3GPP TSG RAN WG1 #107bis-e			R1-2200237
e-Meeting, January 17th – 25th, 2022

Source:	NTT DOCOMO, INC.
Title:	TB processing over multi-slot PUSCH
[bookmark: Source]Agenda Item:	8.8.1.2
[bookmark: DocumentFor]Document for: 	Discussion
1. Introduction
In this contribution, we discuss remaining issues on TB processing over multi-slot PUSCH for coverage enhancements.

2. Discussion on TB processing over multi-slot PUSCH
· Rate matching of TB processing over multi-slot PUSCH
· Reason for change
The rate-matching unit was discussed, and the following agreements of how to determine the index of starting bits for TBoMS were made at RAN1#106bis-e and RAN#94-e meeting [1][2].

	Agreement:
For the bit selection for each transmitted slot for TBoMS, one of the following is to be down selected in RAN1 #107-e for determining the index of the starting coded bit in the circular buffer:
· Option B: the index of the starting coded bit in the circular buffer is the index continuous from the position of the last bit selected in the previous allocated slot.
· Option C: the index of the starting coded bit in the circular buffer is the index continuous from the position of the last bit selected in the previous allocated slot, regardless of whether UCI multiplexing occurred in the previous allocated slot or not.
FFS: whether the index of the starting coded bit for each transmitted slot is expressed as a multiple integer of the lifting size Zc
Note: Dropping/cancellation rules are not considered for the starting bit position determination in both Option B and Option C.
Agreement:
· For the determination of the index of the starting coded bit in a transmitted slot for TBoMS:
· adopt option C at RAN#94e
· task RAN1 to work on the corresponding CR(s) for RAN#95e

After supporting either Option B or Option C had been discussed intensively, it was agreed to support Option C for TBoMS bit selection in RAN#94e. This agreement aims at the simplicity of bit selection starting position determination, where the starting positions on each slot are determined, regardless of whether UCI multiplexing occurred in the previous allocated slot or not. For example, the sequences selected from the circular buffer by bit selection on each slot is illustrated as Fig.1, when UCI is multiplexed in on the first slot. As shown in Fig.1, the gap between selected sequences in the circular buffer is caused when UCI is multiplexed in the middle of TBoMS PUSCH.
[image:]
Figure 1. Sequences selected from the circular buffer by bit selection on each slot, where UCI is multiplexed in on the first slot for TBoMS.

However, the current agreement states that the starting position of bit selection for TBoMS is continuous from the position of the last bit selected from the bit selection in the previous allocated slot, which implies the starting positions are dependent on the multiplexed UCI. In Rel-15/16 PUSCH, the rate matching output sequence length is calculated based on the total number of coded bits available for the transport block transmission. Since the total number of coded bits available for the transport block transmission is calculated based on the total amount of resources for UL-SCH and not allocated for multiplexed UCI, whether UCI is multiplexed in the previous slot affects the starting positions of bits selection in TBoMS.
To respect the motivation to support Option C, we believe that the starting positions of bit selection for TBoMS PUSCH should be calculated based on the starting positions in the previous slot and the total number of coded bits available for the transport block assuming no UCI is multiplexed on PUSCH. With this approach, whether UCI is multiplexed or not does not affect the starting position of bit selection.
· Summary of change
For TBoMS, the starting position of bit selection for the slots other than the first allocated slot is the sum of the starting position in the previous slot and the total number of coded bits available for the transport block and UCI transmission.
· Consequences if not approved
The starting position of bit selection depends on whether UCI is multiplexed in the previous slot.

Proposal 1: Adapt the following text proposal.
Text proposal 1:
	[bookmark: _Toc19798705][bookmark: _Toc26467176][bookmark: _Toc29326531][bookmark: _Toc29327681][bookmark: _Toc36045871][bookmark: _Toc36046131][bookmark: _Toc36046277][bookmark: _Toc45209194][bookmark: _Toc51852367][bookmark: _Toc58250733]-------------------------- Start of Text Proposal for TS 38.212 --------------------------
[bookmark: _Toc19798704][bookmark: _Toc26467175][bookmark: _Toc29326530][bookmark: _Toc29327680][bookmark: _Toc36045870][bookmark: _Toc36046130][bookmark: _Toc36046276][bookmark: _Toc45209193][bookmark: _Toc51852366][bookmark: _Toc58250732]5.4.2	Rate matching for LDPC code

The rate matching for LDPC code is defined per coded block and consists of bit selection and bit interleaving. The input bit sequence to rate matching is . The output bit sequence after rate matching is denoted as .
5.4.2.1	Bit selection
<Unchanged parts omitted>

Denote by the redundancy version number for this transmission (= 0, 1, 2 or 3), the rate matching output bit sequence , , is generated as follows, where is given by Table 5.4.2.1-2 according to the value of and LDPC base graph if numberOfSlotsTBoMS is not present in the resource allocation table or the value of numberOfSlotsTBoMS in the row indicated by the Time domain resource assignment field in DCI is 1, otherwise for the first allocated slot is given by Table 5.4.2.1-2 according to the value of and LDPC base graph, and for n-th slot, numberOfSlotsTBoMS, is the sum of the and for (n-1)-th slot, where is the total number of coded bits available for transmission of the transport block and UCI transmission.:

;

;

while

if

;

;
end if

;
end while

Table 5.4.2.1-2: Starting position of different redundancy versions,
	

	

	
	LDPC base graph 1
	LDPC base graph 2

	0
	

	

	1
	

	

	2
	

	

	3
	

	

<Unchanged parts omitted>
-------------------------- End of Text Proposal for TS 38.212 --------------------------

3. Conclusion
In this contribution, we discussed TB processing over multi-slot PUSCH for coverage enhancements. Based on the discussion we made the following text proposal.

Proposal 1: Adapt the following text proposal.
Text proposal 1:
	-------------------------- Start of Text Proposal for TS 38.212 --------------------------
5.4.2	Rate matching for LDPC code

The rate matching for LDPC code is defined per coded block and consists of bit selection and bit interleaving. The input bit sequence to rate matching is . The output bit sequence after rate matching is denoted as .
5.4.2.1	Bit selection
<Unchanged parts omitted>

Denote by the redundancy version number for this transmission (= 0, 1, 2 or 3), the rate matching output bit sequence , , is generated as follows, where is given by Table 5.4.2.1-2 according to the value of and LDPC base graph if numberOfSlotsTBoMS is not present in the resource allocation table or the value of numberOfSlotsTBoMS in the row indicated by the Time domain resource assignment field in DCI is 1, otherwise for the first allocated slot is given by Table 5.4.2.1-2 according to the value of and LDPC base graph and for n-th slot, numberOfSlotsTBoMS, is the sum of the and for (n-1)-th slot, where is the total number of coded bits available for transmission of the transport block and UCI transmission.:

;

;

while

if

;

;
end if

;
end while

Table 5.4.2.1-2: Starting position of different redundancy versions,
	

	

	
	LDPC base graph 1
	LDPC base graph 2

	0
	

	

	1
	

	

	2
	

	

	3
	

	

<Unchanged parts omitted>
-------------------------- End of Text Proposal for TS 38.212 --------------------------

References
[1] 3GPP, RAN1#106bis-e, RAN1 Chairman’s Notes, Oct. 2021.
[2] 3GPP, RP-213684 “Status report for NR coverage enhancements”, Dec. 2021.
- 5/5 -
oleObject1.bin

image3.wmf
1

2

1

0

,...,

,

,

-

E

f

f

f

f

oleObject2.bin

image4.wmf
id

rv

oleObject3.bin

image5.wmf
id

rv

oleObject4.bin

image6.wmf
k

e

oleObject5.bin

image7.wmf
1

,...,

2

,

1

,

0

-

=

E

k

oleObject6.bin

image8.wmf
0

k

oleObject7.bin

oleObject8.bin

oleObject9.bin

oleObject10.bin

oleObject11.bin

oleObject12.bin

image9.wmf
0

=

k

oleObject13.bin

image10.wmf
0

=

j

oleObject14.bin

image11.wmf
E

k

<

oleObject15.bin

image12.wmf
(

)

>

¹<

+

NULL

d

cb

N

j

k

mod

0

oleObject16.bin

image13.wmf
(

)

cb

N

j

k

k

d

e

mod

0

+

=

oleObject17.bin

image14.wmf
1

+

=

k

k

oleObject18.bin

image15.wmf
1

+

=

j

j

oleObject19.bin

oleObject20.bin

oleObject21.bin

image16.wmf
0

k

oleObject22.bin

image17.wmf
0

oleObject23.bin

image18.wmf
0

oleObject24.bin

image19.wmf
c

c

cb

Z

Z

N

ú

û

ú

ê

ë

ê

66

17

oleObject25.bin

image20.wmf
c

c

cb

Z

Z

N

ú

û

ú

ê

ë

ê

50

13

oleObject26.bin

image21.wmf
c

c

cb

Z

Z

N

ú

û

ú

ê

ë

ê

66

33

oleObject27.bin

image22.wmf
c

c

cb

Z

Z

N

ú

û

ú

ê

ë

ê

50

25

oleObject28.bin

image23.wmf
c

c

cb

Z

Z

N

ú

û

ú

ê

ë

ê

66

56

oleObject29.bin

image24.wmf
c

c

cb

Z

Z

N

ú

û

ú

ê

ë

ê

50

43

oleObject30.bin

oleObject31.bin

oleObject32.bin

oleObject33.bin

oleObject34.bin

oleObject35.bin

oleObject36.bin

oleObject37.bin

oleObject38.bin

oleObject39.bin

oleObject40.bin

oleObject41.bin

oleObject42.bin

oleObject43.bin

oleObject44.bin

oleObject45.bin

oleObject46.bin

oleObject47.bin

oleObject48.bin

image1.png

oleObject49.bin

oleObject50.bin

oleObject51.bin

oleObject52.bin

oleObject53.bin

oleObject54.bin

oleObject55.bin

oleObject56.bin

oleObject57.bin

oleObject58.bin

image2.wmf
1

2

1

0

,...,

,

,

-

N

d

d

d

d

oleObject59.bin

oleObject60.bin

