluation parameters combination needs to be aligned as baseline and the generalization of each parameters are processed based on the basic parameters. In our view, most parameters used in eType II codebook can be reused as baseline parameters.
[bookmark: _Ref102154686]Table 2: Baseline SLS parameter configuration.
	Scenario
	UMa, InH

	Carrier frequency
	3.5GHz

	Bandwidth
	10MHz

	SCS
	15KHz

	PRB number
	52

	PRB number per subband
	4

	Traffic model
	Full buffer, FTP1(RU 80%), FTP1(RU 20%),

	Schedular method
	MU, max layer 8

	gNB antenna
	32 TXRU, [1 1 8 8 2; 2 8] or [1 1 2 8 2; 2 8]
Antenna spacing [0.8 0.5] or [0.5 0.5]

	UE antenna
	4 TXRU, [1 1 1 2 2; 1 2]
Antenna spacing [0.5 0.5]

	Receiver
	IRC

	UE speed
	Indoor 3Km/h
Outdoor 30Km/h

	Channel estimation
	Ideal

	UCI feedback
	Ideal



The evaluation assumption in Table 2 is used as the SLS assumptions for both non-AI and AI-based performance evaluations.
Parameter perturbation based on the basic parameter in Table 2 can be conducted to verify generalization performance of each case.
Basic LLS assumptions 
For the AI-based CSI prediction, the AI model is designed to derive the prediction of future CSIs as the output of model when using the historical CSIs as the input. The channel data collected form the LLS platform is used for the evaluation of AI-based CSI prediction. A set of basic evaluation parameters needs to be aligned as baseline and the generalization of each parameters should be processed based on the basic parameters. The basic parameters used for AI-based CSI prediction are provided in Table 3:
[bookmark: _Ref102146475]Table 3: Baseline LLS parameter configuration.
	The number of transmit antenna
	32

	The number of receive antenna
	2

	Carrier frequency
	3GHz

	Subcarrier spacing
	30kHz

	PRB number
	52

	speed
	30km/h

	LLS parameters
	CDL-C, delay spread=300ns

	Length of one sample in time domain
	200 slot (100ms)

	The number of historical CSI inputs
	12

	The slot indices of historical CSI inputs
	[71, 81, 91, …, 181]-th slots (spacing is 10 slots)

	The number of future CSIs to be predicted
	1~5

	The slot indices of the predicted CSI
	[183, 185, 187, 189, 191]-th slots (i.e., [+1ms, +2ms, +3ms, +4ms, +5ms])

	The type of CSI
	Raw channel,
Eigenvector (or singular vector)



The evaluation assumption in Table 3 is used as the LLS assumptions for AI-based CSI prediction evaluations.
Architecture of Auto-encoder for AI-based CSI Feedback
In the AI-based CSI feedback design, the transmitter is to measure and compress the channel and construct the output to a limited bits for CSI feedback by means of quantization mechanism, while the receiver is to reconstruct the channel from the quantized bit vector and minimize the compressed and quantized channel error.
The AI-based CSI feedback system can be seen as a particular type of auto-encoder, whereby a low-dimensional representation of the channel relevant input can be found and the output channel with a minimal error can be reconstructed. The auto-encoder seeks to learn a better representation of the channel  and condense it to a small size vector or codebook by the quantizer for instance, so that the channel can be recovered with small probability of error. The block diagram of the AI-based CSI feedback neural network is depicted in Figure 1, where the auto-encoder in the transmitter takes the measured channel  as the data input and constructs a codebook of  as the output for the CSI feedback, and the auto-decoder receives the codebook of  and reconstructs the channel  denoted as . Mathematically, the AI-based CSI feedback process can be formulated as


[image: ]
[bookmark: _Ref101171770]Figure 1: The block diagram of the AI-based CSI feedback neural network.
When the encoder is transmitted to UE side, the parameters need to be quantified and the precision of AI model parameters can influence the inferring accuracy. If the encoder and decoder are trained with float number and the encoder is transmitted with 4-bit quantification, the inferring performance may worse than in training stage. Also, the encoder can be trained with n-bit quantization and the decoder can be trained with float number to achieve better performance so the performance loss caused by quantification needs to be evaluated.
Study the performance loss caused by the n-bits quantization of AI model parameters with the float number AI model parameters as baseline.
Clarify the quantification level of the AI model for evaluation.
Architecture for AI-based CSI prediction
In the AI-based CSI prediction design, the AI model is designed to derive the prediction of CSIs as the output of model when using the historical CSIs as the input. The block diagram of AI-based CSI prediction is illustrated in Figure 2. 


[bookmark: _Ref102155039]Figure 2: The block diagram of AI-based CSI prediction.
KPI
Performance related KPIs
Metrics for Performance Evaluation of AI-based CSI Feedback Enhancement

In the system performance evaluation, spectral efficiency [bits/s/Hz] as a fundamental evaluation metric refers to the information rate that can be transmitted over a given bandwidth or channel in a specific communication system. Besides, as an intermediate metric, cosine similarity is to measure the similarity between two sequences of numbers. The sequences in the AI-based CSI feedback system are viewed as channel vectors in an inner product space, and their cosine similarity is defined as the cosine of the angle in between (i.e., the inner product of the vectors) divided by the product of their lengths, and expressed as

Or


where  and  are components of vector  and , respectively, and  is the length of the vector. In our simulations, we choose the second expression and for the case that vector A and B are complex vectors, the expression is

It is worthwhile noting that, the cosine similarity does not depend on the magnitudes of the vectors, but only on their angle, and its range always belongs to the interval .
To restrain the range of  in the AI-based CSI feedback evaluation, it is convenient to utilize the cosine similarity by taking either its absolute or square value.
Also, the intermediate metric, mean square error (MSE) and normalized mean square error (NMSE) can be used to measure the difference between the results derived by AI model and the corresponding ground truth results. The MSE and NMSE are respectively given by

and 

Respectively, where  is the number of samples,  is the results derived by AI model and  is the corresponding ground truth results. For CSI prediction,  is the prediction results of future time interval and  is the corresponding ground truth results. Since the value of MSE is impacted by the absolute value of  and , it is not feasible for comparison between different scenarios. The NMSE is normalized metric, whose power is independent of the absolute value of  and . Therefore, NMSE is a more suitable metric for evaluating the difference between two results.
All above metrics need to be compared with the same UCI overhead. 
Observation 8: Either absolute or square of cosine similarity can be used to measure the similarity between the input CSI and the output reconstructed CSI as an intermediate metric.
Spectral efficiency [bits/s/Hz] can be used for the final evaluation metric while absolute or square of cosine similarity and NMSE can be used to measure the similarity and difference between input and output as an intermediate metric.
Generalization performance should also be used as one KPI for performance evaluation. It is to measure whether an AI model can work under multiple conditions or for multiple scenarios. It can also be understood as the adaptability of an AI model to fresh data, which can be evaluated by the performance gap between the training phase (using original data) and the inference phase (using fresh data). For detail, it can be described by the ratio or difference between the performance on the training data set and the inference data set. Besides, the generalization ability of an AI model can also be evaluated by the converging speed of finetuning to fresh data. The faster the finetuning converges, the better the generalization performance is. Furthermore, since AI is a data-driven method, the generalization ability of the trained model is directly impacted by the diversity of the data set. Therefore, the generalization ability also puts forward requirements for the data collection. 
For CSI enhancement, the generalization can be evaluated by changing the channel model (e.g., UMi, UMa, and Indoor for SLS, CDL-A, CDL-B, CDL-C, CDL-D, CDL-E for LLS), by changing the parameters of the channel model (e.g., number of ports, bandwidth, antenna configuration, carrier frequency, delay spread, speed of UE, component of multipath) and by changing the resources on which the AI model applied (e.g., paths, subbands, PRBs, antennas, angles).
If multi models are utilized to adapt to verifying scenarios or configurations, the transmission overhead and the transmission delay increase. It is necessary to consider the number of AI parameters and quantization bits including the computation complexity.
[bookmark: _Hlk102160610]Generalization performance is also used as one KPI to verify whether AI/ML can work across multiple setups.

Other KPIs
Considering AI model transfer between different nodes, the number of AI parameters, the floating point operations (FLOPs) and the number of quantization bits are also needed to be assessed. More parameters, FLOPs and quantization bits mean more resource for model transmission. If improving performance comes from increasing transmission overhead, the advantage of AI model may need more justification from other perspective.
It is known that complex model would achieve better performance than simple model. There will be a tradeoff between complexity and performance. Using a very complex model for a simple task is not befitting.
For the case of AI-based CSI compression, since the encoder resided at UE side and the decoder is at gNB side, the encoder can be transmitted and operated independently at UE side. Therefore, the number of AI parameters and the number of quantization bits of encoder can be observed independently from the decoder. A simple encoder and a complicated decoder may also be reasonable.
[bookmark: _Hlk102160620]The complexity, parameter sizes, quantization, latencies and power consumption of models needs to be considered.
Observation 9: [bookmark: _Hlk102160629]Consider the number of quantification bits and the parameter sizes of encoder as KPIs for model transmission.
Power consumption is one of the key parameters in current chipsets and much work has been done for power saving. If AI models largely increase power consumption, the commercialization of AI algorithm in air interface would be not a good deal. The main power consumption comes from the floating point operations for AI models.  Since power consumption depends on FLOPs, it can be represented by FLOPs.
Observation 10: [bookmark: _Hlk102160634]Consider of latencies and FLOPs as KPIs for model operating.

 Performance evaluation results
[bookmark: _GoBack]Results for CSI compression
The AI model performance for rank 1
Compared with eType II codebook, we use the same computation process and scheduler strategy for both AI model and eType II codebook. For each PRB, one channel fading matrix is estimated without error. For each subband, the precoder is calculated as the eigenmatrix of the sum of the covariance matrices of the channel fading matrices of all PRB’s corresponding to this subband. Then we get a rank 1 precoder for each subband.
For eType II codebook, the precoder of each subband is projected to some selected DFT beams and delay, the DFT beam index, delay index, and the projection values are reported to gNB. For AI models, the precoders of all subbands are input to encoder and the output of encoder is reported to gNB.
The simulation evaluation is performed based on the basic evaluation parameters listed in Table 2. The gains of average cosine similarity and its relevant spectral efficiency (SE) are shown in Figure 3 and Figure 4, respectively, as a function of the payload, i.e., feedback overhead.

[bookmark: _Ref102155137]Figure 3: The average cosine similarity for full buffer traffics and UMi scenario.

[bookmark: _Ref102155148]Figure 4: The gain of average SE for full buffer traffic and UMi scenario.
According to the evaluation results, given the same feedback bits, AI models can achieve about 9% higher average cosine similarity and about 11% average SE than eType II codebook. And given the same average SE performance, AI models can save almost 64% overhead than eType II codebook.
Observation 11: [bookmark: _Hlk102160642]The AI model can achieve about 9% average cosine similarity gain and 11% average SE gain or 64% overhead reduction
The AI model performance with pre-processing
Same as eType II, precoders of each subband can be transformed into angle-delay domain with selected beam and delay. With the projection from space-frequency domain to angle-delay domain, the dimension of input data is specific to the number of selected beams and delays among different antenna configurations and numerology. Also, the size of AI model can be reduced because the information to study is decreasing.
For AI model, since the compression and quantification are managed together, the restriction of NZC is not needed. So the beta is 1 for AI model and the payload of UCI is influenced by the length of encoder output.
To compared with eType II codebook, we use the same angle-delay domain mapping method in AI models. We find 2L strongest beams and Mv strongest delays and train the AI model with the projection value of each angle-delay pair. In this case, the selected beam index and delay index are needed to be reported like in eType II codebook.
In the simulation, we set L = 4 and Mv = 4. There are total 32 coefficients for dual polarization and the input of AI model is 32 complex coefficients. We use a small AI model whose size is about 1/16 times of the AI model in 4.1.1 and 9 different payloads of the small AI model are evaluated. The 23 bits for selected beam index and delay index are included in the total payload
The gains of average cosine similarity and its relevant spectral efficiency (SE) are shown in Figure 5 and Figure 6, respectively, as a function of the payload, especially in consideration of the small AI model.

[bookmark: _Ref102155208]Figure 5: The average cosine similarity of small AI model for full buffer traffics and UMi scenario.

[bookmark: _Ref102155215]Figure 6: The gain of average SE of small AI model for full buffer traffic and UMi scenario.
According to the evaluation results, the performance of the small AI model with pre-processing is in the middle of eType II and AI model without pre-processing. 
Compared with eType II, the small AI model can achieve save about 35% overhead. The small AI model with about 177 bits can obtain similar performance to the ideal eType II codebook without NZC restriction and quantification. The gain between eType II and the small AI model with pre-processing is from the quantification in eType II codebook. AI model can provide better quantification results with vector quantification than 7 bits for each NZC. 
Compared with the AI model without pre-processing, the small AI model saves more than 90% AI model size and at the cost of about 5% performance loss. The gap between the AI model with and without preprocessing is because of the performance loss from incomplete orthogonal basis caused by not enough selected beams and delays. When payload is larger, the small AI model touch the performance boundary while the fully sized AI model can still improve performance.
Observation 12: [bookmark: _Hlk102160650]A small AI model with pre-processing can save 35% overhead compared with eType II codebook and can save more than 90% AI model size at the cost of about 5% performance loss compared with fully sized AI model. 
The AI model performance for higher rank
In case that rank number is larger than 1, we evaluate the per-rank model and per-layer model. The per-rank model means, for each rank, an independent AI model is trained. UE can use the corresponding AI model to infer the precoder of a given rank number. The per-layer AI model means an independent AI model is trained for each layer, especially, the AI model for each layer is the same. For each rank, UE can infer each layer with the single AI model.
[image: ]
Figure 7: Two scheme of high rank AI model, per-ranks and per-layer AI models.
In the simulation, we use the same per-layer model for each layer and train the model with the dataset including all layers and only rank 2 is evaluated. For the per-rank models, one model is trained with rank 1 dataset and the other model is trained with rank 2 dataset. The former is for rank 1 CSI compression and the latter is for rank 2 CSI compression. For the per-layer model, the single model is trained with dataset from all layers. This single model can be applied for different layers and ranks.
The model sizes of the single per-layer model and each of the per-rank models are almost the same, while two models are trained for per-rank models and only one model is trained for per-layer model with the same dataset. So the per-rank models are double size of the per-layer model.
Table 4: The average cosine similarity of per-rank models and per-layer model for rank 2.
	
	Layer 0
	Layer 1
	Average number

	Per-rank model
	0.91
	0.874
	0.892

	Per-layer model
	0.924
	0.863
	0.893



According to the evaluation result, per-rank model and per-layer model can achieve similar average cosine similarity, while the total size of per-rank AI model is double of per-layer model. Also considering the flexibility of layer selection, the per-layer model is better.
Observation 13: [bookmark: _Hlk102160661]Per-layer model can achieve similar cosine similarity with half model size compared with per-rank model.

Generalization
We evaluate the generalization of carrier frequency, scenario, payload, and antenna configuration.
For the carrier frequency, we evaluate 2.2GHz, 3.5GHz, 5.5GHz for rank 1 with entire AI model in 4.1.1. According to the evaluation result, the cosine similarity and spectral efficiency among cases with different carrier frequency are similar to each other. Since the carrier frequency is all below 6GHz and the UE speeds are all 3Km/h, the influence of carrier frequency to channel state is tiny. The AI model perform well in carrier frequency generalization.

Figure 8: The average cosine for different frequency carrier.

Figure 9: The gain of average SE for different frequency.
Observation 14: [bookmark: _Hlk102160669]The same AI model performs well across different carrier frequencies below 6GHz
For generalization across different scenario, we focus on UMi, UMa and InH. We train AI model with UMi samples and use it in UMi and UMa scenario respectively. According the evaluation result, the model trained by the UMi-based data set offers a fairly high channel cosine similarity in both UMi and UMa scenarios.
Observation 15: [bookmark: _Hlk102160675]AI model performs well when generalized from UMi to UMa.
Table 5: The average cosine similarity in UMi and Uma.
	
	AI model trained based on UMi data
	eType II codebook

	UMi
	0.91
	0.831

	UMa
	0.913
	0.839



We construct a synthetic dataset with samples from UMi and InH with different ratio including entire UMi dataset and InH dataset. The total number of samples in each dataset is fixed to 300000. The cosine similarity of each dataset composition is shown in Table 6.

[bookmark: _Ref102154807]Table 6: The cosine similarity of AI model with different training dataset composition in InH and UMi.
	Training dataset composition
	[300000, 0]
	[225000, 75000]
	[150000, 150000]
	[75000, 225000]
	[50000, 250000]
	[25000, 275000]
	[10000, 29000]
	[0, 300000]

	InH
	0.94780
	0.94907
	0.94953
	0.94520
	0.94660
	0.93090
	0.87230
	0.68597

	UMi
	0.74548
	0.84435
	0.87930
	0.90281
	0.90528
	0.90778
	0.90879
	0.90933



According to the evaluation results, the model trained by UMi dataset independently behave worse in InH scenario and vice versa. The models trained by dataset constructed with mixed InH-based and UMi-based data behave well for both scenarios, even not as good as with the dataset from one entire scenario. It shown that, the increasing number of correct samples in a mixed dataset can improve the performance and the wrong samples do not influence the performance. So the AI model can deal with different scenarios by mixing the sample from different scenarios into one dataset.
Also, Comparing the dataset composition [225000 75000] and [50000 250000], the cosine similarity for InH is similar. While, compared with the former, the cosine similarity of the latter is much better. It is because that the channel state of InH is simple and 50000 samples are enough. The extra InH samples can not provide more gains. However, the channel state of UMi is much more complicated, the reducing number of UMi samples can lead to severe performance degradation.
Observation 16: [bookmark: _Hlk102160682]AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.
Observation 17: Different payload may be required due to channel state or resource limiting. 
To generalize different payload without training a new AI model, we use payload truncation for different payload so the length of encoder output can be fixed. As shown in Figure 10, the output of the encoder is cut out from the beginning to the specific payload length. After truncation, the truncated output is sent to the decoder.
[image: ]
[bookmark: _Ref102155625]Figure 10: The schematic of payload truncation.
When the AI model is trained, the loss function is set to include the correlation of all decoder output. We give a weight for each decoder and accumulate the correlation of each decoder output with the weight as a total correlation. The weight is trained with the decoder. We choose four different payload and use the dedicated model for each payload as baseline. We train the joint encoder with different combination of payloads. For each payload combination, only the decoder corresponding to the given payload is used. The cosine similarity of each joint encoder is shown below.
Baseline: four dedicated models of which the payloads are 223, 199,176 and 132 bits.
Case 1: one joint encoder and two decoders of which the input sizes are 223 and 176 respectively.
Case 2: one joint encoder and three decoders of which the input sizes are 223,199, and 176 respectively.
Case 3: one joint encoder and three decoders of which the input sizes are 223, 176 and 132 respectively.
Table 7: The cosine similarity of different payload truncation methods.
	
	223
	199
	176
	132

	Baseline
	0.922
	0.913
	0.902
	0.871

	Case 1
	0.915
	
	0.901
	

	Case 2
	0.911
	0.908
	0.9
	

	Case 3
	0.898
	
	0.887
	0.867


Compared with the case 1 and case 2, for the same span of decoder input size, more decoders may not influence cosine similarity. Compared with the case 2 and case 3, the span of decoder input size may influence the performance and the cosine similarity decreases obviously with increasing span. Compared with the baseline and case 1, the performance loss is tiny in reasonable span of decoder input size. Therefore, in a reasonable span of decoder input size, one common encoder can be utilized and corresponds to serval decoders based on payload truncation to save the overhead of AI model transmission and switching complexity.
Observation 18: [bookmark: _Hlk102160689]Study payload generalization with payload truncation as baseline.
Since the encoder and decoder focus on learning the channel state, different antenna configuration can lead to different inferring results. We consider the antenna size and antenna number respectively.
In the simulation above, we use the antenna spacing [0.8 0.5] at gNB side, which means the space between two antenna in vertical domain is 0.8 wave length. To verify the generalization of antenna size, two cases are compared with different antenna space. We use the training dataset with channel fading matrices based on 0.8 wave length antenna as baseline and the comparison is the training dataset with channel fading matrices based on 0.5 wave length. Both cases are simulated in the environment with [0.8 0.5] antenna spacing. The entire AI model without pre-processing and the small AI model with pre-processing are both evaluated.

Figure 11: The average cosine similarity of entire AI models based on different training dataset.

Figure 12: The gain of average SE of entire AI models based on different training dataset.

From the evaluation results, we can find that, for the case that antenna space is 0.8 wave length, there is almost 4% average SE loss if training dataset is constructed with channel fading matrices based on 0.5 wave length antenna. 

Figure 13: The average cosine similarity of small AI models based on different training dataset.

Figure 14: The gain of average SE of small AI models based on different training dataset.
As for the small AI model with pre-processing, since the beam and delay are restricted in pre-processing, the performance loss caused by mismatching dataset can be omitted. Therefore, the small AI may have a better generalization performance.
Observation 19: [bookmark: _Hlk102160699]Generalization performance for different antenna virtualization needs to be studied.
Observation 20: Small AI models with pre-processing may achieve better generalization performance.

Results for sub use case 2

The prediction of one future CSI
The AI-based CSI prediction model outputs one future CSI where the time index is fixed. Different future time indices should correspond to different AI models, which are trained independently. The predicting process of this sub use case is illustrated in Figure 15. 


[bookmark: _Ref102121290]Figure 15: The process of AI-based prediction of one future CSI.
The candidate set of the type of input for AI-based CSI prediction can be: the raw channel, the eigenvector (or singular vector), and the CSI feedback information. The benefits and disadvantages of these candidate input are given in Table 8.

[bookmark: _Ref102145742]Table 8: The benefits and disadvantages of candidate inputs.
	candidate input
	benefits
	disadvantages

	Raw channel
	Contains complete channel information
	Only available at UE, not available by gNB;
Overhead is large if the raw channel is feedback to the gNB.

	eigenvector (or singular vector)
	The time varying characteristic is still (maybe partially) reserved 
	The eigenvalue (or singular value) decomposition leads to irregular phase reversal;
May lose some time varying characteristic

	CSI feedback information
	Available at gNB
	The feedback procedure introduces heavy information loss and distortion.



Evaluation details: 
The evaluation of the prediction of one future CSI is conducted with the input of raw channel and eigenvector. For the simulation, most of the parameters are consistent with basic LLS assumptions in subsection 2.3.2. The specific simulation parameters are provided in Table 9.
[bookmark: _Ref102146505]Table 9: The specific simulation parameters for subsection 4.2.1.
	The number of historical CSI inputs
	12

	The slot indices of historical CSI inputs
	[71, 81, 91, …, 181]-th slots (spacing is 10 slots)

	The slot index of the predicted CSI
	191th slot (+5ms)

	Selected PRB for evaluation
	1st PRB

	The type of CSI
	Raw channel,
Eigenvector (or singular vector)

	Neural network parameter
	Backbone
	FCN

	
	Hidden layer size
	256

	
	Learning algorithm
	Adam

	
	Learning rate
	0.001

	
	Batch size
	200

	
	Epoch number
	300



The complexity of considered models is provided in Table 10.
[bookmark: _Ref102146517]Table 10: The complexity of considered models in subsection 4.2.1.
	Solution
	The total number of parameters
	FLOPs

	Predict channel from the historical raw channel 
	298,304
	77.4M

	Predict eigen vector from the historical eigen vector
	298,304
	77.4M



The NMSE and cosine similarity results case for evaluating the prediction of one future CSI are provided in the following Table 11. 
[bookmark: _Ref102146582]Table 11: The NMSE and cosine similarity results case for evaluating the prediction of one future CSI.
	Solution
	NMSE (dB)
	Cosine similarity

	Predict channel from the historical raw channel 
	AI-based CSI prediction 
	-10.867
	0.9296

	
	[bookmark: _Hlk101385017]Without prediction (use the nearest historical CSI as the prediction)
	-1.353
	0.7599

	Predict eigenvector from the historical eigenvector 
	AI-based CSI prediction 
	-2.52
	0.7241

	
	Without prediction (use the nearest historical CSI as the prediction)
	2.44
	0.5504



Using the raw channel as the historical CSI, the AI-based CSI prediction achieves a NMSE gain of more than 9dB compared to the without prediction case. For the eigenvector-based prediction, the corresponding NMSE gain is about 5dB. However, the prediction result of eigenvector-based prediction is much worse than that of raw channel based prediction. By analyzing the original data of eigenvector, we found that there exists irregular phase reversal in the eigenvector, which may be the reason of this performance loss. Furthermore, the time varying characteristic may lose partially when applying the eigenvalue decomposition.

Observation 21: [bookmark: _Hlk102160711]The AI-based CSI prediction based on the raw channel outperforms that based on eigen vector. 
Observation 22: The eigenvalue decomposition leads to irregular phase reversal, and the eigen vector may lose some time varying characteristic compared to the raw channel.
[bookmark: _Hlk102160718]The impact of the type of historical CSI inputs should be studied for the AI-based CSI prediction.
The choice of historical CSI inputs (number and time ID of historical CSIs)
The time varying characteristic of the CSI required to be extracted from historical CSIs and utilized to make prediction. The choice of historical CSI inputs has significant influence on the performance of the CSI prediction. When the historical CSI inputs is insufficient, or when the historical CSI inputs are too outdated, the time varying characteristic is hard to be extracted. However, with the increase of the number of historical CSI inputs, complexity and the storage overhead of the model will increase. Therefore, for the AI-based CSI prediction, the choice of historical CSI inputs should be studied.

Evaluation details:
The impact of the historical CSI number on the AI-based prediction is evaluated. For the simulation, most of the parameters are consistent with basic LLS assumptions in subsection 2.3.2. The specific simulation parameters are provided in Table 12.
[bookmark: _Ref102146603]Table 12: The specific simulation parameters for subsection 4.2.2.
	The number of historical CSI inputs
	2, 4, 6, 12, 18

	The slot indices of historical CSI inputs
	[…, 171, 181]-th slots (spacing is 10 slots)

	The slot index of the predicted CSI
	191th slot (+5ms)

	Selected PRB for evaluation
	1st PRB

	The type of CSI
	Raw channel

	Neural network parameter
	Backbone
	FCN

	
	Hidden layer size
	256

	
	Learning algorithm
	Adam

	
	Learning rate
	0.001

	
	Batch size
	200

	
	Epoch number
	300



The complexity of considered models is provided in Table 13.
[bookmark: _Ref102146615]Table 13: The complexity of considered models in subsection 4.2.2.
	The number of historical CSI inputs
	The total number of parameters
	FLOPs

	2
	295,744
	75.8M

	4
	296,256
	76.1M

	6
	296,768
	76.4M

	12
	298,304
	77.4M

	18
	299,840
	78.4M



The impact of the historical CSI number on NMSE and cosine similarity the of the AI-based prediction is provided in Figure 16 and Figure 17, respectively.


[bookmark: _Ref102121596]Figure 16: NMSE varies with the number of historical CSI inputs.

[bookmark: _Ref102121599]Figure 17: Cosine similarity varies with the number of historical CSI inputs.
Observation 23: [bookmark: _Hlk102160732]The prediction performance can be improved by increasing the number of historical CSI inputs.
Observation 24: The increase of complexity caused by the increase of the number of historical CSI inputs is marginal.
[bookmark: _Hlk102160740]The choice of the number of historical CSI inputs should be studied for the AI-based CSI prediction.


The prediction of multiple future CSIs
The AI-based CSI prediction model outputs multiple future CSIs where the future time indices are fixed. If the desired future time index is within the future time indices of the AI model, it only needs to select the corresponding output. The predicting process of this sub use case is illustrated in Figure 18. 


[bookmark: _Ref102121663]Figure 18: The process of AI-based prediction of multiple future CSIs.
Furthermore, multiple future CSIs can be derived by two approaches, one is direct prediction, the other is the combination of prediction and interpolation. For the convenience, the aforementioned direct prediction is named as 1-step prediction while the combination of prediction and interpolation is named as 2-step prediction. 
1-step prediction is actually an extrapolation process, which is illustrated in Figure 19.


[bookmark: _Ref102121679]Figure 19: Illustration of the 1-step prediction.
For the 2-step prediction, the 1-st step is to derive the prediction of the most future CSI from all required CSIs. The 2-nd step is to derive the prediction of other future CSIs using the historical CSIs and the predicted most future CSI, which is an interpolation process. Each step corresponds to one AI model. Two AI models are trained independently. The process of 2-step prediction is illustrated in Figure 20.


(a) 1-st step


(b) 2-nd step
[bookmark: _Ref102121689]Figure 20: Illustration of the 2-step prediction.
Evaluation details:
The prediction of multiple future CSIs is evaluated with the input of raw channel. For the simulation, most of the parameters are consistent with basic LLS assumptions in subsection 2.3.2. The specific simulation parameters are provided in Table 14.

[bookmark: _Ref102146640]Table 14: The specific simulation parameters for subsection 4.2.3.
	The number of historical CSI inputs
	12

	The slot indices of historical CSI inputs
	[71, 81, 91, …, 181]-th slot (spacing is 10 slots)

	The slot index of the predicted CSI
	[183, 185, 187, 189, 191]-th slots

	Selected PRB for evaluation
	1st PRB

	The type of CSI
	Raw channel

	Neural network parameter
	Backbone
	FCN

	
	Hidden layer size
	256

	
	Learning algorithm
	Adam

	
	Learning rate
	0.001

	
	Batch size
	200

	
	Epoch number
	300



The complexity of considered models is provided in Table 15.
[bookmark: _Ref102146650]Table 15; The complexity of considered models in subsection 4.2.3.
	model
	The total number of parameters
	FLOPs

	1-step model
	299,584
	77.5M

	2-step model
	597,824
	155.1M



The NMSE and cosine similarity of multiple predicted CSIs are provided in Figure 21 and Figure 22, respectively.

[bookmark: _Ref102121790]Figure 21: NMSE of multiple predicted CSIs.


[bookmark: _Ref102121803]Figure 22: Cosine similarity of multiple predicted CSIs.
Observation 25: [bookmark: _Hlk102160757]The prediction of multiple future CSIs is more flexible than the prediction of one CSI.
Observation 26: 2-step prediction and 1-step prediction achieve almost the same performance (2-step prediction is a little bit better), both of which outperform the case without prediction (use the nearest historical CSI as the prediction).
Observation 27: Compared to the prediction of one future CSI, the complexity of 1-step prediction increases a little while the complexity of 2-step prediction is doubled.
[bookmark: _Hlk102160766]The study on the prediction of multiple future CSIs is with high priority.

Generalization performance of AI-based CSI prediction.
The generalization describes the adaptability of an AI model to fresh data, which is one of the key capabilities for evaluating the performance of an AI model. For CSI prediction, the generalization capability over the frequency domain should be evaluated. If an AI model for CSI prediction achieves similar performance on different sub-bands, it is preferable to train and save only one AI model for all these sub-bands. Secondly, the generalization with respect to channel parameters should also be evaluated. If the generalization with respect to channel parameters is good, only one model is required for large number of UEs. Otherwise, the per-UE model may be essential.

For the simulation, most of the parameters are consistent with basic LLS assumptions in subsection 2.3.2. The specific simulation parameters are provided in Table 16.
[bookmark: _Ref102146666]Table 16: The specific simulation parameters for subsection 4.2.4.
	The number of historical CSI inputs
	12

	The slot indices of historical CSI inputs
	[71, 81, 91, …, 181]-th slots (spacing is 10 slots)

	The slot index of the predicted CSI
	191th slot (+5ms)

	The type of CSI
	Raw channel

	Neural network parameter
	Backbone
	FCN

	
	Hidden layer size
	256

	
	Learning algorithm
	Adam

	
	Learning rate
	0.001

	
	Batch size
	200

	
	Epoch number
	300



Generalization with respect to PRBs:
Firstly, the AI model is trained on the 1-st PRB. Then, the trained model is directly applied to the 10-th PRB, 20-th PRB and the 50-th PRB to evaluate the generalization performance. The corresponding performance is provided in Table 17.
[bookmark: _Ref102146700]Table 17: The NMSE and cosine similarity of case for evaluating the generalization with respect to PRBs. 
	The PRB location
	1st PRB (trained)
	10-th PRB
	20-th PRB
	50-th PRB

	NMSE (dB)
	-10.804
	-10.851
	-10.8302
	-10.8145

	Cosine similarity
	0.9289
	0.9293
	0.9291
	0.9290



Observation 28: [bookmark: _Hlk102160782]The generalization of AI-based CSI prediction with respect to PRBs is good.
[bookmark: _Hlk102160789]The generalization performance across frequency domain should be studied.

Generalization with respect to scenarios:
The generalization capability with respect to scenarios can be evaluated by comparing the performance of per-UE model and per-cell model. Here, per -UE model refers to the scheme that employing different models for different UEs while per -cell model refers to the scheme that UEs in one cell employ the same model. 

The NMSE and cosine similarity of Per-UE model, Per-cell model and without prediction scheme are provided in Figure 23 and Figure 24, respectively.

[bookmark: _Ref102121950]Figure 23: NMSE of different schemes.


[bookmark: _Ref102121960]Figure 24: Cosine similarity of different schemes.
Observation 29: [bookmark: _Hlk102160798]Per-UE model achieves better prediction performance than the Per-cell model. However, the overhead (training, delivering and storage) of Per-UE model is higher than the Per-cell model.
[bookmark: _Hlk102160804]The generalization capability with respect to scenarios should be studied.

Finetuning of AI-based CSI prediction.
CSI prediction is a good sub use case for evaluating the gain of finetuning. If the generalization capability with respect to channel parameters is not good, one option is to derive Per-UE model by finetuning. Compared to the direct training of multiple Per-UE models, the finetuning can be achieved by using fewer labeled data based on a common model (e.g., the Per-cell model). For AI-based CSI prediction, the label of data can be collected in real time by the CSI measurement. Therefore, if the predicted future CSI is on the time occasion of a CSI measurement, finetuning is available for the AI-based CSI prediction. 

Evaluation details:
The 2-step prediction is used for evaluating the finetuning performance where only the AI model of 1-st step is finetuned, i.e., the most future CSI is assumed to be on the time occasion of a CSI measurement. For the simulation, most of the parameters are consistent with basic LLS assumptions in subsection 2.3.2. The specific simulation parameters are provided in Table 18.
[bookmark: _Ref102146722]Table 18: The specific simulation parameters for subsection 4.2.5.
	The number of historical CSI inputs
	12

	The slot indices of historical CSI inputs
	[71, 81, 91, …, 181]-th slots (spacing is 10 slots)

	The slot index of the predicted CSI
	[183, 185, 187, 189, 191]-th slots

	Selected PRB for evaluation
	1st PRB

	The type of CSI
	Raw channel

	Neural network parameter
	Backbone
	FCN

	
	Hidden layer size
	256

	
	Learning algorithm
	Adam

	
	Batch size
	20



Figure 25 and Figure 26 shows the NMSE and finetuning NMSE gain varying with the number of model parameter update where the learning rate is 0.0001. 
Figure 27 and Figure 28 shows the NMSE and finetuning NMSE gain varying with the number of model parameter update where the learning rate is 0.0005. 
[image: ]
[bookmark: _Ref101971482][bookmark: _Ref101971474]Figure 25: The NMSE varies with the number of model parameter update where the learning rate is 0.0001.
[image: ]
[bookmark: _Ref101971513]Figure 26: The finetuning NMSE gain varies with the number of model parameter update where the learning rate is 0.0001.
[image: ]
[bookmark: _Ref102137834]Figure 27: The NMSE varies with the number of model parameter update where the learning rate is 0.0005.
[image: ]
[bookmark: _Ref102137851]Figure 28: The finetuning NMSE gain varies with the number of model parameter update where the learning rate is 0.0005.
Observation 30: [bookmark: _Hlk102160817]AI-based CSI prediction is a good sub use case for studying the finetuning process in wireless communication systems.
Observation 31: Finetuning improves the CSI prediction performance of future CSI-measurement time, which can further improve the CSI prediction performance of future non-CSI measurement time by using the 2-step prediction scheme.
Observation 32: The choice of finetuning parameters (e.g., learning rate) have significant impact on the finetuning performance.
[bookmark: _Hlk102160826]Finetuning of AI-based CSI prediction should be studied.
Conclusions
1. The most typical channel available for the system level simulations can be classified into UMi, UMa, and Indoor scenarios.
Observation 34: Pre-processing can be used to resize the input data dimensions.
Observation 35: The size of dataset for generalization performance comparison needs to be kept the same
Observation 36: Consider intermediate results including cosine similarity and rank distributions for performance comparison between companies
Observation 37: Consider SU scheduling method for calibration.
Observation 38: The eTypeII codebook is used as the baseline for non-AI methods.
Observation 39: The following simulation parameters combination as shown in Table 1 can be used for calibration and the average SE of 8 parameter combinations of type II codebook can be calibrated in UMa and InH.
Observation 40: Either absolute or square of cosine similarity can be used to measure the similarity between the input CSI and the output reconstructed CSI as an intermediate metric.
Observation 41: Consider the number of quantification bits and the parameter sizes of encoder as KPIs for model transmission.
Observation 42: Consider of latencies and FLOPs as KPIs for model operating.
Observation 43: The AI model can achieve about 9% average cosine similarity gain and 11% average SE gain or 64% overhead reduction
Observation 44: A small AI model with pre-processing can save 35% overhead compared with eType II codebook and can save more than 90% AI model size at the cost of about 5% performance loss compared with fully sized AI model. 
Observation 45: Per-layer model can achieve similar cosine similarity with half model size compared with per-rank model.
Observation 46: The same AI model performs well across different carrier frequencies below 6GHz
Observation 47: AI model performs well when generalized from UMi to UMa.
Observation 48: AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.
Observation 49: Different payload may be required due to channel state or resource limiting. 
Observation 50: Study payload generalization with payload truncation as baseline.
Observation 51: Generalization performance for different antenna virtualization needs to be studied.
Observation 52: Small AI models with pre-processing may achieve better generalization performance.
Observation 53: The AI-based CSI prediction based on the raw channel outperforms that based on eigen vector. 
Observation 54: The eigenvalue decomposition leads to irregular phase reversal, and the eigen vector may lose some time varying characteristic compared to the raw channel.
Observation 55: The prediction performance can be improved by increasing the number of historical CSI inputs.
Observation 56: The increase of complexity caused by the increase of the number of historical CSI inputs is marginal.
Observation 57: The prediction of multiple future CSIs is more flexible than the prediction of one CSI.
Observation 58: 2-step prediction and 1-step prediction achieve almost the same performance (2-step prediction is a little bit better), both of which outperform the case without prediction (use the nearest historical CSI as the prediction).
Observation 59: Compared to the prediction of one future CSI, the complexity of 1-step prediction increases a little while the complexity of 2-step prediction is doubled.
Observation 60: The generalization of AI-based CSI prediction with respect to PRBs is good.
Observation 61: Per-UE model achieves better prediction performance than the Per-cell model. However, the overhead (training, delivering and storage) of Per-UE model is higher than the Per-cell model.
Observation 62: AI-based CSI prediction is a good sub use case for studying the finetuning process in wireless communication systems.
Observation 63: Finetuning improves the CSI prediction performance of future CSI-measurement time, which can further improve the CSI prediction performance of future non-CSI measurement time by using the 2-step prediction scheme.
Observation 64: The choice of finetuning parameters (e.g., learning rate) have significant impact on the finetuning performance.

1. The dataset for AI-model training, validation and testing can be constructed mainly based on the channel model(s) defined in TR 38.901, namely, UMi, UMa, and Indoor scenarios in system level simulation, and optionally on CDL in link level simulation.
Consider both cases with same or different input data dimensions for data set construction to verify generalization performance. 
For CSI enhancement, the data set should be constructed in a way that data samples across different UEs, different cells, different drops, different scenarios are all included.
Both the following two cases should be considered for generalization performance verification
a) Case1: the training data set is constructed by mixing data from different setup
b) Case2: training set and testing data set are from different setups
For the case that the training data set is constructed by mixing data from different setup, dataset for generalization can be constructed based on the combination of different scenarios and configurations. Different ratio of data mixture can be evaluated with the same total sample number for each dataset. 
For AI model calibration, the parameters used to construct dataset needs to be aligned.
Companies are encouraged to share the data set and model files in a public accessible way for cross check purposes. Our initial data set file for CSI compression and CSI prediction is on the following link [5] and [6]. 
Ideal downlink channel estimation is assumed as the starting point for the performance evaluation.
Use ideal UCI feedback for the performance evaluation.
The evaluation assumption in Table 2 is used as the SLS assumptions for both non-AI and AI-based performance evaluations.
Parameter perturbation based on the basic parameter in Table 2 can be conducted to verify generalization performance of each case.
The evaluation assumption in Table 3 is used as the LLS assumptions for AI-based CSI prediction evaluations.
Study the performance loss caused by the n-bits quantization of AI model parameters with the float number AI model parameters as baseline.
Clarify the quantification level of the AI model for evaluation.
Spectral efficiency [bits/s/Hz] can be used for the final evaluation metric while absolute or square of cosine similarity and NMSE can be used to measure the similarity and difference between input and output as an intermediate metric.
Generalization performance is also used as one KPI to verify whether AI/ML can work across multiple setups.
The complexity, parameter sizes, quantization, latencies and power consumption of models needs to be considered.
The impact of the type of historical CSI inputs should be studied for the AI-based CSI prediction.
The choice of number of historical CSI inputs should be studied for the AI-based CSI prediction.
The study on the prediction of multiple future CSIs is with high priority.
The generalization performance across frequency domain should be studied.
The generalization capability with respect to scenarios should be studied.
Finetuning of AI-based CSI prediction should be studied.
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The gain of average SE (%)




The average cosine similarity

5.5GHz	85	95	111	127	159	175	191	207	223	0.82399999999999995	0.84399999999999997	0.85499999999999998	0.86399999999999999	0.873	0.88500000000000001	0.89500000000000002	0.89400000000000002	0.91200000000000003	3.5GHz	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	2.2GHz	85	95	111	127	159	175	191	207	223	0.82199999999999995	0.84399999999999997	0.85899999999999999	0.86099999999999999	0.874	0.88100000000000001	0.89800000000000002	0.89700000000000002	0.91100000000000003	payload (bits)


The average cosine similarity




The gain of average SE 

5.5GHz	85	95	111	127	159	175	191	207	223	0.15797788309637895	1.1058451816745531	2.6066350710900394	2.9225908372827689	4.4233807266982552	4.9763033175355389	6.3191153238546747	6.0821484992101205	6.9510268562401336	3.5GHZ	85	95	111	127	159	175	191	207	223	0.23696682464454	1.3428120063191216	2.5276461295418642	2.9225908372827689	4.186413902053701	5.0552922590837426	6.3191153238546747	6.3191153238546747	7.3459715639810526	2.2GHZ	85	95	111	127	159	175	191	207	223	0	1.2638230647709321	2.5276461295418642	2.9225908372827689	4.186413902053701	4.9763033175355389	6.240126382306471	6.5560821484992147	7.0300157977883089	payload (bits)


The gain of average SE (%)




The average cosine similarity

0.8λ antenna space for training	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	0.5λ antenna space for training	85	95	111	127	159	175	191	207	223	0.80800000000000005	0.82399999999999995	0.83699999999999997	0.85199999999999998	0.873	0.88	0.88700000000000001	0.89500000000000002	0.89900000000000002	payload (bits)


The average cosine similarity




The gain of average  SE compared with 
85 bits baseline AI model 

0.8λ antenna space for training	85	95	111	127	159	175	191	207	223	0	1.1041009463722276	2.3659305993690936	2.7602523659305831	4.0220820189274491	4.8107255520504708	6.1514195583596347	6.1514195583596347	7.1766561514195644	0.5λ antenna space for training	85	95	111	127	159	175	191	207	223	-2.9968454258675052	-1.5772870662460576	-0.47318611987381587	0.55205047318611378	2.3659305993690936	3.0757097791798174	3.5488958990536332	4.4164037854889528	4.8107255520504708	payload (bits)


The gain of average SE (%)




The average cosine similarity of small AI models

0.8λ antenna space for training	87	117	147	177	207	237	267	297	327	0.78300000000000003	0.81599999999999995	0.83499999999999996	0.84499999999999997	0.85099999999999998	0.85499999999999998	0.85699999999999998	0.85799999999999998	0.85799999999999998	0.5λ antenna space for training	87	117	147	177	207	237	267	297	327	0.78900000000000003	0.82099999999999995	0.83899999999999997	0.84799999999999998	0.85399999999999998	0.85699999999999998	0.85899999999999999	0.86	0.86	payload (bits)


The average cosine similarity




The gain of average  SE of small AI models compared with 
87 bits baseline AI model 

0.8λ antenna space for training	87	117	147	177	207	237	267	297	327	0	3.0176026823135089	4.6940486169320934	5.6160938809723291	6.4543168482816355	6.8734283319362959	7.1248952221290835	7.292539815590942	7.292539815590942	0.5λ antenna space for training	87	117	147	177	207	237	267	297	327	0.58675607711651878	3.5205364626990701	5.1131601005867537	6.2028499580888479	6.621961441743494	6.8734283319362959	7.2087175188600128	7.4601844090528004	7.5440067057837297	payload (bits)


The gain of average SE (%)





2	4	6	12	18	-5.1004152060000001	-7.5202673359999999	-8.7289520159999991	-10.65501549	-12.006594509999999	The number of historical CSI inputs


NMSE (dB)




2	4	6	12	18	0.73670000000000002	0.84770000000000001	0.88460000000000005	0.9264	0.94579999999999997	The number of historical CSI inputs


Cosine similarity



NMSE of multiple predicted CSIs

1 step prediction	+1ms	+2ms	+3ms	+4ms	+5ms	-27.526430000000001	-21.293030000000002	-16.730017	-13.406169	-10.90989695	2 step prediction	+1ms	+2ms	+3ms	+4ms	+5ms	-29.241174109999999	-21.596736759999999	-16.782263960000002	-13.380958290000001	-10.86716098	Without prediction	+1ms	+2ms	+3ms	+4ms	+5ms	-10.835460510000001	-4.9825627040000002	-1.7431429199999999	0.35549803000000002	1.781420698	predicted CSI time 


NMSE (dB)




Cosine similarity of multiple predicted CSIs

1 step prediction	+1ms	+2ms	+3ms	+4ms	+5ms	0.99844310000000003	0.99354184000000001	0.98156469999999996	0.96045756000000004	0.93002737000000002	2 step prediction	+1ms	+2ms	+3ms	+4ms	+5ms	0.99896240000000003	0.99396799999999996	0.98176390000000002	0.96028303999999998	0.92959999999999998	Without prediction	+1ms	+2ms	+3ms	+4ms	+5ms	0.96540000000000004	0.87439999999999996	0.75719999999999998	0.6452	0.5575	predicted CSI time 


Cosine similarity





Per-UE model	Per-cell model	Without prediction	-27.21	-10.66	-1.353	
NMSE (dB)




Per-UE model	Per-cell model	Without prediction	0.99829999999999997	0.9264	0.75990000000000002	
Cosine similarity
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