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1	Introduction and motivation
The study item Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface was approved in RAN#94e [1]. It will be the first study of AI/ML technology in 3GPP RAN1. The study item will explore 3GPP frameworks to enable AI/ML including, for example, AI/ML model characterization, various levels of collaboration between UE and network, data sets for training/validation/testing/inference, and life cycle management. The study should quantify the performance, robustness, complexity, and potential specification impact of AI/ML based solutions.
One use case identified for the pilot study is CSI feedback enhancement:
	RP-213599 (SID):
Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels



One motivation for selecting CSI feedback enhancement as a use case is the MU-MIMO use case which has great benefit to network system performance using massive MIMO antenna arrays, while we simultaneously where observe the following potential issues for acquiring the necessary CSI at the transmitter:
· The use of SRS has drawbacks in coverage (compared to CSI Type-II feedback) and requires antenna switching to be implemented in UE and the associated power imbalances between transmit antennas in the UE side as currently is discussed in RAN1 and RAN4
· The use of CSI Type-II and eType-II have drawbacks in lack of spatial resolution (compared to SRS based)
· The acquired CSI at the transmitter is instantaneous and is very sensitive to UE speed, the MU-MIMO performance is seen to degrade at relatively low speeds 
· The latency of the Type-II CSI reports is large and also contribute to the sensitivity to UE speed

Due to its great benefit for networks, and ongoing investments by operators into massive MIMO products, it is thus motivated to see how AI/ML can enhance CSI reporting. We also observe that since existing eType-II reporting has several dB better coverage than SRS, there is in principle room to even increase the AI-CSI payload to get on par with the SRS performance in terms of high spatial resolution and MU-MIMO performance. Hence, the KPIs should not only focus on overhead reduction, but also performance benefits of maintaining or even slightly increased CSI overhead is also of interest. 
Also, it is of interest to see whether ML inference for the AI-CSI can have much shorter latency than the classical eType-II PMI search algorithm, in which case a reduced latency itself may improve MU-MIMO performance in networks. 
A relevant question is also how large the gains of AI-CSI can be, how big is the potential? Comparing with genie aided CSI, we see that there is a 20-40% gap in DL throughput compared to eType-II, hence the upper bound of AI-CSI benefits is likely in this range of percentage numbers. Although this may not be achievable without a huge CSI report payload. It is left to the study in this SI to investigate realistic expectations on AI-CSI. 
[bookmark: _Ref178064866]2	Discussion
2.1	Single-sided AI for CSI enhancement
A solution for single-sided AI for CSI enhancement where the ML model resides in the UE and used for channel prediction. This ML model is trained to ensure that the reported PMI is more robust, or “valid” at a point in time in the future. Note that such enhancement may not have an impact on the UCI, the legacy CSI reporting, e.g. Type-II can be reused or RAN1 can in a work item extend the codebook. Alternatively, the potentially newly defined Rel.18 CSI for Doppler can be re-used where the estimation parts in the UE is replaced by machine learning. 
We note that even if the ML is single sided and resides in the UE, the network needs to be aware of such ML based operation in order to carry out the LCM functionality, i.e. monitoring of performance etc. 
Another possibility for a single sided AI is to use machine learning to identify a somewhat optimal Type-II codebook parameter setting and allow for faster than RRC codebook parameter configuration. Further discussion and studies is needed to identify the benefits. It is noted, however, that the single sided ML models are simpler to train and deploy compared to the dual sided variants, and it is worth pursuing such study in this study item
2.2	Dual-sided AI for CSI enhancement
2.2.1	Introduction
In this use case, a UE-side AI (an encoder or compressor) works together with a NW-side AI (a decoder or decompressor) over the air interface. The UE-side AI and the NW-side AI are separated by the air interface (e.g., UCI), over which a latent (or compressed) representation, , of the input  is signalled. Figure 1 illustrates this use case.
[image: ]
[bookmark: _Ref101875058][bookmark: _Ref101514638]Figure 1: Illustration of dual-sided AI CSI reporting. Note that X may not represent the full MIMO channel H but a representation of it, where pre-processing can extract the relevant features X of the channel (e.g. dominant eigenvectors). Y is the output of the UE side autoencoder. 

Dual-sided AI solutions may be based, for example, on autoencoders (AEs), variational autoencoders (VAEs), conditional variational autoencoders (CVAES), and Siamese networks. The underlying Neural network (NNs) may also have different NN architectures, including but not limited to dense NNs, convolutional NNs, recurrent NNs, and transformer NNs. 
2.2.2	Training
The UE AI and NW AI will both need to be trained on one or more training datasets. In many cases (e.g., AEs, VAEs, CVAEs), the UE and NW AIs will need some form of joint training. In other cases (e.g., Siamese networks), it may be possible to individually train the UE AI and NW AI.  
To achieve good inference performance we expect that the training datasets will need to include field data. However, for the purpose of this study item, synthetic datasets will suffice to discuss approximate performance benchmarks and expected standardization impacts. See further discussion in [2] for the general aspects agenda item.  Evaluation methodologies for AI-based CSI reporting, including benchmarks, are discussed in [3].
The training process involves numerically optimizing the NN’s trainable parameters (e.g., the weights and biases of the underlying NN) to minimize a loss function on the training datasets. Loss functions are discussed later in Section 2.2.2. We have observed that it takes many hours on high-performance GPUs to train dual-sided AI with performance comparable to that of the state-of-art-benchmark (Rel-16 Type II CSI). This observation, of course, does not rule out the existence of easily train solutions; however, it indicates that training AIs, from scratch, in UEs and/or gNBs may be difficult. 
 
[bookmark: _Toc102035391][bookmark: _Toc102053797][bookmark: _Toc102053810][bookmark: _Toc102122405][bookmark: _Toc102160460]Synthetic datasets based on TR 38.901 are used for the CSI use case in this SI.

2.2.2	Loss functions
The purpose of the loss function is to quantify the error between the UE’s channel (feature) estimate  and the gNB’s reconstructed output . 
Dual-sided AIs will be trained with respect to the loss function applied over (mini-) batches of channel estimates and, sometimes, the loss function will include regularization terms. To help discussions, we propose the following terminology.
[bookmark: _Toc102035392][bookmark: _Toc102053798][bookmark: _Toc102053811][bookmark: _Toc102122406][bookmark: _Toc102160461]Define Per-sample loss function as the loss function defined for individual samples (e.g., individual MIMO channels). 
[bookmark: _Toc102035393][bookmark: _Toc102122407][bookmark: _Toc102160462]Define Loss function as the loss function observed over (mini-) batches, including any regularization terms. The loss function can be viewed as the overall objective function that e try to minimize during training. 

To help form a common understanding in the study item, we define to the following textbook loss functions: 
· The squared error per-sample loss function is
.
· The normalized squared error per-sample loss function is 
.
· The generalized cosine similarity (applied to complex vectors  and ) per-sample loss function is

   where 

for some Hermitian positive definite matrix . Note: The cosine similarity per-sample loss function can be obtained by setting  to be the identity matrix. 

For a (mini-) batch of  samples  and reconstructions , the loss function corresponding to the mean of per-sample losses (without any regularization terms) would then be 


The literature on AE-based CSI reporting has used mean squared error (MSE) and normalized mean squared error (NMSE) on the whole MIMO channel in the antenna-frequency domain or the beam-delay domain. Cosine similarity and generalized cosine similarity have also been used for single-layer (rank 1) CSI reporting, where  corresponds to the strongest (right) eigenvector of the MIMO channel matrix.  
The per-sample loss function has a large impact on compression performance. Therefore, the loss function should target only those CSI features required by the gNB for, e.g., SU or MU-MIMO, or C-JT. We envisage that deployed dual-sided AI CSI solutions will be trained using proprietary loss functions. However, for 3GPP discussions we see a need to align on useful loss functions that address certain shortcomings of the textbook loss functions described above. In particular, the per-sample loss function heavily impacts performance -- a poor choice may lead the study to make incorrect conclusions about the potential of dual-sided AI CSI reporting. Aligning on loss functions for the study item will also help enable companies compare and calibrate results, since the values of the loss functions can be reported alongside other simulation results.
We first discus some problems with MSE, NMSE, cosine similarity, and generalized cosine similarity. 
· Problems with loss functions using squared error and normalized squared error 

These per-sample loss functions can require the UE AI and NW AI to compress and reconstruct aspects of the channel that are irrelevant for SU or MU-MIMO performance, such as the channel subspace represented by the weakest eigenvector. Using such loss functions may thus lead to unnecessary large uplink overhead as the CSI contains information that is not useful for the scheduler. 

· Problems with loss functions using cosine similarity and generalized cosine similarity 

The literature has proposed defining the per-sample loss function as the cosine similarity and/or generalized cosine similarity between the true strongest (right) eigenvector of the channel and the reconstructed eigenvector at the NW-side AI output. 

· They are not defined multi-layer transmissions (i.e., rank > 1).
· They do not map well to the objective of maximizing downlink throughput. 
· For example, imagine a single-layer transmission over a channel with two distinct main clusters for which the corresponding precoding vectors are approximately orthogonal (i.e., the strongest and second strongest eigenvectors). If the pathloss of both clusters is approximately the same, then in SU-MIMO it does not matter which eigenvector is used. However, the cosine similarity of the reconstructed precoding vector with respect to the true strongest eigenvector will heavily (and unnecessarily) punish selecting the second strongest eigenvector as the precoding vector.  

As discussed in the evaluation methodology paper [3], the key performance indicators (KPIs) for this use case are maximizing spectral efficiency / downlink throughput. A good proxy for achieving this goal is to maximise downlink SNR and throughput (approximated by ). 
The following discusses several per-sample loss functions that better achieve this aim in different ways.  These per-sample loss functions can be applied in a wideband or sub-band manner. In the latter case, we will obtain a different loss for each sub-band. The resulting sub-band losses can be summed together to obtain a single loss for training the AE. 
For a single layer transmission, minimizing the per-sample loss function 

will train the AE to output a precoding vector that maximizes SNR at the UE. Note: here we assume the UE-AI channel input is the full MIMO channel (), the noise covariance matrix  is assumed to be known and fixed, and we assume the NW-AI outputs a precoding vector () that tries to maximize mutual information. We can rewrite this per-sample loss function as 

where  is the -th eigenvalue (squared singular value of  in the case when ), is a corresponding -th eigenvector normalized such that , and  is the number of CSI-RS ports.
A clear benefit of the above definition over the existing literature (cosine similarity with respect to a true strongest eigenvector) is that it takes received SNR at the UE into consideration, by measuring how well the precoding vector aligns with the strongest dimensions of the channel.  
A second benefit of the above definition is that it naturally extends to multi-layer transmissions as follows. Here we assume that the NW-AI outputs an -tuple of orthogonal precoding vectors (. The following per-sample loss function will maximize the received power at the UE:


As before, we can also express the per-sample loss function in terms of eigenvectors and eigenvalues:

Here it is important that the  precoding vectors output by the NW-AI are orthogonal. This orthogonality can be achieved by stacking the  output precoding vectors into a matrix  and computing one of the following before applying the loss function: The SVD of , orthogonalizing  via Gram-Schmidt, and/or computing a QR-factorization of . The orthogonality requirement can also be built into the overall loss function, as a type of regularization.
The above per-sample loss function can be further enhanced to better proxy SU-MIMO throughput as follows: 


As a more direct generalization of the cosine similarity applicable to multi-layer transmissions (i.e., rank >1) it is possible to consider (Jordan’s) principal angles between the subspace spanned by the  output precoding vectors and the subspace spanned by  eigenvectors corresponding to the largest eigenvalues. A merit of this generalization is that if these subspaces overlap, then the sum of the total received power over all layers is the same for both set of  precoding vectors. 
However, an eigenvector  corresponding to a large eigenvalue  is more important than an eigenvector with a small eigenvalue and thus it is useful to consider (Jordan’s) principal angles between the subspace spanned by the  output precoding vectors and the subspace spanned by each of the  eigenvectors corresponding to the largest eigenvalues individually, with each term (corresponding to the absolute value of the cosine of the angle) weighted by some function, , of the corresponding eigenvalue , as follows:


For example, we can choose  to be the square-root, which gives the following per-sample loss function.


In another example, if we choose  to be identically 1, and consider a layer-1 transmission, i.e., , then the above per-sample loss function reduces to the cosine similarity between the output precoding vector and an eigenvector corresponding to the largest eigenvalue, i.e.,


Alternatively, taking  to be the square-root we can also use the term-wise squared sum as a per-sample loss function


The latter we can rewrite as


which truncates the smaller singular values.

[bookmark: _Toc102035394][bookmark: _Toc102053799][bookmark: _Toc102053812][bookmark: _Toc102122408][bookmark: _Toc102160463]Strive to align on per-sample loss functions for 3GPP evaluations.
[bookmark: _Toc102035395][bookmark: _Toc102053800][bookmark: _Toc102053813][bookmark: _Toc102122409][bookmark: _Toc102160464]Study per-sample loss functions that support multi-layer transmissions and well approximate SNR and/or throughput. 

2.2.3 Feature extraction and complex-valued NNs
The setup of the dual-sided AI CSI use case is illustrated in Figure 1. The UE-AI input  is understood to be based on the UE’s CSI-RS based estimate H of downlink MIMO channel. It is commonplace in AI/ML to use domain knowledge to identify and extract important features of the data, before feeding those features into a AI/ML function (e.g., a NN). To help anchor discussions and potential specification impacts, it would be useful to align on a common model-based feature extraction framework mapping the full MIMO channel to important features . 

A common model-based feature extraction framework is useful for the following reasons:
· Domain knowledge can be used to extract key features of the MIMO channel, which can simplify the compression problem for UE/NW AIs (i.e., smaller easier to train NNs). 
· Smaller NNs will be less onerous on NW and UE hardware, positively impacting cost.
· Feature extraction can help make  agnostic to specific CSI-RS configurations (such as the number of CSI-RS ports), hence a single AE may support any gNB implementation when it comes to number of such ports.
· UEs will have proprietary solutions for Rx antenna configurations, RF chains, antenna switches, matched filters, CSI-RS based channel estimation, etc. A common feature extraction framework may allow the UE and NW AIs to be agnostic to such implementation specific details. 
· A common feature extraction framework may improve the generalizability of trained models, enabling improved performance in a wide range of scenarios (e.g., UE and gNB antenna configurations, propagation environments).

[bookmark: _Toc102053809][bookmark: _Toc102122404]A natural candidate for pre-processing is the Rel-16 Type II CSI framework based on spatial- and frequency-domain DFT codebooks.
Figure 2 illustrates the NMSE performance of three different dual-sided AI solutions. In the first two solutions use a direct antenna-frequency approach, where the full MIMO channel is compressed end-to-end using trained convolutional AEs. In the third approach, a model-based feature extraction step is applied to the full MIMO channel before using a convolutional AE for compression. The AE for the third approach is smaller than the others and requires less overhead. 
No important information in the channel is lost by carefully applying model-based feature extraction. The gNB has a array with dual-polarized, the UEs have a single antenna elements, and the AEs were trained on a combination of UMa and UMi data (with different scenario settings). The model-based feature extraction is based on the Rel-16 Type II framework: It uses  spatial beams DFT basis vectors) per polarization, and  delay taps (DFT basis vectors).
[image: ]
[bookmark: _Ref101930915]Figure 2: CDF plot for the NMSE performance of convolutional AEs for compressing a full MIMO channel. 
Note that the pre-processing throws away information about the full channel, and to be able to reconstruct the channel at the gNB, there may be needed to report information from UE to the gNB on how the pre-processing was performed. This side information will consume additional overhead, but is expected to be small compared to the AU encoder output. Nevertheless, it must be included in the overhead when presenting results for such scheme.

[bookmark: _Toc102035396][bookmark: _Toc102053801][bookmark: _Toc102053814][bookmark: _Toc102122410][bookmark: _Toc102160465]Study model-based MIMO channel feature extraction methods (pre-processing) and associated specification impacts (e.g., additional required signaling over the air interface).

The pathloss to different UEs will vary by several orders of magnitude, and, therefore, some data normalization needs to be applied to the channel features  (either before inputting the CSI feature to the UE-side AI, or as a dedicated normalization layer inside the UE-AI). For example, we may normalize the MIMO channels  to have unit Frobenius norm. How the normalization was made in the UE may also be communication to the gNB side. 

[bookmark: _Toc102035397][bookmark: _Toc102053802][bookmark: _Toc102053815][bookmark: _Toc102122411][bookmark: _Toc102160466]Study MIMO channel normalization methods, and associated specification impacts (e.g., additional required signaling over the air interface).

Since the MIMO channel  and domain-specific feature extraction methods (e.g., DFT based transformation) are complex-valued, we expect that complex-valued NNs will play an important role in this study.

[bookmark: _Toc102035398][bookmark: _Toc102053803][bookmark: _Toc102053816][bookmark: _Toc102122412][bookmark: _Toc102160467]Study AIs based on real- and complex-valued NNs (i.e., do not restrict only to real-valued NNs).

2.2.4 Inference standard impacts, quantization and information carried by UCI
The latent variable  (the output of the UE-side AI) needs to be communicated over the air interface and, therefore, needs to be quantized to a finite number of bits. The quantization can be applied after training the model or before (so called quantization aware training).

Quantization-aware training can be achieved in multiple ways, e.g., by specifically designed differentiable activation functions that mimic scalar quantization for the air interface (e.g., scaled sigmoid activation functions), or by applying heuristics to pass gradients through non-differentiable scalar/vector quantizers.  

For scalar quantization, the number of bits used to quantise NN node activation values that need to be signalled over the air interface needs to be studied. A larger number of bits per activation (e.g., 8 bits) will result in a more faithful representation of the activation value but reduce the number of activations that can be signalled (since we are limited by the total number of bits signalled over UCI). Similarly, using fewer bits per activation (e.g., 1 bit) will lead to more coarse approximation, but enable model complicated AIs in the NW and UE (more activation values can be signalled).    

As discussed above, we expect complex-valued NNs to play an important role in this study, and, therefore, the latent variable  can be complex-valued. The quantization solution needs to work for complex numbers.

[bookmark: _Toc102035399][bookmark: _Toc102053804][bookmark: _Toc102053817][bookmark: _Toc102122413][bookmark: _Toc102160468]Study quantization methods for UCI, including quantization aware training and complex-valued activation functions.
The quantized latent variable  will need to be signaled from the UE to the gNB as part of a larger CSI report. This CSI report will likely need to contain information about the UE’s preferred transmission rank, channel quality information, and interference information. In addition, dual-sided AI based CSI solutions may need additional information about UE-side feature extractions and compression quality indicators (quantifying the quality of the UE’s channel compression). 
[bookmark: _Toc102122416][bookmark: _Toc102035401][bookmark: _Toc102053806][bookmark: _Toc102053819][bookmark: _Toc102122417][bookmark: _Toc102160469][bookmark: _Toc102122418][bookmark: _Toc102122420]Study CSI enhanced reporting options for dual-sided AI based solutions. For example, the CSI report may include a preferred rank indication, channel quality information, interference information, feature extraction information, and compression quality indicators. 
2.2.5 Dual-sided AI with independent training based on a structured latent space
The setup of the dual-sided AI CSI use case is illustrated in Figure 2. A significant problem with this setup is that the latent variable  is only understood by the configured UE-AI and NW-AI (see dual-sided AI discussions in [2]). 

From 3GPP’s multi-vendor perspective, it would be better to fully specify all air interface variables (including the latent variable ). This, of course, is a difficult task -- a key benefit of dual-sided AI solutions is to let algorithms optimize the meaning of the latent variable . 

We propose to study a midway solution that imposes sufficient structure on the latent space to, potentially, enable UE/chipset and NW vendors to train their AI models independently of one another using proprietary techniques and data.    

The UE-AI part of the dual-sided AI in Figure 2 can be viewed as a compressive NN, see Figure 5.
[image: Diagram
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Figure 3: Illustration of a compressive CSI AI

The NN takes the UE’s estimate  of the MIMO channel and outputs a latent representation . 
We want to train the compressive NN to preserve distances between MIMO channels:
· If channels  and  are close to one another, then their compressed latent representations   and  should also be close. 
· If two channels  and  are far away from one another, then their compressed latent representations   and  should also be far apart.

The above constraints can be used to preserve important features when compressing MIMO channels. 
To enable compressive NNs from different vendors to be compatible, we can define a set of reference MIMO channels  and a corresponding set of latent variables . 
If different vendors train compressive NNs to preserve the distance between MIMO channels and align closely with the reference MIMO channels, then their trained NNs should be compatible – the extent of which can be studied. 
[bookmark: _Toc102035403][bookmark: _Toc102053808][bookmark: _Toc102053821][bookmark: _Toc102122421][bookmark: _Toc102160470]Study dual-sided AI-based solutions for CSI reporting that enable UE-AI / NW-AI interoperability between different vendors, without the need for joint training.

The following gives a brief outline of how the above aim may be achieved. 
On the input channel space (e.g., the space of eigenvectors), we can define a metric  to quantify the distance between two channels  and . This metric could be, for example, the generalized cosine similarity between  and  (see Section 2.2.2). Similarly, we can define a metric on the output latent space. Such a metric could be, for example, the Hamming distance between UCI payloads. 
The compressive NN can be trained to preserve distances between input channels using a triplet loss setup. Three input channels are selected from the training dataset as follows:
·  is the anchor channel,
·  is the positive channel (close to  w.r.t. to ), and 
·  is the negative channel (far away from  w.r.t. ).

The exact method for selecting ,  and  would be proprietary. The three channel ,  and  are input to the compressive NN, resulting in three latent space representations ,  and . 
The network can be trained to minimize a triplet loss function, for example, 

where  is a constant (e.g., hyperparameter). 
UE/chipset and NW vendors have the following two training problems to solve using proprietary means: 
1. Minimize the triplet loss function .
2. Minimize the reconstruction error for the reference set  and their corresponding compressed latent representations .


Conclusion
In the previous sections we made the following proposals 
Proposal  1	Synthetic datasets based on TR 38.901 are used for the CSI use case in this SI.
Proposal  2	Define Per-sample loss function as the loss function defined for individual samples (e.g., individual MIMO channels).
Proposal  3	Define Loss function as the loss function observed over (mini-) batches, including any regularization terms. The loss function can be viewed as the overall objective function that e try to minimize during training.
Proposal  4	Strive to align on per-sample loss functions for 3GPP evaluations.
Proposal  5	Study per-sample loss functions that support multi-layer transmissions and well approximate SNR and/or throughput.
Proposal  6	Study model-based MIMO channel feature extraction methods (pre-processing) and associated specification impacts (e.g., additional required signaling over the air interface).
Proposal  7	Study MIMO channel normalization methods, and associated specification impacts (e.g., additional required signaling over the air interface).
Proposal  8	Study AIs based on real- and complex-valued NNs (i.e., do not restrict only to real-valued NNs).
Proposal  9	Study quantization methods for UCI, including quantization aware training and complex-valued activation functions.
Proposal  10	Study CSI enhanced reporting options for dual-sided AI based solutions. For example, the CSI report may include a preferred rank indication, channel quality information, interference information, feature extraction information, and compression quality indicators.
Proposal  11	Study dual-sided AI-based solutions for CSI reporting that enable UE-AI / NW-AI interoperability between different vendors, without the need for joint training.
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