help.doc

Document R1-99L07 e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99xxx

|                                                          |                                                                                           | CHANGE I                                                                | REQI                   | JEST                                                                                                                                                                                                                              | Please see emb<br>page for instruct          | edded help fi<br>tions on how | ile at the bottom of th<br>to fill in this form co                            | nis<br>rectly. |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|-------------------------------------------------------------------------------|----------------|
|                                                          |                                                                                           | 25.211                                                                  | CR                     | 005r1                                                                                                                                                                                                                             | Curre                                        | ent Versio                    | on: <u>3.0.0</u>                                                              |                |
| GSM (AA.BB) or 3G                                        | (AA.BBB) specifica                                                                        | ation number $\uparrow$                                                 |                        | ↑ CR                                                                                                                                                                                                                              | number as alloca                             | ted by MCC s                  | support team                                                                  |                |
| For submission t                                         | to: TSG-RA<br>eeting # here ↑                                                             | <mark>N #6</mark> for ap<br>for infor                                   | pproval<br>mation      | X                                                                                                                                                                                                                                 | n                                            | strate<br>on-strate           | gic (for Si<br>gic use of                                                     | MG<br>nly)     |
| Form: CR cover sheet, ve                                 | ersion 2 for 3GPP and                                                                     | d SMG The latest version                                                | n of this form         | is available from:                                                                                                                                                                                                                | ttp://ttp.3gpp                               | o.org/Info                    | v2                                                                            | orm-           |
| Proposed chang<br>(at least one should be m              | <b>le affects:</b><br>narked with an X)                                                   | (U)SIM                                                                  | ME                     | <mark>∑</mark> U                                                                                                                                                                                                                  | FRAN / Radi                                  | io X                          | Core Network                                                                  | :              |
| Source:                                                  | Ericsson                                                                                  |                                                                         |                        |                                                                                                                                                                                                                                   |                                              | Date:                         | 1999-12-02                                                                    |                |
| Subject:                                                 | Editorial co                                                                              | rrections                                                               |                        |                                                                                                                                                                                                                                   |                                              |                               |                                                                               |                |
| Work item:                                               | TS25.211                                                                                  |                                                                         |                        |                                                                                                                                                                                                                                   |                                              |                               |                                                                               |                |
| Category:FA(only one categoryshall be markedCwith an X)D | Correction<br>Correspond<br>Addition of<br>Functional<br>Editorial mo                     | ds to a correction<br>feature<br>modification of fe<br>odification      | in an ea<br>ature      | rlier releas                                                                                                                                                                                                                      | e R                                          | <u>elease:</u>                | Phase 2<br>Release 96<br>Release 97<br>Release 98<br>Release 99<br>Release 00 | X              |
| <u>Reason for</u><br>change:                             | Several edi                                                                               | torial corrections                                                      | are colle              | ected in this                                                                                                                                                                                                                     | s CR.                                        |                               |                                                                               |                |
| Clauses affected                                         | <u>1:</u> <u>3.3, 5.</u> 2                                                                | 2 <mark>.1, 5.3.2, 5.3.3.1</mark>                                       | <mark>.2, 5.3.3</mark> | .2, 5.3.3.3                                                                                                                                                                                                                       | <mark>, 5.3.3.7, 6,</mark>                   | <mark>7.6.3 of T</mark>       | S25.211                                                                       |                |
| Other specs<br>affected:                                 | Other 3G cor<br>Other GSM c<br>specificat<br>MS test spec<br>BSS test spe<br>O&M specific | e specifications<br>ore<br>ions<br>ifications<br>cifications<br>cations |                        | $\begin{array}{l} \rightarrow \text{ List of C} \\ \rightarrow \text{ List of C} \end{array}$ | CRS:<br>CRS:<br>CRS:<br>CRS:<br>CRS:<br>CRS: |                               |                                                                               |                |
| Other<br>comments:                                       |                                                                                           |                                                                         |                        |                                                                                                                                                                                                                                   |                                              |                               |                                                                               |                |
| W                                                        |                                                                                           |                                                                         |                        |                                                                                                                                                                                                                                   |                                              |                               |                                                                               |                |

<----- double-click here for help and instructions on how to create a CR.

# 3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

| AI      | Acquisition Indicatior                    |
|---------|-------------------------------------------|
| AICH    | Acquisition Indication Channel            |
| AP      | Access Preamble                           |
| BCH     | Broadcast Channel                         |
| CCPCH   | Common Control Physical Channel           |
| CCTrCH  | Coded Composite Transport Channel         |
| CD      | Collision Detection                       |
| CPCH    | Common Packet Channel                     |
| CPICH   | Common Pilot Channel                      |
| DCH     | Dedicated Channel                         |
| DPCCH   | Dedicated Physical Control Channel        |
| DPCH    | Dedicated Physical Channel                |
| DPDCH   | Dedicated Physical Data Channel           |
| DSCH    | Downlink Shared Channel                   |
| DTX     | Discontinuous Transmission                |
| FACH    | Forward Access Channel                    |
| FBI     | Feedback Information                      |
| MUI     | Mobile User Identifier                    |
| PCH     | Paging Channel                            |
| P-CCPCH | Primary Common Control Physical Channel   |
| PCPCH   | Physical Common Packet Channel            |
| PDSCH   | Physical Downlink Shared Channel          |
| PI      | Page Indicatior                           |
| PICH    | Page Indication Channel                   |
| PRACH   | Physical Random Access Channel            |
| PSC     | Primary Synchronisation Code              |
| RACH    | Random Access Channel                     |
| RNC     | Radio Network Controller                  |
| S-CCPCH | Secondary Common Control Physical Channel |
| SCH     | Synchronisation Channel                   |
| SF      | Spreading Factor                          |
| SFN     | System Frame Number                       |
| SSC     | Secondary Synchronisation Code            |
| STTD    | Space Time Transmit Diversity             |
| TFCI    | Transport Format Combination Indicator    |
| TSTD    | Time Switched Transmit Diversity          |
| TPC     | Transmit Power Control                    |
| UE      | User Equipment                            |
| UTRAN   | UMTS Terrestrial Radio Access Network     |

## 5.2.1 Dedicated uplink physical channels

There are two types of uplink dedicated physical channels, the uplink Dedicated Physical Data Channel (uplink DPDCH) and the uplink Dedicated Physical Control Channel (uplink DPCCH).

The DPDCH and the DPCCH are I/Q code multiplexed within each radio frame (see [4]).

The uplink DPDCH is used to carry dedicated data generated at Layer 2 and above, i.e. the dedicated transport channel (DCH). There may be zero, one, or several uplink DPDCHs on each Layer 1 connection.

The uplink DPCCH is used to carry control information generated at Layer 1. The Layer 1 control information consists of known pilot bits to support channel estimation for coherent detection, transmit power-control (TPC) commands, feedback information (FBI), and an optional transport-format combination indicator (TFCI). The transport-format combination indicator informs the receiver about the instantaneous parameters of the different transport channels multiplexed on the uplink DPDCH, and corresponds to the data transmitted in the same frame. It is the UTRAN that determines if a TFCI should be transmitted, hence making it is mandatory for all UEs to support the use of TFCI in the uplink. There is one and only one uplink DPCCH on each Layer 1 connection.

Figure 1 shows the frame structure of the uplink dedicated physical channels. Each frame of length 10 ms is split into 15 slots, each of length  $T_{slot} = 2560$  chips, corresponding to one power-control period. A super frame corresponds to 72 consecutive frames, i.e. the super-frame length is 720 ms.



Figure 1: Frame structure for uplink DPDCH/DPCCH

The parameter k in figure 1 determines the number of bits per uplink DPDCH/DPCCH slot. It is related to the spreading factor SF of the physical channel as  $SF = 256/2^k$ . The DPDCH spreading factor may thus range from 256 down to 4. Note that an uplink DPDCH and uplink DPCCH on the same Layer 1 connection generally are of different rates, i.e. have different spreading factors and different values of k.

The exact number of bits of the different uplink DPCCH fields ( $N_{pilot}$ ,  $N_{TFCI}$ ,  $N_{FBI}$ , and  $N_{TPC}$ ) is determined in table 2. The field order and total number of bits/slot are fixed, though the number of bits per field may vary during a connection.

The values for the number of bits per field are given in table 1 and table 2. The channel bit and symbol rates given in table 1 are the rates immediately before spreading. The pilot patterns are given in table 3 and table 4, the TPC bit pattern is given in table 5.

The N<sub>FBI</sub> bits are used to support techniques requiring feedback between the UE and the UTRAN Access Point (=cell

9

10

transceiver), including closed loop mode transmit diversity and site selection diversity (SSDT). The exact details of the FBI field are shown in figure 2 and described below.



Figure 2: Details of FBI field

The S field is used for SSDT signalling, while the D field is used for FB-Closed Loop Mode Transmit Diversity <u>Ssignalling</u>. <u>Each of tThe S field can be of length 0, 1 or 2</u>. <u>and-The D</u> fields can be <u>of length 0, or 1</u>. <u>or 2</u>, <u>with a The</u> total FBI field size N<sub>FBI</sub> <u>is</u> according to table 2 (DPCCH fields). Simultaneous use of SSDT power control and FB <u>Closed Loop</u> Mode Transmit Diversity requires that <u>both</u> the S <u>and D</u>-fields <u>be is</u> of length 1. The use of these FBI fields is described in [5].

## 5.3.2 Dedicated downlink physical channels

There is only one type of downlink dedicated physical channel, the Downlink Dedicated Physical Channel (downlink DPCH).

Within one downlink DPCH, dedicated data generated at Layer 2 and above, i.e. the dedicated transport channel (DCH), is transmitted in time-multiplex with control information generated at Layer 1 (known pilot bits, TPC commands, and an optional TFCI). The downlink DPCH can thus be seen as a time multiplex of a downlink DPDCH and a downlink DPCCH, compare section 5.2.1. It is the UTRAN that determines if a TFCI should be transmitted, hence making it is mandatory for all UEs to support the use of TFCI in the downlink.

Figure 10 shows the frame structure of the downlink DPCH. Each frame of length 10 ms is split into 15 slots, each of length  $T_{slot} = 2560$  chips, corresponding to one power-control period. A super frame corresponds to 72 consecutive frames, i.e. the super-frame length is 720 ms.



Figure 10: Frame structure for downlink DPCH

The parameter k in figure 10 determines the total number of bits per downlink DPCH slot. It is related to the spreading factor SF of the physical channel as  $SF = 512/2^k$ . The spreading factor may thus range from 512 down to 4.

The exact number of bits of the different downlink DPCH fields ( $N_{pilot}$ ,  $N_{TPC}$ ,  $N_{TFCI}$ ,  $N_{data1}$  and  $N_{data2}$ ) is determined in table 11. The overhead due to the DPCCH transmission has to be negotiated at the connection set-up and can be renegotiated during the communication, in order to match particular propagation conditions.

There are basically two types of downlink Dedicated Physical Channels; those that include TFCI (e.g. for several simultaneous services) and those that do not include TFCI(e.g. for fixed-rate services). These types are reflected by the duplicated rows of table 11. The channel bit and symbol rates given in table 11 are the rates immediately before spreading.

| Slot<br>Format | Channel<br>Bit | Channel<br>Symbol | SF  | I     | Bits/Frame |       | Bits/<br>Slot | DPI<br>Bits | DCH<br>/Slot | DPC   | CH Bits | /Slot  |
|----------------|----------------|-------------------|-----|-------|------------|-------|---------------|-------------|--------------|-------|---------|--------|
| #i             | Rate<br>(kbps) | Rate<br>(ksps)    |     | DPDCH | DPCCH      | тот   |               | NData1      | NData2       | NTFCI | NTPC    | NPilot |
| 0              | 15             | 7.5               | 512 | 60    | 90         | 150   | 10            | 2           | 2            | 0     | 2       | 4      |
| 1              | 15             | 7.5               | 512 | 30    | 120        | 150   | 10            | 0           | 2            | 2     | 2       | 4      |
| 2              | 30             | 15                | 256 | 240   | 60         | 300   | 20            | 2           | 14           | 0     | 2       | 2      |
| 3              | 30             | 15                | 256 | 210   | 90         | 300   | 20            | 0           | 14           | 2     | 2       | 2      |
| 4              | 30             | 15                | 256 | 210   | 90         | 300   | 20            | 2           | 12           | 0     | 2       | 4      |
| 5              | 30             | 15                | 256 | 180   | 120        | 300   | 20            | 0           | 12           | 2     | 2       | 4      |
| 6              | 30             | 15                | 256 | 150   | 150        | 300   | 20            | 2           | 8            | 0     | 2       | 8      |
| 7              | 30             | 15                | 256 | 120   | 180        | 300   | 20            | 0           | 8            | 2     | 2       | 8      |
| 8              | 60             | 30                | 128 | 510   | 90         | 600   | 40            | 6           | 28           | 0     | 2       | 4      |
| 9              | 60             | 30                | 128 | 480   | 120        | 600   | 40            | 4           | 28           | 2     | 2       | 4      |
| 10             | 60             | 30                | 128 | 450   | 150        | 600   | 40            | 6           | 24           | 0     | 2       | 8      |
| 11             | 60             | 30                | 128 | 420   | 180        | 600   | 40            | 4           | 24           | 2     | 2       | 8      |
| 12             | 120            | 60                | 64  | 900   | 300        | 1200  | 80            | 4           | 56           | 8*    | 4       | 8      |
| 13             | 240            | 120               | 32  | 2100  | 300        | 2400  | 160           | 20          | 120          | 8*    | 4       | 8      |
| 14             | 480            | 240               | 16  | 4320  | 480        | 4800  | 320           | 48          | 240          | 8*    | 8       | 16     |
| 15             | 960            | 480               | 8   | 9120  | 480        | 9600  | 640           | 112         | 496          | 8*    | 8       | 16     |
| 16             | 1920           | 960               | 4   | 18720 | 480        | 19200 | 1280          | 240         | 1008         | 8*    | 8       | 16     |

#### Table 11: DPDCH and DPCCH fields

\* If TFCI bits are not used, then DTX shall be used in TFCI field.

The pilot symbol pattern is described in table 12. The shadowed part can be used as frame synchronization words. (The symbol pattern of the pilot symbols other than the frame synchronization word shall be "11".) In table 12, the transmission order is from left to right. (Each two-bit pair represents an I/Q pair of QPSK modulation.)

|             | Npilot<br>= 2 | Npilo | •t = 4 |    | Npilo | ot = 8 |    |    |    |    | Npilot | = 16 |    |    |    |
|-------------|---------------|-------|--------|----|-------|--------|----|----|----|----|--------|------|----|----|----|
| Symbol<br># | 0             | 0     | 1      | 0  | 1     | 2      | 3  | 0  | 1  | 2  | 3      | 4    | 5  | 6  | 7  |
| Slot #0     | 11            | 11    | 11     | 11 | 11    | 11     | 10 | 11 | 11 | 11 | 10     | 11   | 11 | 11 | 10 |
| 1           | 00            | 11    | 00     | 11 | 00    | 11     | 10 | 11 | 00 | 11 | 10     | 11   | 11 | 11 | 00 |
| 2           | 01            | 11    | 01     | 11 | 01    | 11     | 01 | 11 | 01 | 11 | 01     | 11   | 10 | 11 | 00 |
| 3           | 00            | 11    | 00     | 11 | 00    | 11     | 00 | 11 | 00 | 11 | 00     | 11   | 01 | 11 | 10 |
| 4           | 10            | 11    | 10     | 11 | 10    | 11     | 01 | 11 | 10 | 11 | 01     | 11   | 11 | 11 | 11 |
| 5           | 11            | 11    | 11     | 11 | 11    | 11     | 10 | 11 | 11 | 11 | 10     | 11   | 01 | 11 | 01 |
| 6           | 11            | 11    | 11     | 11 | 11    | 11     | 00 | 11 | 11 | 11 | 00     | 11   | 10 | 11 | 11 |
| 7           | 10            | 11    | 10     | 11 | 10    | 11     | 00 | 11 | 10 | 11 | 00     | 11   | 10 | 11 | 00 |
| 8           | 01            | 11    | 01     | 11 | 01    | 11     | 10 | 11 | 01 | 11 | 10     | 11   | 00 | 11 | 11 |
| 9           | 11            | 11    | 11     | 11 | 11    | 11     | 11 | 11 | 11 | 11 | 11     | 11   | 00 | 11 | 11 |
| 10          | 01            | 11    | 01     | 11 | 01    | 11     | 01 | 11 | 01 | 11 | 01     | 11   | 11 | 11 | 10 |
| 11          | 10            | 11    | 10     | 11 | 10    | 11     | 11 | 11 | 10 | 11 | 11     | 11   | 00 | 11 | 10 |
| 12          | 10            | 11    | 10     | 11 | 10    | 11     | 00 | 11 | 10 | 11 | 00     | 11   | 01 | 11 | 01 |
| 13          | 00            | 11    | 00     | 11 | 00    | 11     | 11 | 11 | 00 | 11 | 11     | 11   | 00 | 11 | 00 |
| 14          | 00            | 11    | 00     | 11 | 00    | 11     | 11 | 11 | 00 | 11 | 11     | 11   | 10 | 11 | 01 |

 Table 12: Pilot Symbol Pattern

The relationship between the TPC symbol and the transmitter power control command is presented in table 13.

#### Table 13: TPC Bit Pattern

|                      | Transmitter power |                      |                 |
|----------------------|-------------------|----------------------|-----------------|
| N <sub>TPC</sub> = 2 | $N_{TPC} = 4$     | N <sub>TPC</sub> = 8 | control command |
| 11                   | 1111              | 11111111             | 1               |
| 00                   | 0000              | 0000000              | 0               |

For slot formats using TFCI, the TFCI value in each radio frame corresponds to a certain combination of bit rates of the DCHs currently in use. This correspondence is (re-)negotiated at each DCH addition/removal. The mapping of the TFCI bits onto slots is described in [3].

17

#### 5.3.3.1.2 Secondary Common Pilot Channel

A Secondary Common Pilot Channel the following characteristics:

- Can use an arbitrary channelization code of SF=256, see [4]
- Scrambled by either the primary or a secondary scrambling code, see [4]
- Zero, one, or several per cell
- May be transmitted over only a part of the cell
- A Secondary CPICH may be the reference for the Secondary CCPCCH and the downlink DPCH. If this is the case, the UE is informed about this by higher-layer signalling.

#### 5.3.3.2 Primary Common Control Physical Channel (P-CCPCH)

The Primary CCPCH is a fixed rate (30 kbps, SF=256) downlink physical channels used to carry the BCH.

Figure 15 shows the frame structure of the Primary CCPCH. The frame structure differs from the downlink DPCH in that no TPC commands, no TFCI and no pilot bits are transmitted. The Primary CCPCH is not transmitted during the first 256 chips of each slot. Instead, Primary SCH and Secondary SCH are transmitted during this period (see section 5.3.3.4).



Figure 15: Frame structure for Primary Common Control Physical Channel

### 5.3.3.3 Secondary Common Control Physical Channel (S-CCPCH)

The Secondary CCPCH is used to carry the FACH and PCH. There are two types of Secondary CCPCH: those that include TFCI and those that do not include TFCI. It is the UTRAN that determines if a TFCI should be transmitted, hence making it mandatory for all UEs to support the use of TFCI. The set of possible rates is the same as for the downlink DPCH, see section 5.3.2. The frame structure of the Secondary CCPCH is shown in figure 17.



Figure 17: Frame structure for Secondary Common Control Physical Channel

The parameter k in figure 17 determines the total number of bits per downlink Secondary CCPCH slot. It is related to the spreading factor SF of the physical channel as  $SF = 256/2^k$ . The spreading factor range is from 256 down to 4.

The values for the number of bits per field are given in table 16 and table 17. The channel bit and symbol rates given in table 16 are the rates immediately before spreading. The pilot patterns are given in table 18.

The FACH and PCH can be mapped to the same or to separate Secondary CCPCHs. If FACH and PCH are mapped to the same Secondary CCPCH, they can be mapped to the same frame. The main difference between a CCPCH and a downlink dedicated physical channel is that a CCPCH is not inner-loop power controlled. The main difference between the Primary and Secondary CCPCH is that the Primary CCPCH has a fixed predefined rate while the Secondary CCPCH can support variable rate with the help of the TFCI field included. Furthermore, a Primary CCPCH is continuously transmitted over the entire cell while a Secondary CCPCH is only transmitted when there is data available and may be transmitted in a narrow lobe in the same way as a dedicated physical channel (only valid for a Secondary CCPCH carrying the FACH).

| Slot Format          | Channel Bit | Channel     | SF         | Bits/ Frame  | Bits/       | N <sub>data</sub> | <b>N</b> <sub>pilot</sub> | NTFCI     |
|----------------------|-------------|-------------|------------|--------------|-------------|-------------------|---------------------------|-----------|
| #i                   | Rate (kbps) | Symbol Rate |            |              | Slot        |                   |                           |           |
|                      |             | (ksps)      |            |              |             |                   |                           |           |
| <u>0</u>             | <u>30</u>   | <u>15</u>   | <u>256</u> | <u>300</u>   | <u>20</u>   | <u>20</u>         | <u>0</u>                  | <u>0</u>  |
| <del>0<u>1</u></del> | 30          | 15          | 256        | 300          | 20          | 12                | 8                         | 0         |
| <u>2</u>             | <u>30</u>   | <u>15</u>   | <u>256</u> | <u>300</u>   | <u>20</u>   | <u>18</u>         | <u>0</u>                  | <u>2</u>  |
| <u>3</u> 4           | 30          | 15          | 256        | 300          | 20          | 10                | 8                         | 2         |
| <u>4</u>             | <u>60</u>   | <u>30</u>   | <u>128</u> | <u>600</u>   | <u>40</u>   | <u>40</u>         | <u>0</u>                  | <u>0</u>  |
| <u>5</u> 2           | 60          | 30          | 128        | 600          | 40          | 32                | 8                         | 0         |
| <u>6</u>             | <u>60</u>   | <u>30</u>   | <u>128</u> | <u>600</u>   | <u>40</u>   | <u>38</u>         | <u>0</u>                  | <u>2</u>  |
| <u>7</u> 3           | 60          | 30          | 128        | 600          | 40          | 30                | 8                         | 2         |
| <u>8</u>             | <u>120</u>  | <u>60</u>   | <u>64</u>  | <u>1200</u>  | <u>80</u>   | <u>72</u>         | <u>0</u>                  | <u>8*</u> |
| <u>9</u> 4           | 120         | 60          | 64         | 1200         | 80          | 64                | 8                         | 8*        |
| <u>10</u>            | <u>240</u>  | <u>120</u>  | <u>32</u>  | <u>2400</u>  | <u>160</u>  | <u>152</u>        | <u>0</u>                  | <u>8*</u> |
| <u>11</u> 5          | 240         | 120         | 32         | 2400         | 160         | 144               | 8                         | 8*        |
| <u>12</u>            | <u>480</u>  | <u>240</u>  | <u>16</u>  | <u>4800</u>  | <u>320</u>  | <u>312</u>        | <u>0</u>                  | <u>8*</u> |
| <u>13</u> 6          | 480         | 240         | 16         | 4800         | 320         | 296               | 16                        | 8*        |
| <u>14</u>            | <u>960</u>  | <u>480</u>  | <u>8</u>   | 9600         | <u>640</u>  | <u>632</u>        | <u>0</u>                  | <u>8*</u> |
| <u>15</u> 7          | 960         | 480         | 8          | 9600         | 640         | 616               | 16                        | 8*        |
| <u>16</u>            | <u>1920</u> | <u>960</u>  | 4          | <u>19200</u> | <u>1280</u> | 1272              | <u>0</u>                  | <u>8*</u> |
| <u>17</u> 8          | 1920        | 960         | 4          | 19200        | 1280        | 1256              | 16                        | 8*        |

#### Table 16: Secondary CCPCH fields with pilot bits

\* If TFCI bits are not used, then DTX shall be used in TFCI field.

#### Table 17: Secondary CCPCH fields without pilot bits

| <del>Slot Format</del><br>#i | Channel Bit<br>Rate (kbps) | Channel<br>Symbol Rate<br>(ksps) | SF             | Bits/ Frame     | <del>Bits/</del><br>Slot | N <sub>data</sub> | N <sub>pilot</sub> | N <sub>teci</sub> |
|------------------------------|----------------------------|----------------------------------|----------------|-----------------|--------------------------|-------------------|--------------------|-------------------|
| θ                            | <del>30</del>              | <del>15</del>                    | <del>256</del> | <del>300</del>  | <del>20</del>            | <del>20</del>     | θ                  | θ                 |
| 4                            | <del>30</del>              | <del>15</del>                    | <del>256</del> | <del>300</del>  | <del>20</del>            | <del>18</del>     | θ                  | 2                 |
| 2                            | <del>60</del>              | <del>30</del>                    | <del>128</del> | <del>600</del>  | <del>40</del>            | <del>40</del>     | θ                  | θ                 |
| 3                            | <del>60</del>              | <del>30</del>                    | <del>128</del> | <del>600</del>  | <del>40</del>            | 38                | θ                  | 2                 |
| 4                            | <del>120</del>             | <del>60</del>                    | 64             | <del>1200</del> | <del>80</del>            | <del>72</del>     | 0                  | <u>8*</u>         |
| 5                            | <del>240</del>             | <del>120</del>                   | <del>32</del>  | <del>2400</del> | <del>160</del>           | <del>152</del>    | θ                  | <del>8*</del>     |
| 6                            | 480                        | <del>240</del>                   | <del>16</del>  | 4800            | <del>320</del>           | <del>312</del>    | θ                  | <del>8*</del>     |
| 7                            | <del>960</del>             | <del>480</del>                   | 8              | <del>9600</del> | <del>640</del>           | <del>632</del>    | θ                  | <del>8*</del>     |
| 8                            | 1920                       | 960                              | 4              | 19200           | 1280                     | 1272              | θ                  | <u>8*</u>         |

\* If TFCI bits are not used, then DTX shall be used in TFCI field.

The pilot symbol pattern is described in table 18. The shadowed part can be used as frame synchronization words. (The symbol pattern of pilot symbols other than the frame synchronization word shall be "11"). In table 18, the transmission order is from left to right. (Each two-bit pair represents an I/Q pair of QPSK modulation.)

### 5.3.3.7 Page Indication Channel (PICH)

The Page Indicator Channel (PICH) is a fixed rate (SF=256) physical channel used to carry the Page Indicators (PI). The PICH is always associated with an S-CCPCH to which a PCH transport channel is mapped.

Figure 22 illustrates the frame structure of the PICH. One PICH frame of length 10 ms consists of 300 bits. Of these, 288 bits are used to carry Page Indicators. The remaining 12 bits are not used.

![](_page_9_Figure_5.jpeg)

#### Figure 22: Structure of Page Indicator Channel (PICH)

N Page Indicators  $\{PI_0, ..., PI_{N-1}\}$  are transmitted in each PICH frame, where N=18, 36, 72, or 144. The mapping from  $\{PI_0, ..., PI_{N-1}\}$  to the PICH bits  $\{b_0, ..., b_{287}\}$  are according to table 21.

#### Table 21: Mapping of Page Indicators (PI) to PICH bits

| Number of PI per frame (N) | Pl <sub>i</sub> = 1                                  | Pl <sub>i</sub> = 0                                     |
|----------------------------|------------------------------------------------------|---------------------------------------------------------|
| N=18                       | $\{b_{16i},, b_{16i+15}\} = \{1, 1,, 1\}$            | $\{b_{16i}, \ldots, b_{16i+15}\} = \{0, 0, \ldots, 0\}$ |
| N=36                       | $\{b_{8i},, b_{8i+7}\} = \{1, 1,, 1\}$               | $\{b_{8i}, \ldots, b_{8i+7}\} = \{0, 0, \ldots, 0\}$    |
| N=72                       | $\{b_{4i}, \ldots, b_{4i+3}\} = \{1, 1, \ldots, 1\}$ | $\{b_{4i}, \ldots, b_{4i+3}\} = \{0, 0, \ldots, 0\}$    |
| N=144                      | ${b_{2i}, b_{2i+1}} = {1,1}$                         | ${b_{2i}, b_{2i+1}} = {0,0}$                            |

If a Paging Indicator in a certain frame is set to "1" it is an indication that UEs associated with this Page Indicator should read the corresponding frame of the associated S-CCPCH.

# 6 Mapping of transport channels onto physical channels

Figure 23 summarises the mapping of transport channels onto physical channels.

| Transport Channels | Physical Channels                                   |
|--------------------|-----------------------------------------------------|
|                    |                                                     |
| DCH                | Dedicated Physical Data Channel (DPDCH)             |
|                    | Dedicated Physical Control Channel (DPCCH)          |
| RACH               | Physical Random Access Channel (PRACH)              |
| СРСН ———           | Physical Common Packet Channel (PCPCH)              |
|                    | Common Pilot Channel (CPICH)                        |
| ВСН                | Primary Common Control Physical Channel (P-CCPCH)   |
| FACH               | Secondary Common Control Physical Channel (S-CCPCH) |
| РСН                |                                                     |
|                    | Synchronisation Channel (SCH)                       |
| DSCH ———           | Physical Downlink Shared Channel (PDSCH)            |
|                    | Acquisition Indication Channel (AICH)               |
|                    | Page Indication Channel (PICH)                      |

| Transport Channels | Physical Channels                                   |
|--------------------|-----------------------------------------------------|
|                    |                                                     |
|                    |                                                     |
| BCH                | Primary Common Control Physical Channel (P-CCPCH)   |
|                    |                                                     |
| FACH               | Secondary Common Control Physical Channel (S-CCPCH) |
| PCH                |                                                     |
| RACH               | Physical Random Access Channel (PRACH)              |
| CPCH               | Physical Common Packet Channel (PCPCH)              |
| DCH                | Dedicated Physical Data Channel (DPDCH)             |
|                    | Dedicated Physical Control Channel (DPCCH)          |
|                    | Synchronisation Channel (SCH)                       |
| DSCH               | Physical Downlink Shared Channel (PDSCH)            |
|                    | Page Indication Channel (PICH)                      |
|                    | Acquisition Indication Channel (AICH)               |

#### Figure 23: Transport-channel to physical-channel mapping

The DCHs are coded and multiplexed as described in [3], and the resulting data stream is mapped sequentially (firstin-first-mapped) directly to the physical channel(s). The mapping of BCH and FACH/PCH is equally straightforward, where the data stream after coding and interleaving is mapped sequentially to the Primary and Secondary CCPCH respectively. Also for the RACH, the coded and interleaved bits are sequentially mapped to the physical channel, in this case the message part of the random access burst on the PRACH.

## 7.6.3 Uplink/downlink timing at UE

At the UE, the uplink DPCCH/DPDCH frame transmission takes place approximately  $T_0$  chips after the reception of the first significant path of the corresponding downlink DPCCH/DPDCH frame.  $T_0$  is a constant defined to be 1024 chips. More information about the uplink/downlink timing relation and meaning of  $T_0$  can be found in [5], section 4.5.