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[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In the RAN#94 plenary meeting, the objectives of the Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface were approved for Release 18 [1]. One of the main purposes is to study the 3GPP framework for AI/ML for NR air-interface enhancements. The following target use cases should be evaluated regarding performance, complexity and potential specification impact. 
	· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 


In our companion contribution [2], we have proposed the following sub use cases for AI/ML based positioning accuracy enhancements:
· Sub use case 1: AI/ML-based LOS/NLOS identification, which targets to enhance positioning accuracy under moderate LOS conditions
· Sub use case 2: AI/ML-based positioning in heavy NLOS scenarios 
In the remainder of this contribution, the above sub use cases are discussed and evaluation results are presented. For the sub use case 2, we focus on the AI/ML-based fingerprint positioning method. The evaluation methodology, KPIs, and also initial evaluation results are presented for both sub use cases.
Evaluation methodology
AI/ML-based LOS/NLOS Identification
By tagging the measurements with LOS/NLOS indicators, the LMF would gain additional information that can be exploited to improve the positioning measurement accuracy, for example when utilizing the link with a higher LOS probability. NLOS identification has benefits from various aspects as described in [3]:
	NLOS detection is an important method to improve the positioning accuracy. By tagging the measurements with LOS/NLOS indicators, the LMF would have the knowledge of LOS/NLOS status of the measurements. By utilizing the LOS/NLOS measurements correctly, for example utilizing the LOS measurements with higher probability, the positioning accuracy can be improved. In addition, NLOS identification has various benefits from the following aspects:
· Useful for the reference device
· Useful for NLOS dominate scenario
· Useful for Computation complexity
· Useful for calculating the location uncertainty


LOS/NLOS identification is a typical binary classification problem in the AI/ML field and AI/ML models are well suited for extracting different channel characteristics of LOS or NLOS paths. The Rel-17 mechanisms that have been established for LOS/NLOS identification can therefore be improved significantly with help of AI/ML-based techniques, and especially as shown in this contribution, for a small number of antennas.
Figure 1 shows the TDoA positioning process based on AI/ML-based LOS/NLOS identification. The AI-based LOS/NLOS identification is utilized to remove the NLOS paths from the calculation. It uses the channel’s Power Delay Profile (PDP) as input and calculates a LOS probability. As shown in Table 1, a neural network with a convolutional architecture is capable to learn this relationship well and can achieve a much better prediction accuracy than traditional methods, especially when the number of antennas is small.   
	[image: ]


[bookmark: _Ref100767696]Figure 1 Positioning process based on LOS/NLOS identification.
The whole flow is illustrated in Figure 2 below. After the channel estimation procedure based on the reference signal, the frequency-domain channel is transformed with an IFFT into the time domain. The amplitude of the time-domain signal is then squared to obtain the PDPs which are then normalized on all antennas on the receiver side. The normalized PDPs are used as the input to the AI model in which the LOS probability is inferred. The NLOS components are removed and the LOS components are utilized to calculate the coordinate. The TDoA algorithm requires in the end information from at least three gNBs.
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[bookmark: _Ref100767705]Figure 2 Preprocessing and positioning based on AI-based LOS/NLOS identification in TDoA Pos.
The model generation and the KPIs for LOS/NLOS identification are summarized in Table 1. The model complexity is evaluated in terms of FLoating point OPerations (FLOPs) and model size.

[bookmark: _Ref100767668]Table 1 Model generation and KPIs for LOS/NLOS Identification.
	LOS/NLOS Identification

	Model
	CNN

	Input
	Normalized PDP

	Label
	Ideal LOS/NLOS identification

	Output
	LOS/NLOS probability

	KPI
	1) Positioning Accuracy
2) Model complexity


Based on the description given above, the following proposal is made:
Proposal 1 [bookmark: _Ref102171087]: For AI/ML-based LOS/NLOS identification evaluation, adopt the normalized Power Delay Profile as the training inputs.
AI/ML-based fingerprint positioning in heavy NLOS scenarios
Traditional positioning algorithms such as TDoA and AoA are based on LOS channels, and are no longer applicable in environments where NLOS paths dominate. In these scenarios, the number of gNBs that have LOS channels with the UE is relatively small. As a result, the precision of the traditional positioning algorithm cannot meet the requirements of high-precision positioning applications. At the same time, existing research shows that, based on a large amount of channel data, a mapping relationship between channel features and location coordinates can be mined by using an AI/ML method. This method is called AI/ML-based fingerprint positioning. AI/ML-based fingerprint positioning can achieve reliable positioning accuracy under heavy NLOS conditions, where positioning accuracy of non-AI/ML positioning methods > 10m@90%. 
Generic fingerprint positioning mechanism
Figure 3 shows the AI/ML-based fingerprint positioning process. It exploits that each UE position has a unique channel characteristic (i.e. the fingerprint). The AI/ML model can learn this relationship for a given environment and then use it to determine the UE coordinate based on the measured channel characteristics. 
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[bookmark: _Ref100767732]Figure 3 AI/ML-based fingerprint positioning process
It should be noted that spatial consistency is required for channel modelling in the AI/ML-based fingerprint positioning. This is an important aspect and therefore described in more detail in the separate section 2.2.2 below.
The employed model for AI/ML-based fingerprint positioning uses a neural network structure with a Residual-Network architecture. The input to the AI/ML model are the Channel Impulse Responses of the links between the UE and the 18 BSs that are used in the simulation, and the output is the estimated UE coordinate.
The model generation and KPIs for AI-based positioning are summarized in Table 2. For AI/ML-based fingerprint positioning, the performance of positioning accuracy is considered as one KPI to be evaluated. In addition, the model complexity is evaluated in terms of FLoating point OPerations (FLOPs) and model size.
[bookmark: _Ref100767651]Table 2 Model generation and KPIs for AI/ML-based fingerprint Positioning.
	AI/ML-based fingerprint Positioning

	Model
	ResNet

	Input
	Channel Impulse Response (CIR)

	Label
	UE coordinate (Ground-truth)

	Output
	UE coordinate

	KPI
	1) Positioning Accuracy
2) Model complexity


[bookmark: _Ref101865042]Based on the description given above, the following proposal is made:
Proposal 2 [bookmark: _Ref102171111]: For AI/ML-based fingerprint positioning evaluation, adopt the Channel Impulse Response as the training inputs. 
In addition to defining the training inputs for the AI/ML models used in the two sub use cases, it is also important to evaluate the performance and the associated cost. We are therefore making the following proposal:
Proposal 3 [bookmark: _Ref102171131]: For AI/ML-based positioning evaluation, adopt the positioning accuracy and model complexity as the KPIs. 
[bookmark: _Ref102163924]Spatial Consistency model for heavy NLOS scenarios
With spatial consistency, at the same drop of the simulation, two UEs with close by locations will have similar channel characteristics. This is important for dataset generation used in AI/ML-based fingerprint positioning under heavy NLOS conditions.
Different methods are available to model the spatial consistency:
Method 1: 2D-Filtering according to 3GPP TR 38.901
In 3GPP, a spatial correlation of the small scale fading is introduced in the channel generation. Its procedure is given in TR 38.901 [4], where cluster-specific random variables are simulated spatially consistently for drop-based simulations. 
To generate spatially consistent random variables at specific coordinates (x, y) using the 2D-Filtering method, the following steps should be taken:
· Step 1: Divide the simulation area into correlated grids of custom length and width (usually set to be smaller than correlation distances);
· Step 2: Generate i.i.d. random variables for each vertex of one correlated grid;
· Step 3: Deliver the generated random variables to the exponential decaying filter in the two dimensional horizontal plane, which is used for spatially consistent LSP (Large Scale Parameters) generation in current 3GPP 3D channel model (see Appendix B). Then the random variables at each grid are correlated following the exponential function with respect to correlation distances in the two dimensional horizontal plane.
· Step 4: Determine which grid the UE coordinate (x, y) belongs to, and generate the UE’s channel with the random variables of this grid.
Method 2: Interpolation
The interpolation method is achieved via correlated random variables, and has also been widely discussed in 3GPP for modeling spatial consistency [5]. To generate spatially consistent random variables at specific locations (x, y) using the interpolation method, the following steps should be taken:
· Step 1: Divide the simulation area into a number of square grids, whose widths are determined by the correlation distance (dcorr);
· Step 2: Generate uniformly distributed random variables for each vertex of one correlated grid;
· Step 3: Determine which grid the UE coordinate (x, y) belongs to, and generate random variables for the UE from the random variables of the four vertices of that grid using the interpolation procedure described in Appendix C.
In our view it is critical that spatial consistency is modeled for the evaluation of AI/ML-based fingerprint positioning. Both of the above models are workable. The interpolation method is a little less complex and might be easier to align across companies if this is desired. On the other hand, even if more complex, the first method is already adopted in a 3GPP TR. We are open to include both methods for modeling the spatial consistency, but at least one of them should be selected.
Proposal 4 [bookmark: _Ref101888680][bookmark: _Ref102043684]: For heavy NLOS scenarios, spatial consistent channel modeling shall be employed for the evaluation of AI/ML-based fingerprint positioning. Adopt one or both of the following concepts:
· 2D-Filtering method.
· Interpolation method.
Evaluation Results
In the evaluation, we consider the typical IIoT scenario operating on 3.5GHz spectrum, and the InF-DH channel model is assumed. For other generic and specific simulation assumptions for the evaluated sub use cases, please refer to the Appendix A. And in typical commercial indoor IIoT scenarios, 4Rx antennas are generally used. Therefore, the following proposal is made:
Proposal 5 [bookmark: _Ref102171247]: For AI/ML-based positioning evaluation, adopt IIoT scenario as baseline.
· A small number of gNB antennas should be evaluated.
[bookmark: _Ref102060291]Performance evaluations of AI/ML-based LOS/NLOS Identification
Baseline for comparison
The baseline algorithm for performance comparison with AI/ML-based LOS/NLOS Identification should be aligned for comparison. We select the traditional algorithm as proposed in [6]:
	LOS/NLOS identification algorithm
Check the energy consistency of the first path across different antenna elements within a polarization.
Check the phase consistency of the first path across different antenna elements in both vertical and horizontal direction within a polarization.
If both energy and phase consistency meet the energy/phase consistency, it would be identified as a LOS path, otherwise, it would be identified as a NLOS path.
Different confidence level of LOS/NLOS label may additionally be reported depending on the degree of the consistency.


Proposal 6 [bookmark: _Ref102171295]: For AI/ML-based LOS/NLOS Identification evaluation, the baseline solution should be aligned with an existing traditional algorithm.
Dataset
According to the defined scenario assumptions in Appendix A, the dataset is generated from simulation platform for the AI/ML-based LOS/NLOS Identification sub use case, it is composed as summarized in Table 3. Please note that only a relatively small training dataset size is needed for the AI/ML model applied for this sub use case.
[bookmark: _Ref101468957]Table 3 Dataset composition for LOS/NLOS Identification.
	Dataset
	LOS/NLOS Identification

	Training dataset size
	1000*18*1*4

	Inference dataset size
	500*18*1*4

	Dimension description of above dataset
	represent number of UEs, number of BSs, number of UE antenna, number of BS antennas, respectively


Proposal 7 [bookmark: _Ref102171306]: For AI/ML-based positioning evaluation, training inputs generated from simulation platform should be a baseline.
Simulation Results
As shown in Table 4, for the given antenna configuration, the baseline method has a positioning accuracy error of more than 6m @90%, whereas the error of the AI/ML-based LOS/NLOS identification solution is less than 0.5m. The reason is that for a small number of antennas, the traditional method is not capable anymore to correctly identify with a high probability if a path is LOS or NLOS. 
[bookmark: _Ref100767510]Table 4 Performance of LOS/NLOS Identification.
	LOS
	Positioning Accuracy @90%

	Baseline LOS
	6.447m

	AI/ML LOS
	0.353m


Observation 1 [bookmark: _Ref101791089]: From the evaluation results, it is observed that for a small number of gNB antennas, AI/ML-based LOS/NLOS identification could significantly improve the positioning accuracy.
The complexity of the AI/ML model applied is shown in Table 5. It can be seen that AI/ML model only needs very few parameters and does not require many FLOPs compared to the models used in other use cases, e.g., fingerprint positioning as given in Table 8. However, still the performance improvement compared to the baseline is significant.
[bookmark: _Ref100767573]Table 5 Model complexity of LOS/NLOS Identification.
	Model complexity

	Model size (in terms of Number of Parameters)
	582

	FLoating point OPerations (FLOPs)
	192 K


Observation 2 [bookmark: _Ref102171329]: For AI/ML-based LOS/NLOS Identification evaluation, the applied model only needs very few parameters and does not require many FLOPs.
The evaluations made in this section show that AI/ML based LOS/NLOS identification can significantly improve the positioning accuracy in scenarios with a moderate number of LOS paths. In our companion paper [2] we have therefore made the proposal that RAN1 should study this sub use case.  
Performance evaluations of AI/ML-based fingerprint positioning
Baseline for comparison
As baseline for performance evaluations of AI/ML-based fingerprint positioning in NLOS dominated scenarios we select the positioning accuracy achieved by the traditional algorithm without LOS detection as proposed in [3]. In the baseline method, the NLOS paths are not removed. In NLOS dominated scenarios, there are hardly three LOS paths at the same time for calculation of the position. This will result in that stronger NLOS paths are mistaken as the LOS path, which leads to poor accuracy. 
Dataset
According to the defined scenario assumptions in Appendix A, the dataset is generated from simulation platform for the AI/ML-based fingerprint Positioning sub use case. Its composition is summarized in Table 6. 
[bookmark: _Ref101469032]Table 6 Dataset composition for AI/ML-based fingerprint positioning
	Dataset
	AI/ML-based fingerprint Positioning

	Spatial Consistency
	Generated using the Interpolation method described in Section 2.2.2

	Training dataset size
	90000*18*1*4

	Inference dataset size
	10000*18*1*4

	Dimension description of above dataset
	represent number of UEs, number of BSs, number of UE antenna, number of BS antennas, respectively


Simulation Results
As shown in Table 7, under heavy NLOS conditions, the positioning accuracy error @90% of the baseline UL-TDoA solution in Rel-17 is more than 15 m, while the positioning accuracy error of the AI/ML-based fingerprint positioning solution is less than 0.5 m. 
[bookmark: _Ref100767594]Table 7 Performance of AI/ML-based fingerprint positioning under heavy NLOS conditions.
	Positioning
	Positioning Accuracy @90%

	UL-TDoA in Rel-17 without LOS detection
	18.435 m

	AI/ML-based fingerprint
	0.44 m


Observation 3 [bookmark: _Ref101791354][bookmark: _Ref102043780][bookmark: _Ref102060776]: From the evaluation results, it is observed that AI/ML-based fingerprint positioning provides reliable positioning accuracy under heavy NLOS conditions.
The complexity of the AI/ML model applied is shown in Table 8.
[bookmark: _Ref100767612]Table 8 Model complexity of AI/ML-based fingerprint positioning.
	Model complexity

	Model size (in terms of Number of Parameters)
	34 K

	FLoating point OPerations (FLOPs)
	10 M


Based on the observation from the simulation results above, the following proposal is made:
Proposal 8 [bookmark: _Ref101791378]: AI/ML-based fingerprint positioning should be studied for positioning accuracy enhancements under heavy NLOS conditions in Rel-18.
To further evaluate the robustness of AI/ML-based fingerprint positioning，the achievable positioning accuracy is evaluated for different scenarios：
a) Training and inference datasets are constructed from samples generated under different channel conditions (e.g. Test scenario 1 and 2 in Table 9)；
b) Both training and inference datasets consist of samples from different scenarios (e.g. Test scenario 3 in Table 9).
The dataset composition for these robustness studies for AI/ML-based fingerprint positioning is summarized in Table 9 and the performance results are shown in Table 10.
[bookmark: _Ref101887060]Table 9 Dataset composition for generalization studies for AI/ML-based fingerprint positioning.
	Test scenario
	Training dataset 
parameters and size
	Inference dataset 
parameters and size
	Comments

	Test scenario 1
	Clutter paras:{40%, 2m, 2m}
90000*18*1*4
	Clutter paras:{60%, 6m, 2m}
10000*18*1*4
	The model is trained in an scenario with sufficient LOS components but applied in an NLOS dominated scenario 

	Test scenario 2
	Clutter paras:{60%, 6m, 2m}
90000*18*1*4
	Clutter paras:{40%, 2m, 2m}
10000*18*1*4
	The model is trained in an NLOS dominated scenario but applied a scenario with sufficient LOS components

	Test scenario 3
	Clutter paras:{60%, 6m, 2m}
45000*18*1*4
and
Clutter paras:{40%, 2m, 2m}
45000*18*1*4
	Clutter paras:{60%, 6m, 2m}
5000*18*1*4
and
Clutter paras:{40%, 2m, 2m}
5000*18*1*4
	The model is both trained and tested under different scenarios

	Dimension description of above datasets
	represent number of UEs, number of BSs, number of UE antenna, number of BS antennas,  respectively


[bookmark: _Ref101887069][bookmark: _Ref101897837]Table 10 Performance of generalization studies for AI/ML-based fingerprint positioning.
	[bookmark: _Ref101888779]Test scenario
	Positioning Accuracy @90%

	Test scenario 1
	9m

	Test scenario 2
	11m

	Test scenario 3
	1.1m


[bookmark: _Ref101897960]We can see from the results that if the model is trained in one scenario but applied in another different scenario, AI/ML-based fingerprint positioning model provides poor generalization performance. And if the model training is performed in two different scenarios and model inference is performed in the same two different scenarios, the AI/ML-based fingerprint performance is relatively robust. But it achieves less accuracy than if only one scenario is considered in both model training and inference.
[bookmark: _Ref101888738]Based on the observation from simulation results above, the following proposal is made:
Proposal 9 [bookmark: _Ref102171370][bookmark: _Ref101897973]: For the evaluation of AI/ML-based fingerprint positioning, study the generalization of the AI/ML model for varying environments.
Conclusion
The contribution mainly discusses evaluations on each potential enhancement for positioning accuracy improvements, based on which the following observations and proposals are made.
Proposal 1: For AI/ML-based LOS/NLOS identification evaluation, adopt the normalized Power Delay Profile as the training inputs.
Proposal 2: For AI/ML-based fingerprint positioning evaluation, adopt the Channel Impulse Response as the training inputs. 
Proposal 3: For AI/ML-based positioning evaluation, adopt the positioning accuracy and model complexity as the KPIs. 
Proposal 4: For heavy NLOS scenarios, spatial consistent channel modeling shall be employed for the evaluation of AI/ML-based fingerprint positioning. Adopt one or both of the following concepts:
· 2D-Filtering method.
· Interpolation method.
Proposal 5: For AI/ML-based positioning evaluation, adopt IIoT scenario as baseline.
· A small number of gNB antennas should be evaluated.
Proposal 6: For AI/ML-based LOS/NLOS Identification evaluation, the baseline solution should be aligned with an existing traditional algorithm.
Proposal 7: For AI/ML-based positioning evaluation, training inputs generated from simulation platform should be a baseline.
Observation 1: From the evaluation results, it is observed that for a small number of gNB antennas, AI/ML-based LOS/NLOS identification could significantly improve the positioning accuracy.
Observation 2: For AI/ML-based LOS/NLOS Identification evaluation, the applied model only needs very few parameters and does not require many FLOPs.
Observation 3: From the evaluation results, it is observed that AI/ML-based fingerprint positioning provides reliable positioning accuracy under heavy NLOS conditions.
Proposal 8: AI/ML-based fingerprint positioning should be studied for positioning accuracy enhancements under heavy NLOS conditions in Rel-18.
Proposal 9: For the evaluation of AI/ML-based fingerprint positioning, study the generalization of the AI/ML model for varying environments.
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Appendix
Appendix A [bookmark: _Ref102162467][bookmark: _Ref101883423]
Scenario assumptions for LOS/NLOS Identification and AI/ML-based fingerprint positioning:
	Parameters
	AI/ML-based LOS/NLOS Identification
	AI/ML-based fingerprint positioning

	Carrier frequency
	3.5GHz

	Bandwidth
	100MHz

	Subcarrier spacing
	30kHz

	Channel model
	InF-DH [7]

	Layout
	Hall size
	120x60 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	L=120m x W=60m, D=20m
[image: ]

	
	Room height
	10m

	Number of floors
	1

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (1, 4, 1, 1, 1), dH= 0.5λ

	gNB antenna radiation pattern
	Single sector

	gNB antenna height
	8m

	gNB noise figure, dB
	5

	UE antenna configuration
	Panel model 1 (M, N, P, Mg, Ng) = (1, 1, 1, 1, 1)

	UE antenna radiation pattern
	Omni, 0dBi

	UE antenna height
	1.5m

	UE noise figure, dB
	9

	UE max. TX power, dBm
	23

	Synchronization
	Ideal

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	{40%, 2m, 2m}
with NLOS percentage at 55%
	{60%, 6m, 2m}
with NLOS percentage >99%



Appendix B [bookmark: _Ref102167947]
As defined in Clause 7.4.4 of TR 38.901:
	[bookmark: _Toc493104201][bookmark: _Toc20320104][bookmark: _Toc20340123][bookmark: _Toc29237059]7.4.4	Autocorrelation of shadow fading
The long-term (log-normal) fading in the logarithmic scale around the mean path loss PL (dB) is characterized by a Gaussian distribution with zero mean and standard deviation. Due to the slow fading process versus distance x (x is in the horizontal plane), adjacent fading values are correlated. Its normalized autocorrelation function R(x) can be described with sufficient accuracy by the exponential function ITU-R Rec. P.1816

		(7.4-5)
with the correlation length dcor being dependent on the environment, see the correlation parameters for shadowing and other large scale parameters in Table 7.5-6 (Channel model parameters). In a spatial consistency procedure in Clause 7.6.3, the cluster specific random variables are also correlated following the exponential function with respect to correlation distances in the two dimensional horizontal plane.


[bookmark: _Ref101883620]
Appendix C 
Generate these random values by interpolating i.i.d. random variables deployed in the simulation area. This method is also discussed in 3GPP in [5]:
	For example in Figure 4, one spatially consistent uniform distributed random variable can be generated by dropping four complex normal distributed i.i.d. random variables on four vertex of one grid with dcorr (e.g. dcorr=50) de-correlation distance and interpolated using these i.i.d. random variables. The de-correlation distance could be a scenario specific parameter. In order to save simulation complexity, a grid may be generated only if there are actual users dropped within the grid area.


[bookmark: _Ref445044122]Figure 4 Example of generating one spatially consistent random variable.
Assuming Y0,0, Y0,1, Y1,0, Y1,1 are the i.i.d. complex normal random numbers generated on the four vertex of one grid, the complex normal number Yx,y at position (x, y) can be interpolated as:
      
One uniform random number can be generated using the phase of the interpolated complex normal random number as:

where  operation ensures there is no abrupt change of the interpolated random number  between 0 and 1 along a trajectory. This will be desired when the uniform random number is used to generate cluster specific random delay in step 5 because otherwise the delay of one cluster could change between infinity to zero along a trajectory.
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