3GPP TSG RAN WG1 #108-e			R1-2201488
e-Meeting, February 21st – March 3rd, 2022

Source:	NTT DOCOMO, INC.
Title:	Remaining issues on TB processing over multi-slot PUSCH
[bookmark: Source]Agenda Item:	8.8.1.2
[bookmark: DocumentFor]Document for: 	Discussion
1. Introduction
In this contribution, we discuss remaining issues on TB processing over multi-slot PUSCH for coverage enhancements.

2. Discussion on TB processing over multi-slot PUSCH
· Rate matching of TB processing over multi-slot PUSCH
· Reason for change
The rate-matching unit was discussed, and the following agreements of how to determine the index of starting bits for TBoMS were made at RAN1#106bis-e and RAN#94-e meeting [1][2].

	Agreement:
For the bit selection for each transmitted slot for TBoMS, one of the following is to be down selected in RAN1 #107-e for determining the index of the starting coded bit in the circular buffer:
· Option B: the index of the starting coded bit in the circular buffer is the index continuous from the position of the last bit selected in the previous allocated slot.
· Option C: the index of the starting coded bit in the circular buffer is the index continuous from the position of the last bit selected in the previous allocated slot, regardless of whether UCI multiplexing occurred in the previous allocated slot or not.
FFS: whether the index of the starting coded bit for each transmitted slot is expressed as a multiple integer of the lifting size Zc
Note: Dropping/cancellation rules are not considered for the starting bit position determination in both Option B and Option C.
Agreement:
· For the determination of the index of the starting coded bit in a transmitted slot for TBoMS:
· adopt option C at RAN#94e
· task RAN1 to work on the corresponding CR(s) for RAN#95e

Also, the following aspects were discussed at RAN1#107bis-e and have not been clarified yet for Rel-17 TBoMS [3].
	Aspect 1 (definition of G and E for TBoMS):
· Alt 1. G is redefined as the total number of coded bits available for transmission of the transport block in a slot
· Alt 2. A new variable H is introduced, only for TBoMS, defined as the total number of coded bits available for transmission of the transport block in a slot

Aspect 2 (value of G and E for TBoMS):
· Interpretation 1. The starting index of circular buffer is determined assuming no UCI multiplexing, but the number of bits being selected in bit selection (value E) is determined considering UCI multiplexing.
· Interpretation 2. The starting index of circular buffer is determined assuming no UCI multiplexing, and the number of bits being selected in bit selection (value E) is determined assuming no UCI multiplexing.

Aspect 3 (Handling of the filler bits in TBoMS):
· Direction 1. Filler bits are considered to pre-determine the index of the starting bit for each allocated slot for TBoMS, to ensure no overlap exists between bit sequences transmitted over consecutive slots.
· Direction 2. Filler bits are not considered to pre-determine the index of the starting bit for each allocated slot for TBoMS and overlap between bit sequences transmitted over consecutive slots is allowed.

Aspect 1 is whether to introduce a new variable or redefine the existing variable G. Since redefining the existing variable G does not affect the slot-based procedure in Rel-15/16 in terms of the implementation, we prefer Alt.1 for simplicity.
Proposal 1: Redefine G as the total number of coded bits available for transmission of the transport block in a slot, because it is backward compatible in terms of the implementation.

Fig. 1 illustrates the transmitted bits in the circular buffer for each interpretation in Aspect 2. As shown in Fig.1, the transmitted bits in the circular buffer could be different, when the modulation order is more than 1 and UCI is multiplexed. In this case, Interpretation 2 has multiple gaps corresponding to UCI due to interleaving before puncturing, while Interpretation 1 has only one gap in the last part. Hence, Interpretation 1 is more likely to transmit all the systematic bits in the first slot than Interpretation 2, when UCI is multiplexed in the first slot. Given that UCI is often multiplexed in the first slot such as an aperiodic CSI report with UL-SCH, Interpretation 1 should be supported for coverage performance.
Proposal 2: The number of bits being selected in bit selection (value E) should be determined considering the coded bits available for UCI multiplexing.

[image: メーター が含まれている画像

自動的に生成された説明]
Figure 1. Transmitted bits in the circular buffer at each slot when UCI is multiplexed, assuming no filter bits and the modulation order is 2.

As of Aspect 3, we prefer Direction 1. As shown in the Fig.2, the overlap between bit sequences transmitted over consecutive slots is observed in Direction 2, when the bit selection is performed around filter bits. This is against the agreed bit selection procedure in a sense that the circular buffer is not the index continuous from the position of the last bit selected in the previous slot. As Direction 2 requires reverting the previous agreement, Direction 1 should be supported.
Proposal 3: Filler bits should be considered to pre-determine the index of the starting bit for each allocated slot for TBoMS, to ensure no overlap exists between bit sequences transmitted over consecutive slots.

[image:]
Figure 2. Transmitted bits in the circular buffer at each slot when the bit selection is performed around the filter bits.

In Rel-15/16 PUSCH, the rate matching output sequence length E is calculated based on the total number of coded bits available for the transport block transmission. Since the total number of coded bits available for the transport block transmission is calculated based on the total amount of resources for UL-SCH and not allocated for multiplexed UCI, the current specification is aligned with Interpretation 1. On the other hand, the starting bit determination in the bit selection for TBoMS is necessary to be captured to follow Interpretation 1 and Direction 2.

· Summary of change
For TBoMS, the starting position of bit selection for the slots other than the first allocated slot is determined continuously from the last selected bit in the previous slot, assuming no UCI is multiplexed.
· Consequences if not approved
The starting position of the bit selection for TBoMS is not defined.

Proposal 4: Adapt the following text proposal.
Text proposal 1:
	[bookmark: _Toc19798705][bookmark: _Toc26467176][bookmark: _Toc29326531][bookmark: _Toc29327681][bookmark: _Toc36045871][bookmark: _Toc36046131][bookmark: _Toc36046277][bookmark: _Toc45209194][bookmark: _Toc51852367][bookmark: _Toc58250733]-------------------------- Start of Text Proposal for TS 38.212 --------------------------
[bookmark: _Toc19798704][bookmark: _Toc26467175][bookmark: _Toc29326530][bookmark: _Toc29327680][bookmark: _Toc36045870][bookmark: _Toc36046130][bookmark: _Toc36046276][bookmark: _Toc45209193][bookmark: _Toc51852366][bookmark: _Toc58250732]5.4.2	Rate matching for LDPC code

The rate matching for LDPC code is defined per coded block and consists of bit selection and bit interleaving. The input bit sequence to rate matching is . The output bit sequence after rate matching is denoted as .
5.4.2.1	Bit selection
<Unchanged parts omitted>

Denote by the redundancy version number for this transmission (= 0, 1, 2 or 3), the rate matching output bit sequence , , is generated as follows, where is given by Table 5.4.2.1-2 according to the value of and LDPC base graph if numberOfSlotsTBoMS is not present in the resource allocation table or the value of numberOfSlotsTBoMS in the row indicated by the Time domain resource assignment field in DCI is 1, otherwise for the first allocated slot is given by Table 5.4.2.1-2 according to the value of and LDPC base graph, and for n-th slot, numberOfSlotsTBoMS, is the bit next to the last selected bit by the bit selection in the previous slot assuming the UCI is not multiplexed.:

;

;

while

if

;

;
end if

;
end while

Table 5.4.2.1-2: Starting position of different redundancy versions,
	

	

	
	LDPC base graph 1
	LDPC base graph 2

	0
	

	

	1
	

	

	2
	

	

	3
	

	

<Unchanged parts omitted>
-------------------------- End of Text Proposal for TS 38.212 --------------------------

3. Conclusion
In this contribution, we discussed TB processing over multi-slot PUSCH for coverage enhancements. Based on the discussion we made the following proposals.

Proposal 1: Redefine G as the total number of coded bits available for transmission of the transport block in a slot, because it is backward compatible in terms of the implementation.

Proposal 2: The number of bits being selected in bit selection (value E) should be determined considering the coded bits available for UCI multiplexing.

Proposal 3: Filler bits should be considered to pre-determine the index of the starting bit for each allocated slot for TBoMS, to ensure no overlap exists between bit sequences transmitted over consecutive slots.

Proposal 4: Adapt the following text proposal.
Text proposal 1:
	-------------------------- Start of Text Proposal for TS 38.212 --------------------------
5.4.2	Rate matching for LDPC code

The rate matching for LDPC code is defined per coded block and consists of bit selection and bit interleaving. The input bit sequence to rate matching is . The output bit sequence after rate matching is denoted as .
5.4.2.1	Bit selection
<Unchanged parts omitted>

Denote by the redundancy version number for this transmission (= 0, 1, 2 or 3), the rate matching output bit sequence , , is generated as follows, where is given by Table 5.4.2.1-2 according to the value of and LDPC base graph if numberOfSlotsTBoMS is not present in the resource allocation table or the value of numberOfSlotsTBoMS in the row indicated by the Time domain resource assignment field in DCI is 1, otherwise for the first allocated slot is given by Table 5.4.2.1-2 according to the value of and LDPC base graph and for n-th slot, numberOfSlotsTBoMS, is the bit next to the last selected bit by the bit selection in the previous slot assuming the UCI is not multiplexed.:

;

;

while

if

;

;
end if

;
end while

Table 5.4.2.1-2: Starting position of different redundancy versions,
	

	

	
	LDPC base graph 1
	LDPC base graph 2

	0
	

	

	1
	

	

	2
	

	

	3
	

	

<Unchanged parts omitted>
-------------------------- End of Text Proposal for TS 38.212 --------------------------

References
[1] 3GPP, RAN1#106bis-e, RAN1 Chairman’s Notes, Oct. 2021.
[2] 3GPP, RP-213684 “Status report for NR coverage enhancements”, Dec. 2021.
[3] 3GPP, RAN1#107bis-e, RAN1 Chairman’s Notes, Jan. 2022.
- 5/5 -
image3.wmf
1

2

1

0

,...,

,

,

-

N

d

d

d

d

oleObject1.bin

image4.wmf
1

2

1

0

,...,

,

,

-

E

f

f

f

f

oleObject2.bin

image5.wmf
id

rv

oleObject3.bin

image6.wmf
id

rv

oleObject4.bin

image7.wmf
k

e

oleObject5.bin

image8.wmf
1

,...,

2

,

1

,

0

-

=

E

k

oleObject6.bin

image9.wmf
0

k

oleObject7.bin

oleObject8.bin

oleObject9.bin

oleObject10.bin

oleObject11.bin

image10.wmf
0

=

k

oleObject12.bin

image11.wmf
0

=

j

oleObject13.bin

image12.wmf
E

k

<

oleObject14.bin

image13.wmf
(

)

>

¹<

+

NULL

d

cb

N

j

k

mod

0

oleObject15.bin

image14.wmf
(

)

cb

N

j

k

k

d

e

mod

0

+

=

oleObject16.bin

image15.wmf
1

+

=

k

k

oleObject17.bin

image16.wmf
1

+

=

j

j

oleObject18.bin

oleObject19.bin

oleObject20.bin

image17.wmf
0

k

oleObject21.bin

image18.wmf
0

oleObject22.bin

image19.wmf
0

oleObject23.bin

image20.wmf
c

c

cb

Z

Z

N

ú

û

ú

ê

ë

ê

66

17

oleObject24.bin

image21.wmf
c

c

cb

Z

Z

N

ú

û

ú

ê

ë

ê

50

13

oleObject25.bin

image22.wmf
c

c

cb

Z

Z

N

ú

û

ú

ê

ë

ê

66

33

oleObject26.bin

image23.wmf
c

c

cb

Z

Z

N

ú

û

ú

ê

ë

ê

50

25

oleObject27.bin

image24.wmf
c

c

cb

Z

Z

N

ú

û

ú

ê

ë

ê

66

56

oleObject28.bin

image25.wmf
c

c

cb

Z

Z

N

ú

û

ú

ê

ë

ê

50

43

oleObject29.bin

oleObject30.bin

oleObject31.bin

oleObject32.bin

oleObject33.bin

oleObject34.bin

oleObject35.bin

oleObject36.bin

oleObject37.bin

oleObject38.bin

oleObject39.bin

oleObject40.bin

oleObject41.bin

oleObject42.bin

oleObject43.bin

oleObject44.bin

oleObject45.bin

oleObject46.bin

oleObject47.bin

image1.png

oleObject48.bin

oleObject49.bin

oleObject50.bin

oleObject51.bin

oleObject52.bin

oleObject53.bin

oleObject54.bin

oleObject55.bin

oleObject56.bin

oleObject57.bin

image2.png

oleObject58.bin

