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1. Introduction
In this contribution, we discuss remaining issues on TB processing over multi-slot PUSCH for coverage enhancements.

2. Discussion on TB processing over multi-slot PUSCH
· Rate matching of TB processing over multi-slot PUSCH
· Reason for change
The rate-matching unit was discussed, and the following agreements of how to determine the index of starting bits for TBoMS were made at RAN1#106bis-e and RAN#94-e meeting [1][2].

	Agreement:
For the bit selection for each transmitted slot for TBoMS, one of the following is to be down selected in RAN1 #107-e for determining the index of the starting coded bit in the circular buffer:
· Option B: the index of the starting coded bit in the circular buffer is the index continuous from the position of the last bit selected in the previous allocated slot.
· Option C: the index of the starting coded bit in the circular buffer is the index continuous from the position of the last bit selected in the previous allocated slot, regardless of whether UCI multiplexing occurred in the previous allocated slot or not.
FFS: whether the index of the starting coded bit for each transmitted slot is expressed as a multiple integer of the lifting size Zc
Note: Dropping/cancellation rules are not considered for the starting bit position determination in both Option B and Option C.
Agreement:
· For the determination of the index of the starting coded bit in a transmitted slot for TBoMS:
· adopt option C at RAN#94e
· task RAN1 to work on the corresponding CR(s) for RAN#95e



Also, the following aspects were discussed at RAN1#107bis-e and have not been clarified yet for Rel-17 TBoMS [3].
	Aspect 1 (definition of G and E for TBoMS):  
· Alt 1. G is redefined as the total number of coded bits available for transmission of the transport block in a slot
· Alt 2. A new variable H is introduced, only for TBoMS, defined as the total number of coded bits available for transmission of the transport block in a slot

Aspect 2 (value of G and E for TBoMS): 
· Interpretation 1. The starting index of circular buffer is determined assuming no UCI multiplexing, but the number of bits being selected in bit selection (value E) is determined considering UCI multiplexing.
· Interpretation 2. The starting index of circular buffer is determined assuming no UCI multiplexing, and the number of bits being selected in bit selection (value E) is determined assuming no UCI multiplexing.

Aspect 3 (Handling of the filler bits in TBoMS):  
· Direction 1. Filler bits are considered to pre-determine the index of the starting bit for each allocated slot for TBoMS, to ensure no overlap exists between bit sequences transmitted over consecutive slots.
· Direction 2. Filler bits are not considered to pre-determine the index of the starting bit for each allocated slot for TBoMS and overlap between bit sequences transmitted over consecutive slots is allowed.



Aspect 1 is whether to introduce a new variable or redefine the existing variable G. Since redefining the existing variable G does not affect the slot-based procedure in Rel-15/16 in terms of the implementation, we prefer Alt.1 for simplicity.
Proposal 1: Redefine G as the total number of coded bits available for transmission of the transport block in a slot, because it is backward compatible in terms of the implementation.
 
Fig. 1 illustrates the transmitted bits in the circular buffer for each interpretation in Aspect 2.  As shown in Fig.1, the transmitted bits in the circular buffer could be different, when the modulation order is more than 1 and UCI is multiplexed. In this case, Interpretation 2 has multiple gaps corresponding to UCI due to interleaving before puncturing, while Interpretation 1 has only one gap in the last part. Hence, Interpretation 1 is more likely to transmit all the systematic bits in the first slot than Interpretation 2, when UCI is multiplexed in the first slot. Given that UCI is often multiplexed in the first slot such as an aperiodic CSI report with UL-SCH, Interpretation 1 should be supported for coverage performance.
Proposal 2: The number of bits being selected in bit selection (value E) should be determined considering the coded bits available for UCI multiplexing.
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Figure 1. Transmitted bits in the circular buffer at each slot when UCI is multiplexed, assuming no filter bits and the modulation order is 2. 

As of Aspect 3, we prefer Direction 1. As shown in the Fig.2, the overlap between bit sequences transmitted over consecutive slots is observed in Direction 2, when the bit selection is performed around filter bits. This is against the agreed bit selection procedure in a sense that the circular buffer is not the index continuous from the position of the last bit selected in the previous slot. As Direction 2 requires reverting the previous agreement, Direction 1 should be supported. 
Proposal 3: Filler bits should be considered to pre-determine the index of the starting bit for each allocated slot for TBoMS, to ensure no overlap exists between bit sequences transmitted over consecutive slots.

[image: ]
Figure 2. Transmitted bits in the circular buffer at each slot when the bit selection is performed around the filter bits.

In Rel-15/16 PUSCH, the rate matching output sequence length E is calculated based on the total number of coded bits available for the transport block transmission. Since the total number of coded bits available for the transport block transmission is calculated based on the total amount of resources for UL-SCH and not allocated for multiplexed UCI, the current specification is aligned with Interpretation 1. On the other hand, the starting bit determination in the bit selection for TBoMS is necessary to be captured to follow Interpretation 1 and Direction 2.

· Summary of change
For TBoMS, the starting position of bit selection for the slots other than the first allocated slot is determined continuously from the last selected bit in the previous slot, assuming no UCI is multiplexed. 
· Consequences if not approved
The starting position of the bit selection for TBoMS is not defined.

Proposal 4: Adapt the following text proposal.
Text proposal 1: 
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The rate matching for LDPC code is defined per coded block and consists of bit selection and bit interleaving. The input bit sequence to rate matching is . The output bit sequence after rate matching is denoted as . 
5.4.2.1	Bit selection
<Unchanged parts omitted>









Denote by  the redundancy version number for this transmission ( = 0, 1, 2 or 3), the rate matching output bit sequence , , is generated as follows, where  is given by Table 5.4.2.1-2 according to the value of  and LDPC base graph if numberOfSlotsTBoMS is not present in the resource allocation table or the value of numberOfSlotsTBoMS in the row indicated by the Time domain resource assignment field in DCI is 1, otherwise for the first allocated slot is given by Table 5.4.2.1-2 according to the value of  and LDPC base graph, and for n-th slot, numberOfSlotsTBoMS, is the bit next to the last selected bit by the bit selection in the previous slot assuming the UCI is not multiplexed.:
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<Unchanged parts omitted>
-------------------------- End of Text Proposal for TS 38.212 --------------------------



3. Conclusion
In this contribution, we discussed TB processing over multi-slot PUSCH for coverage enhancements. Based on the discussion we made the following proposals.

Proposal 1: Redefine G as the total number of coded bits available for transmission of the transport block in a slot, because it is backward compatible in terms of the implementation.

Proposal 2: The number of bits being selected in bit selection (value E) should be determined considering the coded bits available for UCI multiplexing.

Proposal 3: Filler bits should be considered to pre-determine the index of the starting bit for each allocated slot for TBoMS, to ensure no overlap exists between bit sequences transmitted over consecutive slots.

Proposal 4: Adapt the following text proposal.
Text proposal 1: 
	-------------------------- Start of Text Proposal for TS 38.212 --------------------------
5.4.2	Rate matching for LDPC code


The rate matching for LDPC code is defined per coded block and consists of bit selection and bit interleaving. The input bit sequence to rate matching is . The output bit sequence after rate matching is denoted as . 
5.4.2.1	Bit selection
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Denote by  the redundancy version number for this transmission ( = 0, 1, 2 or 3), the rate matching output bit sequence , , is generated as follows, where  is given by Table 5.4.2.1-2 according to the value of  and LDPC base graph if numberOfSlotsTBoMS is not present in the resource allocation table or the value of numberOfSlotsTBoMS in the row indicated by the Time domain resource assignment field in DCI is 1, otherwise for the first allocated slot is given by Table 5.4.2.1-2 according to the value of  and LDPC base graph and for n-th slot, numberOfSlotsTBoMS, is the bit next to the last selected bit by the bit selection in the previous slot assuming the UCI is not multiplexed.: 
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<Unchanged parts omitted>
-------------------------- End of Text Proposal for TS 38.212 --------------------------
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