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1 Introduction
In 3GPP TSG RAN Meeting #94e meeting, a new SID was approved to evaluate how to deploy AI/ML technologies in air interface [1]. The initial set of use cases includes CSI feedback enhancement, beam management, and positioning accuracy enhancements.
	Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels
Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 
For the use cases under consideration:
1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.


In this contribution, we provide our views on how to evaluate the performance of AI/ML for positioning.
2 Targets and requirements of AI/ML based positioning
Current NR positioning system supports the following positioning methods, which can be generally divided into four categories,
· Timing based positioning methods: A-GNSS, OTDOA, WLAN, Bluetooth, TBS, DL-TDOA, Multi-RTT, UL-TDOA
· Angle based positioning methods: DL-AOD, UL-AOA, WLAN, Bluetooth
· Fingerprint (or signal strength) based positioning methods: E-CID, WLAN, Bluetooth, NR-ECID
· Sensor based positioning methods: Sensors (e.g., accelerometer, gyroscope, magnetometer, etc)
	Method
	UE-based
	UE-assisted, LMF-based
	NG-RAN node assisted
	SUPL 

	A-GNSS
	Yes
	Yes
	No
	Yes

	OTDOA 
	No
	Yes
	No
	Yes

	E-CID 
	No
	Yes
	Yes
	Yes for E-UTRA

	Sensor
	Yes
	Yes
	No
	No

	WLAN
	Yes
	Yes
	No
	Yes 

	Bluetooth
	No
	Yes
	No
	No

	TBS 
	Yes
	Yes
	No
	Yes (MBS)

	DL-TDOA
	Yes
	Yes
	No
	Yes

	DL-AoD
	Yes
	Yes
	No
	Yes

	Multi-RTT
	No
	Yes
	Yes
	Yes

	NR E-CID 
	No
	Yes
	Yes
	Yes (DL NR E-CID)

	UL-TDOA
	No
	No
	Yes
	Yes

	UL-AoA
	No
	No
	Yes
	Yes


Table 2-1: Supported versions of UE positioning methods [2]
Timing and angle based positioning methods heavily rely on adequate LOS (Line-Of-Sight) links. In Rel-17, we have agreed that UE/TRP can provide a LOS/NLOS indicator to LMF [3][4], which gives a confidence level of LOS between a TRP and a UE. This may help LMF to identify which links should be used when conducting positioning. However, in heavy NLOS conditions, there is even no enough LOS links for positioning. TR 38.857 shows the performance degradation for this case. Meanwhile, fingerprint and sensor based positioning methods cannot meet stringent positioning requirements in some vertical applications (e.g., Industrial IOT) due to imprecise measurements simply from signal strength. 
Traditional positioning methods are model-driven, which should have an explicit function to map timing/angle measurements into UE positions (e.g., by Chan’s algorithm [6]). Those methods are limited to LOS conditions. While,  machine learning is a solution that doesn’t require an explicit function between input and output. Instead, AI/ML models rely on gradient descent to minimize a loss function. Then, mapping functions between measurements and UE positions is implicitly learned by AI/ML models. Similar to other use cases in deep learning, there have been a lot of academic researches on how to use AI/ML model to get UE locations [6-11], which achieves good performance compared to traditional methods.
In general, we think AI/ML model based NR positioning targeted on heavy NLOS conditions is a promising solution to further increase positioning accuracy.
Observation 1: Based on current specifications and academic researches, we can observe that,
· Traditional positioning methods based on timing/angle measurements strongly depend on LOS conditions of a scenario. When there is no enough LOS links, the conventional model-driven solutions are not able to get accurate positioning;
· AI/ML model is a data-driven technology that can work well in both LOS and NLOS conditions.
Proposal 1: AI/ML for NR positioning should target on improving positioning accuracy under heavy NLOS conditions.
During Rel-17 study phase for NR positioning, there were a lot of discussions on how to evaluate positioning performances. As shown in section 5 of TR 38.857, target requirements in terms of horizontal accuracy, vertical accuracy, end-to-end latency, and physical layer latency are agreed for commercial use case and IIOT use case respectively. Besides, network efficiency and device efficiency are also under consideration. For AI/ML based NR positioning,  due to large complexity of AI/ML models, we may not only care about the positioning performance and inference latency, but also computational complexity, power consumption, memory storage, and hardware requirements.
Proposal 2: Regarding target requirements for AI/ML based positioning, we should have comprehensive considerations on performance, inference latency, computational complexity, overhead, power consumption, memory storage, and hardware requirements.
As for evaluation metric on positioning accuracy, the metrics agreed in Rel-16 and Rel-17 can be reused for AI/ML based positioning. That is, percentiles of positioning errors at 50%, 67%, 80%, and 90% should be analyzed. In order to identify the upper bound of positioning accuracy, the percentile can be extended to 95%.
Proposal 3: For evaluating performance of AI/ML based NR positioning technologies, the percentiles of positioning errors at 50%, 67%, 80%, 90%, and 95% should be analyzed.
3 Scenario-specific assumptions
As stated in our companion contribution [12], we prefer to focus on datasets generated from channel models defined in TR 38.901 [13] for initial evaluation. Meanwhile, if our target is to investigate positioning performance on heavy NLOS conditions, the InF (Indoor factory) scenario discussed in Rel-17 can be a starting point for further evaluation. 
Firstly, common scenario parameters defined in Table 6-1 (also copied in Appendix A) of TR 38.857 can be reused for evaluation in FR1 and FR2 respectively, where the table mainly focuses on carrier frequency, bandwidth, subcarrier spacing, UE antenna configuration, network synchronization error, and UE/gNB Rx/Tx timing errors.
Proposal 4：Reuse common scenario parameters defined in Table 6-1 of TR 38.857, which defines carrier frequency, bandwidth, sub-carrier spacing, UE antenna configuration, network synchronization error, and UE/gNB Rx/Tx timing errors.
Secondly, parameters common to InF scenarios defined in Table 6.1-1(also copied in Appendix B) of TR 38.857 can also be reused as much as possible. The following modifications are proposed to facilitate evaluations of AI/ML based positioning.
· InF-DH channel should be a baseline for evaluation
· InF-SH channel can already works well due to large LOS probability.
· UE horizontal drop is not required to be in a convex hull 
· The reason for UE to be dropped inside a convex hull is to increase UE availability for traditional positioning methods.
· No need to have dynamic UE/gNB antenna heights
· Dynamic UE/gNB antenna heights are to evaluate the performance of 3-dimentional UE locations. We prefer to focus on 2-dimentional UE locations during the initial evaluation for AI/ML based positioning.
· Baseline clutter parameters {density [image: ], height , size [image: ]} for InF-DH channel are {60%, 6m, 2m}
· As shown in Table 4-1, there is no adequate LOS links for UE to conduct traditional timing/angle based positioning. We can evaluate and identify whether AI/ML based solution can work well under these settings.
	
	UE with zero LOS links(TRPs)
	UE with one LOS link(TRPs)
	UE with two LOS links(TRPs)
	UE with more than two LOS links(TRPs)

	Percentage
	<1%
	15%
	85%
	0%


Table 4-1 the number of LOS links for InF-DH channel with clutter parameters {60%, 6m, 2m}
Proposal 5: Reuse parameters common to InF scenarios defined in Table 6.1-1 of TR 38.857 with the following modifications (also highlighted in Appendix B),
· InF-DH channel should be the baseline for evaluation;
· UE horizontal drop is not required to be in a convex hull;
· No need to have dynamic UE/gNB antenna heights;
· Baseline clutter parameters {density [image: ], height , size [image: ]} for InF-DH channel are {60%, 6m, 2m}.
4 AI/ML model-specific assumptions
Generally, AI/ML model requires datasets for training, validation, and test. In order to evaluate AI/ML based positioning, we should firstly discuss how to construct the datasets. As everyone knows, channel models defined in TR 38.901 are statistical models, which need additional work to model spatial consistency compared to deterministic channel models.  The spatial consistency is fundamentally important for AI/ML based positioning. In our view, the wireless channel should be unique for a UE in a specific location. Meanwhile, UEs within correlation distance should have relevance in channel. With those two assumptions, AI/ML models could be able to learn mapping function from channel measurements to UE locations. Thankfully, TR 39.901 provides following procedures to construct the spatial consistency:
· Section 7.5 of TR 38.901 defines the correlation distance for DS, ASD, ASA, SF, ZSA, ZSD;
· Clause 7.6.3.1 of TR 38.901 introduces procedures to model the spatial consistency for cluster-specific and ray-specific random variables, LOS/NLOS state, and Indoor/Outdoor state;
· Especially for InF scenarios, section 7.9.6 of TR 38.901 gives values to model the spatial consistency of absolute time of arrival.
According to clause 7.6.3.1 of TR 38.901, the spatial consistency for cluster-specific and ray-specific random variables keeps unchanged only in a simulation drop. That is, there is no spatial consistency across multiple simulation drops. Therefore, we propose that the generated datasets for training, validation, and test should be from the same simulation drop  during the initial evaluation. As for mixed datasets from multiple simulation drops, it may be used to validate the generalization of AI/ML models that can be discussed in later stage.
Proposal 6: In order to generate datasets for AI/ML based positioning, the following procedures for spatial consistency should be modeled,
· Section 7.5 of TR 38.901 defines the correlation distance for DS, ASD, ASA, SF, ZSA, ZSD;
· Clause 7.6.3.1 of TR 38.901 introduces procedures to model the spatial consistency for cluster-specific and ray-specific random variables, LOS/NLOS state, and Indoor/Outdoor state;
· Section 7.9.6 of TR 38.901 gives values to model the spatial consistency of absolute time of arrival.
 Proposal 7: Generated datasets for training, validation, and test should be from the same simulation drop since there is no spatial consistency across multiple simulation drops.
AI/ML is a data-driven technology. With increased number of data for training, AI/ML models can constantly improve their performances. However, if evaluation results are based on different number of datasets, there is no way to compare evaluation results among companies. Thus, we think we should at least align some mechanisms to generate datasets. One way is to set small grids for generating training data as shown in Figure 4-1. To be detailed, only one training data is expected to be collected within one small grid. Considering the simulation complexity and performance, we think grid size 0.5 m can be a baseline assumption (which yields totally 28800 training samples within a hall ). In addition, grid size 1m and 0.25m can be optional for different companies to verify their own algorithms. As for datasets for validation and test, UEs can be  randomly distributed over a hall.
[image: ]
Figure 4-1 Generation of training data 
[bookmark: OLE_LINK1]Proposal 8: Set small grids for generating training data, i.e., only one training data is expected to be collected within one small grid.
· Baseline assumption for grid size is 0.5m;
· [bookmark: _GoBack]Optional assumptions for grid size are 1m and 0.25m.
Proposal 9: The datasets for validation and test can be generated from UEs randomly distributed over the hall.
Here we conduct a preliminary evaluation based on the settings stated above. We use truncated channel in time domain (i.e., path RSRP(s) and timing(s) ) from total 18 TRPs as input of the AI/ML model. The output of the AI/ML model is 2-dimentional UE position. 
[image: ]
Figure 4-2 An example of AI/ML model for positioning
The CDFs of positioning errors are depicted in Figure 4-3. We can observe that,
· AI/ML base positioning can get excellent positioning accuracy even in heavy NLOS conditions;
· With different grid sizes for generating training data, @90% of UEs can achieve positioning errors lower than the corresponding grid size for generating training data.
[image: ]
Figure 4-3 CDFs of positioning errors for AI/ML based positioning
Observation 2: According to  preliminary evaluation results,
· AI/ML base positioning can get excellent positioning accuracy even in heavy NLOS conditions.
· With different grid sizes for generating training data, @90% of UEs can achieve positioning errors lower than the corresponding grid size for generating training data.
5  Conclusions
In this contribution, we provide our views on how to evaluate the performance of AI/ML for positioning. We have the following observations and proposals,
Observation 1: Based on current specifications and academic researches, we can observe that,
· Traditional positioning methods based on timing/angle measurements strongly depend on LOS conditions of a scenario. When there is no enough LOS links, the conventional model-driven solutions are not able to get accurate positioning;
· AI/ML model is a data-driven technology that can work well in both LOS and NLOS conditions.
Proposal 1: AI/ML for NR positioning should target on improving positioning accuracy under heavy NLOS conditions.
Proposal 2: Regarding target requirements for AI/ML based positioning, we should have comprehensive considerations on performance, inference latency, computational complexity, overhead, power consumption, memory storage, and hardware requirements.
Proposal 3: For evaluating performance of AI/ML based NR positioning technologies, the percentiles of positioning errors at 50%, 67%, 80%, 90% and 95% should be analyzed.
Proposal 4：Reuse common scenario parameters defined in Table 6-1 of TR 38.857, which defines the carrier frequency, bandwidth, sub-carrier spacing, UE antenna configuration, network synchronization error, and UE/gNB Rx/Tx timing errors.
Proposal 5: Reuse parameters common to InF scenarios defined in Table 6.1-1 of TR 38.857 with the following modifications (also highlighted in Appendix B),
· InF-DH channel should be the baseline for evaluation;
· UE horizontal drop is not required to be in a convex hull;
· No need to have dynamic UE/gNB antenna heights;
· Baseline clutter parameters {density [image: ], height , size [image: ]} for InF-DH channel are {60%, 6m, 2m}.
Proposal 6: In order to generate datasets for AI/ML based positioning, the following procedures for spatial consistency should be modeled,
· Section 7.5 of TR 38.901 defines the correlation distance for DS, ASD, ASA, SF, ZSA, ZSD;
· Clause 7.6.3.1 of TR 38.901 introduces procedures to model the spatial consistency for cluster-specific and ray-specific random variables, LOS/NLOS state, and Indoor/Outdoor state;
· Section 7.9.6 of TR 38.901 gives values to model the spatial consistency of absolute time of arrival.
Proposal 7: Generated datasets for training, validation, and test should be from the same simulation drop since there is no spatial consistency across multiple simulation drops.
Proposal 8: Set small grids for generating training data, i.e., only one training data is expected to be collected within one small grid.
· Baseline assumption for grid size is 0.5m;
· Optional assumptions for grid size are 1m and 0.25m.
Proposal 9: The datasets for validation and test can be generated from UEs randomly distributed over the hall.
Observation 2: According to  preliminary evaluation results,
· AI/ML base positioning can get excellent positioning accuracy even in heavy NLOS conditions;
· With different grid sizes for generating training data, @90% of UEs can achieve positioning errors lower than the corresponding grid size for generating training data.
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Appendix A
Table 6-1: Common scenario parameters applicable for all scenarios
	
	FR1 Specific Values
	FR2 Specific Values 

	Carrier frequency, GHz 
	3.5GHz
	28GHz

	Bandwidth, MHz
	100MHz
	400MHz

	Subcarrier spacing, kHz
	30kHz for 100MHz 
	120kHz

	gNB model parameters 
	
	

	gNB noise figure, dB
	5dB
	7dB

	UE model parameters 
	
	

	UE noise figure, dB
	9dB – Note 1
	13dB – Note 1

	UE max. TX power, dBm
	23dBm – Note 1
	23dBm – Note 1
EIRP should not exceed 43 dBm.

	UE antenna configuration
	Panel model 1 – Note 1
Mg = 1, Ng = 1, P = 2, dH = 0.5λ,
(M, N, P, Mg, Ng) = (1, 2, 2, 1, 1)
	Baseline:
Multi-panel Configuration 1 and Panel Configuration a – Note 1
-	Multi-panel Configuration 1: (Mg, Ng) = (1, 2); Θmg,ng=90°; Ω0,1=Ω0,0+180°; (dg,H, dg,V)=(0,0)
-	Panel Configuration a:
-	Each antenna array has shape dH=dV=0.5λ
-	Config a: (M, N, P) = (2, 4, 2),
-	the polarization angles are 0° and 90°
-	The antenna elements of the same polarization of the same panel is virtualized into one TXRU

Optional:
4-panels UE:
- The antenna elements of the same polarization of the same panel is virtualized into one TXRU

	UE antenna radiation pattern 
	Omni, 0dBi
	Antenna model according to Table 6.1.1-2 in TR 38.855

	PHY/link level abstraction
	Explicit simulation of all links, individual parameters estimation is applied. Companies to provide description of applied algorithms for estimation of signal location parameters.

	Network synchronization
	The network synchronization error, per UE dropping, is defined as a truncated Gaussian distribution of (T1 ns) rms values between an eNB and a timing reference source which is assumed to have perfect timing, subject to a largest timing difference of T2 ns, where T2 = 2*T1
–	That is, the range of timing errors is [-T2, T2]
–	T1:	0ns (perfectly synchronized), 50ns (Optional)

	UE/gNB RX and TX timing error
	(Optional) The UE/gNB RX and TX timing error, in FR1/FR2, can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of T1 ns, with truncation of the distribution to the [-T2, T2] range, and with T2=2*T1:
-	T1: X ns for gNB and Y ns for UE
-	X and Y are up to sources  
-	Note: RX and TX timing errors are generated per panel independently

Apply the timing errors as follows: 
-	For each UE drop, 
-	For each panel (in case of multiple panels)
-	Draw a random sample for the Tx error according to [-2*Y,2*Y] and another random sample for the Rx error according to the same [-2*Y,2*Y] distribution. 
-	For each gNB 
-	For each panel (in case of multiple panels)
-	Draw a random sample for the Tx error according to [-2*X,2*X] and another random sample for the Rx error according to the same [-2*X,2*X] distribution. 
-	Any additional Time varying aspects of the timing errors, if simulated, can be left up to each company to report.
-	For UE evaluation assumptions in FR2, it is assumed that the UE can receive or transmit at most from one panel at a time with a panel activation delay of 0ms.

	Note 1: 	According to TR 38.802
Note 2: 	According to TR 38.901







Appendix B
Table 6.1-1: Parameters common to InF scenarios
	 
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-SH, InF-DH
	InF-SH, InF-DH

	Layout 
	Hall size
	InF-SH: 
(baseline) 300x150 m 
(optional) 120x60 m
InF-DH: 
(baseline) 120x60 m
(optional) 300x150 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
-	for the big hall (L=300m x W=150m): D=50m

[image: ]

	
	Room height
	10m

	Total gNB TX power, dBm
	24dBm
	24dBm
EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1
One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be 
- (baseline) at least the convex hull of the horizontal BS deployment.
- (optional) It can also be the whole hall area if the CDF values for positioning accuracy is obtained from whole hall area. 

	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2=[image: ][image: ] for scenario 2 (InF-DH)  

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,[image: ]), 8}.

	Clutter parameters: {density [image: ], height , size [image: ]}
	Low clutter density: 
{20%, 2m, 10m}
High clutter density:
- Baseline): {40%, 2m, 2m} for fixed UE antenna height and gNB antenna height
- (Optional): {40%, 3m, 5m}
- (Optional Baseline): {60%, 6m, 2m}

	Note 1:	According to Table A.2.1-7 in TR 38.802
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