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Introduction
The RAN WG1 agreed to study the enhancements of information reporting from UE and gNB that facilitate multipath/NLOS mitigation and specify, if needed, the reporting formats during normative work for improving positioning accuracy. 
The following agreement was captured in the TR, [1]:
	Agreement:
Capture the following in the TR:
· Enhancements of information reporting from UE and gNB for supporting multipath/NLOS mitigation can be studied further, and if needed, specified during normative work for improving positioning accuracy. 
· Note: The details of the enhancements of reporting are left for further discussion in normative work, which may include, but are not limited to the following information associated with multi-path, e.g., LOS/NLOS identification, time of arrival of the multi-path components, signal power and/or relative power, power delay profile, angle, and/or polarization information, coherence bandwidth, etc.


In this contribution, we provide a signal processing algorithm for NLOS links detection and a reliability function that can be used for correct weighting of the measurements in the location equations.
The performance of the proposed algorithm is compared to the baseline random Sample Selection (RANSAC) and Receiver Autonomous Integrity Monitoring (RAIM) outlier rejection algorithms proposed in [2] and [3], respectively, as well as the recently published algorithms based on machine learning classifiers exploring Multi-Layer Perceptron (MLP) and Convolutional Neural Networks (CNNs) proposed in [4] and [5].
Finally, we propose the information reporting formats from UE and gNB to LMF in case of DL-TDOA, UL-TDOA, Multi-RTT, and UL-AOA positioning methods to facilitate an accurate multipath/NLOS mitigation. 
Our views on other NR positioning enhancements are provided in [8]-[12].

Enhancements of Information Reporting from UE and gNB for Multipath/NLOS Mitigation
[bookmark: _Hlk53490318]Impact of NLOS Multipath Propagation
The study for the I-IoT scenario has shown that the channel conditions might be quite severe and close to the Non-Line of Sight (NLOS) multi-path propagation, [1]. This is caused by the multiple signal reflections from the machinery metal parts and other objects present in the dense industrial environments and referred to as industrial “clutter”.
Therefore, the measurements performed by a UE and/or gNB may suffer from the NLOS propagation phenomenon, that causes an excess delay relative to the Line of Sight (LOS) transmission time and angular bias relative to the true LOS direction. This effect can introduce a significant error into the location equations and may prevent a centimeter level positioning accuracy.
The location procedure is performed by a UE and several Transmission Reception Points (TRPs), that have the known spatial coordinates. As a result, the distance between a UE and the lth TRP is estimated and then used in the positioning equations to compute the unknown UE coordinate. The system of location equations can be written in a vector form, using the following notations, [6]:
	
,
	[bookmark: _Ref67673725](1)


where f(x, y, z) is the NL × 1 vector which is a function of coordinates, w is the NL × 1 measurement error vector, and r is the NL × 1 observation vector. The parameter NL denotes the total number of transmit links (e.g. TRPs), being used in the measurements.
The vector f(x, y, z) is composed of the NL components and in case of the distance measurements, its lth element defines a UE distance to the lth TRP:
	
,
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where (x, y, z) are the coordinates of a UE and (xl, yl, zl) are the coordinates of the lth TRP.
In general case, f(x, y, z) can be any function of the coordinates, including the trigonometric function of the azimuth or zenith angles corresponding to the direction of a UE location. The location algorithm for a given vector f(x, y, z) and its observation vector r, should solve the set of NL non-linear equations to find the unknown (x, y, z) coordinates of a UE, using known coordinates (xl, yl, zl) of the lth TRP.
The system of equations (1) can be solved applying a decomposition of the function (2) into a Taylor series and limiting it by a linear term. Then a Gauss-Newton iterative method is utilized to find an exact solution of (1), and reduce the residual error caused by the linear approximation.
The Taylor series representation for f(x, y, z) at the point (x(m), y(m), z(m)) can be found in the form:
	
,
	(3)


where A(m) is the NL × 3 differential matrix and x and x(m) are the 3 × 1 coordinate vectors:
	
,
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Substituting (4) into (1), gives us a linear system of equations with respect to the (x – x(m)):
	
,
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where b(m) is defined as a difference of the observation vector r and the vector f estimated at the point (x(m), y(m), z(m)), i.e. b(m) = r – f(x(m), y(m), z(m)).
If the error vector w in (5) is modeled using Gaussian Probability Density Function (PDF) with zero mean and covariance matrix C, then a Minimum Variance Unbiased (MVU) estimator for the linear model (5) exists and (x – x(m)) estimate can be found as:
	
,
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where C-1 is the NL × NL inverse covariance matrix of vector w. Using (6), an iterative equation can be written to update vector x, based on its previous estimate:
	
,
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The derived algorithm (7), converges using a few iterations, starting from the initial guess x(0), and the vector x(m+1) found at the last iteration is used as an estimate of the UE coordinates (x, y, z).
If the components of error vector w are statistically independent, which is a practical assumption, then its inverse covariance matrix C-1 can be represented in the diagonal form with the elements inversely proportional to the error variance σl2 of the lth TRP link, i.e. Cl,l-1 = 1/σl2. The multiplication by the C-1 in (7) should reduce the impact of the non-reliable observations (with large variance) and conversely increases the impact of the reliable components (with low variance) on the solution.
There are two sources of error that can exist in the location equations in (1). The first source of error corresponds to the timing or angular errors, that may occur even for the LOS links and relates to the practical implementation. The second source is associated with NLOS propagation phenomenon, when a signal travels through the reflected path and experiences an excess delay and angular bias relative to the LOS transmission time and true LOS spatial direction. 
The estimations obtained using the Indoor Factory channel model with Dense High (InF-DH) baseline scenario have shown that an average value and variance for the distance error are substantially different in case of the LOS (μLOS = 0.05 m, σLOS2 = 0.23 m2) and NLOS links (μNLOS = 14.4 m, σNLOS2 = 15.0 m2), [7]. Figure 1 shows PDF of the distance error distribution for the LOS and NLOS links for InF-DH scenario.
[image: ]
[bookmark: _Ref70499641]Figure 1: Estimated distance error distribution for LOS and NLOS links in InF-DH evaluation scenario

As follows from Figure 1, the NLOS links can introduce a significant error into the location equations (1) and may prevent a sub-meter positioning accuracy. To reduce the impact of NLOS propagation, a proper weighting of the vector b(m) should be used in the iterative recursion (7).


NLOS links can introduce a significant error into the location equations, including an excess delay relative to the LOS transmission time and angular bias relative to the true LOS direction and may prevent a centimetre level positioning accuracy


To reduce the impact of multipath/NLOS propagation, a proper weighting of the positioning equations should be introduced

In Section 2.2, we propose an algorithm for NLOS links detection and a reliability function, that can be used for correct weighting of the measurements in the location equations.

[bookmark: _Ref70500055]NLOS Links Detection Algorithm
The proposed algorithm for NLOS links detection and classification uses an average NLOS channel power computed per subcarrier basis as a test statistic. It performs a binary hypothesis testing between the LOS and NLOS hypothesis to identify the link type. To optimize detection performance, the NLOS power is maximized with respect to the frequency domain filter and spatial filter responses combining the channel coefficients from different subcarriers and receive antennas, respectively.
We introduce an average NLOS channel power estimate per subcarrier basis in the form:
	
,
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where HNLOS,j is the NDFT × 1 NLOS channel vector estimate in the frequency domain for the jth RX antenna, Vj is the NDFT × 1 filter frequency response for the jth RX antenna, Wj is the scalar coefficient of the spatial filter (with the total number of coefficients equal to NRX), and CH,j is the NDFT × NDFT NLOS channel matrix. The parameters NDFT and NRX denote the total number of subcarriers (equal to DFT size) and the number of receive antennas being used, respectively.
The NLOS channel vector component HNLOS,j,k for the kth subcarrier and jth RX antenna is defined as:
	
,
	(9)


where Hj,k is the channel estimate for the kth subcarrier and jth RX antenna and <Hj> is the sample mean value of the channel estimate computed for the jth RX antenna.
As follows from the discrete Fourier property, the sample mean value of the channel realization in frequency domain is equal to the zeroth coefficient of the channel impulse response in time domain:
	
,
	(10)


where hj,n is the coefficient of the channel impulse response estimate for the nth sample and jth RX antenna. Note, that the hj,0 corresponds to the LOS component (if present) and it gives an idea why this term is compensated to estimate the NLOS channel power.
To optimize a detector performance and improve the deflection between the hypotheses, we perform the NLOS channel power maximization. It is equivalent to maximization of J(V0, V1, …, VNL-1, W), which is a square function of it:
	
.
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The maximization of J(V0, V1, …, VNL-1, W) is performed with respect to the vectors (V0, V1, …, VNL-1, W), subject to constraint that all vectors have a unit power. The maximization of J(V0, V1, …, VNL-1, W) is preferred, since it can be solved using the standard optimization methods.
To solve (11), we use a Lagrange dual function approach, by augmenting J(V0, V1, …, VNL-1, W) with the NRX + 1 constraint functions weighted by the Lagrange scalar multipliers (λ0, λ1, …, λNRX-1, λW):
	
.
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Taking derivatives of (12) with respect to each variable and forcing them to zero, results in the following system of equations:
	
,
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where B is the NRX × 1 vector, introduced for simplicity of notation and its lth element is defined as:
	
.
	(14)


Solving the first two equations in (13) with respect to W and λW, we obtain:
	
.
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Substituting found solutions (15) into (11) gives us:
	
.
	(16)


It follows, that optimization over W results in the decoupling of the spatial receive links and makes further optimization over the Vj vectors independent. Therefore, substituting (15) into (13), gives us an equation for each RX antenna in the form:
	
.
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Solving (17), we obtain:
	
.
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Substituting found solution (18) into (8), gives us an estimate of the maximum NLOS channel power per subcarrier:
	
,
	(19)


where σH,j2 is the variance of jth channel realization estimated in frequency domain (σH,j2 = (HNLOS,jH × HNLOS,j) / NDFT). In words, the maximum NLOS channel power estimated per subcarrier is equal to the square root of the sum of squared channel variances found for each receive antenna. If the algorithm relies on the measurements obtained with a single RX antenna (NRX = 1), then it reduces to be a channel variance of the single channel estimate.
Finally, we introduce a normalized test statistic u, equal to the NLOS channel power estimate per subcarrier, under the constraint that the total power of the channel impulse response is normalized to unity:
	
.
	(20)


The normalized test statistic u is distributed in the range from 0 to 1 and has a meaning of probability for NLOS link detection. The u = 0 corresponds to the case of a pure LOS channel with a single channel tap in time domain and zero NLOS components. Conversely, the u = 1 corresponds to the case of a pure NLOS channel with a multi-path channel structure and zero LOS component. In practice, u variable is distributed between 0 and 1 and its absolute value shows the reliability of the correct link classification.
The u variable can be compared to the predefined threshold value γ selected in a way to provide a trade-off between the probability of detection PD and probability of false alarm PFA. A detection event (with a probability PD) happens when the true NLOS link is classified correctly. While a false alarm event (with a probability PFA) happens when the true LOS link is wrongly classified as a NLOS link.
If the normalized test statistic for the lth TRP link exceeds the threshold ul > γ and the corresponding link is classified as NLOS, then the associated weight for location equation in (7) is assigned equal to zero, Cl,l-1 = 0. In opposite, if ul ≤ γ, then the associated weight in (7) is assigned equal to one, Cl,l-1 = 1. Therefore, we keep hold the LOS link measurements (considering them as reliable) and discard the NLOS link measurements (considering them as non-reliable estimates).
Finally, we introduce weight Cl,l-1 in (7), which is a reliability function of ul, i.e. Cl,l-1 = F(ul), defined in the form:
	
.
	(21)


In Section 2.3, we provide a performance evaluation of the proposed algorithm using reliability function introduced above and compare its performance to the algorithms known in the literature.

[bookmark: _Ref70506834]Performance Evaluation Results
To analyze the proposed algorithm performance in application to the indoor positioning, we considered the Indoor Factory Dense High (InF-DH) baseline location scenario. The InF-DH scenario describes a factory hall of size 120 m × 60 m × 10 m with different types of installed equipment, which is referred to as industrial “clutter”, [7]. The 18 TRPs with known spatial coordinates are installed at the height of 8.0 m with equidistant space of 20 m in the horizontal plane. A UE device can be located at the height of 1.5 m with an arbitrary position in the horizontal dimension. The InF-DH scenario is characterized by the lower probability of LOS links (~40 %) and higher probability of NLOS links (~60 %), [5].
The location procedure is performed by a UE and 18 TRPs, applying Round Trip Time (RTT) and Uplink Angle of Arrival (UL-AOA) measurements. As a result, the distance and UL-AOA between a UE and each of the TRPs are estimated and then used in the iterative recursion (7) to compute the UE coordinates. In the conducted simulation analysis below, both UE and each of the TRPs transmit and receive the positioning reference signal at the carrier frequency of 3.5 GHz and the total bandwidth of 100 MHz.
A UE is equipped with a single antenna with vertical polarization and omni directional radiation pattern. Each of the TRPs uses a 4 × 4 uniform half-lambda spaced antenna array with a vertical polarization and omni directional antenna pattern. The normalized test statistic u is computed for the channel realizations estimated at the TRP side and uses NRX = 16 antennas in total.
The performance of the proposed algorithm is compared to the reference Gauss-Newton iterative method without NLOS detection and outlier rejection, baseline RANSAC and RAIM outlier rejection algorithms proposed in [2] and [3], respectively, MLP classifier for NLOS links detection proposed in [4], and MLP and CNN classifiers for NLOS links detection proposed in [5].
In work [4], the MLP has an input layer consisting of the 6 neurons, one hidden layer consisting of 152 neurons, and the output layer consisting of a single neuron. It uses a Rectified Linear Unit (ReLU) function for each neuron of the hidden layer and a soft-max regression function for the output layer. The Receive Signal Strength (RSS) value, first path RSS value, mean excess delay, root mean square delay spread, kurtosis and skewness are used as an input data (extracted features) for the MLP (for more details see [4]). The exact configuration of the exploited CNN neural network is not provided in [4]. Therefore, it is not possible to reconstruct the simulation results in that case.
In work [5], the MLP has an input layer consisting of the 2032 neurons, 3 fully connected layers consisting of the 128 neurons, and a fully connected layer consisting of 3 neurons. The CNN has 4 convolution layers and 2 max pooling layers added between the input layer and the fully connected layers of MLP (for more details see [5]). The real and imaginary coefficients of the channel impulse response realization are used as an input data for both MLP and CNN neural networks.
Table 1 provides a summary of the estimated NLOS link detection (PD) and false alarm (PFA) probabilities for the machine learning classifiers and proposed algorithm in the InF-DH scenario. The set of 3×105 channel impulse response realizations was used to train the MLP and CNN neural networks. The threshold was set equal to γ = 0.5 in all cases.

[bookmark: _Ref70507249]Table 1: Estimated NLOS link detection and false alarm probabilities for different algorithms in InF-DH scenario
	Algorithm
	Probability of detection - PD
	Probability of false alarm - PFA

	MLP, ref. [4]
	92.4 %
	2.6 %

	MLP, ref. [5]
	91.5 %
	3.6 %

	CNN, ref. [5]
	93.3 %
	1.7 %

	Proposed algorithm
	91.7 %
	3.0 %



Figure 2 (a) and Figure 2 (b) show Cumulative Distribution Functions (CDFs) for the horizontal and vertical positioning error obtained with the InF-DH scenario. As follows from the presented results, the reference Gauss-Newton method without NLOS links detection and outlier rejection (Gauss-Newton, no NLOS det.) has poor performance and cannot achieve the required accuracy of 0.2 m and 1.0 m for horizontal and vertical positioning. It can be explained by a detrimental impact of the NLOS links that cause an excess propagation delay and angular bias relative to the reference LOS transmission time and true LOS spatial direction.

	[image: ]
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	(a) CDF curves for horizontal positioning error in InF-DH scenario
	(b) CDF curves for vertical positioning error in InF-DH scenario


[bookmark: _Ref70536850]Figure 2: CDF curves for horizontal and vertical positioning errors obtained in InF-DH scenario

The RANSAC (RANSAC, ref. [2]) and RAIM (RAIM, ref. [3]) baseline outlier rejection algorithms substantially improve the performance of the reference Gauss-Newton method, but still do not achieve the required accuracy.
Application of the machine learning methods (MLP, ref. [4], MLP, ref. [5], CNN, ref. [5]) further improves the performance of the outlier rejection algorithms and allows to achieve the positioning accuracy of 0.2 m in both horizontal and vertical dimensions for 90 % of users. The proposed algorithm for NLOS links detection (Proposed algo.) exhibits similar performance as the machine learning methods.
It can be concluded that the proposed algorithm has a similar performance as the machine learning algorithms in terms of the detection and false alarm probabilities as well as the target positioning accuracy. The algorithm does not require a training period when deployed in a new environment, as required by most machine learning-based methods. It has a moderate complexity compared to the MLP and CNN neural networks implementation.


The reference Gauss-Newton method without NLOS links detection and outlier rejection has poor performance and cannot achieve the required accuracy of 0.2 m and 1.0 m for horizontal and vertical positioning.


The RANSAC and RAIM baseline outlier rejection algorithms substantially improve the performance of the reference Gauss-Newton method, but still do not achieve the required accuracy.


Application of the machine learning methods further improves the performance of the outlier rejection algorithms and allows to achieve the positioning accuracy of 0.2 m in both horizontal and vertical dimensions for 90 % of users.


A) The proposed algorithm for NLOS links detection exhibits similar performance as the machine learning methods.
B) The algorithm does not require a training period when deployed in a new environment, as required by most machine learning-based methods, and has a moderate implementation complexity.

Based of the above observations we have the following proposals:


For the UL-TDOA / UL-AOA / Multi-RTT positioning method support introduction of the LOS/NLOS identifier associated with the UL-RTOA time / UL-AOA angle / gNB Rx-Tx time difference measurements 


For the DL-AOD / Multi-RTT positioning method support introduction of the LOS/NLOS identifier associated with the RSRP / UE Rx-Tx time difference measurements


For the DL-TDOA positioning method support introduction of the LOS/NLOS identifier associated with the DL RSTD time measurement using the following format:
(LOS/NLOS identifier #1, LOS/NLOS identifier #2) – LOS/NLOS identifier #1 corresponds to the link associated with a reference cell and LOS/NLOS identifier #2 corresponds to the link associated with a neighbor cell


Support introduction of the LOS/NLOS identifier in the format:
Alt 1: LOS/NLOS identifier may be equal to 0 or 1, where 0 indicates the LOS channel and 1 indicates the NLOS channel
Alt 2: LOS/NLOS identifier may be equal to variable u distributed in the range from 0 to 1 and has a meaning of probability for NLOS link detection
The u = 0 corresponds to the case of a pure LOS channel with a single channel tap in time domain and zero NLOS components
Conversely, the u = 1 corresponds to the case of a pure NLOS channel with a multi-path channel structure and zero LOS component

Conclusions
In this contribution, we proposed the information reporting formats from UE and gNB to LMF in case of DL-TDOA, UL-TDOA, Multi-RTT, and UL-AOA positioning methods to facilitate an accurate multipath/NLOS mitigation. In summary, we have the following list of proposals:

Proposal 1: 
For the UL-TDOA / UL-AOA / Multi-RTT positioning method support introduction of the LOS/NLOS identifier associated with the UL-RTOA time / UL-AOA angle / gNB Rx-Tx time difference measurements 
Proposal 2: 
For the DL-AOD / Multi-RTT positioning method support introduction of the LOS/NLOS identifier associated with the RSRP / UE Rx-Tx time difference measurements
Proposal 3: 
For the DL-TDOA positioning method support introduction of the LOS/NLOS identifier associated with the DL RSTD time measurement using the following format:
(LOS/NLOS identifier #1, LOS/NLOS identifier #2) – LOS/NLOS identifier #1 corresponds to the link associated with a reference cell and LOS/NLOS identifier #2 corresponds to the link associated with a neighbor cell
Proposal 4: 
Support introduction of the LOS/NLOS identifier in the format:
Alt 1: LOS/NLOS identifier may be equal to 0 or 1, where 0 indicates the LOS channel and 1 indicates the NLOS channel
Alt 2: LOS/NLOS identifier may be equal to variable u distributed in the range from 0 to 1 and has a meaning of probability for NLOS link detection
The u = 0 corresponds to the case of a pure LOS channel with a single channel tap in time domain and zero NLOS components
Conversely, the u = 1 corresponds to the case of a pure NLOS channel with a multi-path channel structure and zero LOS component
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