3GPP/SMG Meeting #? Location, Country, DD-DD MMM YYYY

Document ???99???
e.g. for 3GPP use the format TP-99xxx
or for SMG, use the format P-99-xxx

		CHANGE	REQI	JEST	Please s page for		file at the bottom of the to fill in this form con	
		25.225	CR	003		Current Version	on: 3.0.0	
GSM (AA.BB) or 3	G (AA.BBB) specific	ation number ↑		↑ <i>C</i>	CR number a	s allocated by MCC	support team	
For submission	meeting # here↑		pproval rmation	X	Comp in our land	strate non-strate	gic use on	aly)
Proposed chan (at least one should be	nge affects:	(U)SIM	ME		UTRAN /		rg/Information/CR-Form-	
Source:	Siemens A	G				Date:	2.12.1999	
Subject:	Update cor	cerning measure	ment def	finitions,	ranges a	and mappings		
Work item:		-			<u>-</u>	5		
(only one category shall be marked (B Addition of	modification of fe		rlier relea	ase X	Release:	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	X
Reason for change:		urement definition he measurements			to be mo	ore precise and	l range & mapp	oing
Clauses affecte	ed: Chapt	er 5						
Other specs affected:	_	re specifications core tions cifications ecifications		 → List of 	CRs:			
Other comments:	This CR is bowed WG1 #9.	ased on RAN WG	61 #9 Tdd	oc (99) k	21 and th	he agreed mod	difications of R	AN
help.doc								

<----- double-click here for help and instructions on how to create a CR.

monitor is available, the UE may perform the measurements on the PCCPCH directly without prior SCH synchronisation.

4.4 Measurements for DCA

DCA is used to optimise the resource allocation by means of a channel quality criteria or traffic parameters. The DCA measurements are configured by the UTRAN. The UE reports the measurements to the UTRAN.

For DCA no measurements are performed in idle mode in the serving TDD cell.

When connecting with the initial access the UE immediately starts measuring the ISCP of time slots which are communicated on the BCH. The measurements and the preprocessing are done while the UTRAN assigns an UL channel for the UE for signalling and measurement reporting.

In connected mode the UE performs measurements according to a measurement control message from the UTRAN.

4.5 Measurements for timing advance

To update timing advance of a moving UE the UTRAN measures 'Received Timing Deviation', i.e. the time difference of the received UL transmission (PRACH, DPCH, PUSCH) in relation to its timeslot structure that means in relation to the ideal case where an UL transmission would have zero propagation delay. The measurements are reported to higher layers, where timing advance values are calculated and signalled to the UE.

5 Measurement abilities for UTRA TDD

In this chapter the physical layer measurements reported to higher layers. (this may also include UE internal measurements not reported over the air-interface) are defined.

5.1 UE measurement abilities

- NOTE 1: Measurements for TDD which are carried out on Primary CCPCH (PCCPCH) can also be carried out on another CCPCH if it has the same constant power level as the PCCPCH and no beamforming is used.
- NOTE 2: The UTRAN has to take into account the UE capabilities when specifying the timeslots to be measured in the measurement control message.
- NOTE 3: The RSCP can either be measured on the data part or the midamble of a burst, since there is no power offset between both. However, in order to have a common reference, the measurement on the midamble is assumed.
- NOTE 4: The line 'applicable for' indicates whether the measurement is applicable for inter-frequency and/or intra-frequency and furthermore for idle and/or connected mode.

5.1.1 PCCPCH RSCP

Definition	Received Signal Code Power, the received power on PCCPCH of own or neighbour cell after
	despreading. The reference point for the RSCP is the antenna connector at the UE.

Applicable for	idle mode, connected mode (intra-frequency & inter-frequency)					
Range/mapping	P-CCPCH RSCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm. P-CCPCH RSCP shall be reported in the unit P-CCPCH RSCP LEV where:					
	P-CCPCH RSCP LEV00:		P-CCPCH RSCP < -115dBm			
	P-CCPCH_RSCP_LEV01: -115dBm ≤ P-CCPCH_RSCP < −114dBm					
	P-CCPCH_RSCP_LEV02: $-114dBm$ ≤ P-CCPCH_RSCP < $-113dBm$					
	<u></u>					
	P-CCPCH_RSCP_LEV89: -27dBm ≤ P-CCPCH_RSCP < -26dBm					
	P-CCPCH_RSCP_LEV90: -26dBm ≤ P-CCPCH_RSCP < -25dBm					
	P-CCPCH_RSCP_LEV91: -25dBm	≤	P-CCPCH_RSCP			

5.1.2 CPICH RSCP

Definition	Received Signal Code Power, the received power on the CPICH code after despreading. The reference point for the RSCP is the antenna connector at the UE.				
Applicable for	idle mode, connected mode (inter-frequency)				
Range/mapping	CPICH RSCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm. CPICH RSCP shall be reported in the unit CPICH_RSCP_LEV where: CPICH_RSCP_LEV00: CPICH_RSCP < -115dBm CPICH_RSCP_LEV01: -115dBm ≤ CPICH_RSCP < -114dBm CPICH_RSCP_LEV02: -114dBm ≤ CPICH_RSCP < -113dBm CPICH_RSCP_LEV89: -27dBm ≤ CPICH_RSCP < -26dBm CPICH_RSCP_LEV90: -26dBm CPICH_RSCP < -25dBm CPICH_RSCP < -25dBm CPICH_RSCP				

5.1.3 RSCP

Definition	Received Signal Code Power, the received power on the code of a specified DPCH or PDSCH after despreading. The reference point for the RSCP is the antenna connector at the UE.			
Applicable for	connected mode (intra-frequency)			
Range/mapping	RSCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm. RSCP shall be reported in the unit UE RSCP LEV where: UE RSCP LEV00: RSCP < -115dBm UE RSCP_LEV01: -115dBm ≤ RSCP < -114dBm UE RSCP_LEV02: -114dBm ≤ RSCP < -113dBm UE RSCP_LEV89: -27dBm ≤ RSCP < -26dBm UE RSCP_LEV90: -26dBm ≤ RSCP < -25dBm UE RSCP_LEV91: -25dBm ≤ RSCP			

5.1.4 Timeslot ISCP

Definition	Interference Signal Code Power, the interference on the received signal in a specified timeslot after despreading. Only the non-orthogonal part of the interference is included in the measurement. The reference point for the ISCP is the antenna connector at the UE.			
Applicable for	connected mode (intra-fre	equency)		
Range/mapping	Timeslot ISCP is given w Timeslot ISCP shall be re UE TS ISCP LEV00: UE TS ISCP LEV01: UE TS ISCP LEV02: UE TS ISCP LEV89: UE TS ISCP LEV90: UE TS ISCP LEV91:			Timeslot_ISCP < -115dBm

5.1.5 UTRA carrier RSSI

Definition	Received Signal Strength Indicator, the wide-band received power within the relevant channel bandwidth in a specified timeslot. Measurement shall be performed on a UTRAN DL carrier. The reference point for the RSSI is the antenna connector at the UE.					
Applicable for	idle mode, connected mode (intra- & inter-frequency)					
Range/mapping	UTRA carrier RSSI shall be reputra carrier RSSI LEV00: UTRA carrier RSSI LEV01: UTRA carrier RSSI LEV02: UTRA carrier RSSI LEV61:	UTRA_carrier_RSSI_LEV01: -94dBm ≤ UTRA_carrier_RSSI < −93dBm UTRA_carrier_RSSI_LEV02: -93dBm ≤ UTRA_carrier_RSSI < −92dBm				
	UTRA_carrier_RSSI_LEV62: UTRA_carrier_RSSI_LEV63:	-33dBm -32dBm	<u>≤</u> ≤	UTRA_carrier_RSSI < -32dBm UTRA carrier RSSI		

5.1.6 GSM carrier RSSI

Definition	Received Signal Strength Indicator, the wide-band received power within the relevant channel bandwidth in a specified timeslot. Measurement shall be performed on a GSM BCCH carrier. The reference point for the RSSI is the antenna connector at the UE.
Applicable for	idle mode, connected mode (inter-frequency)
Range/mapping	For GSM: aAccording to the definition of RXLEV in GSM 05.08.

5.1.7 SIR

Definition	Signal to Interference Ratio, defined as the RSCP of a DPCH or PDSCH divided by ISCP of the same timeslot. The reference point for the SIR is the antenna connector of the UE.			
Applicable for	connected mode (intra-frequency)			
Range/mapping	SIR is given with a resolution of 0.5 dB with the range [-11,, 20] dB. SIR shall be reported in the unit SIR where: SIR_00: SIR < -11.0dB SIR_01: -11.0dB \leq SIR < -10.5dB SIR_02: -10.5dB \leq SIR < -10.0dB SIR_61: 19.0dB \leq SIR < 19.5dB SIR_62: 19.5dB \leq SIR < 20.0dB SIR_63: 20.0dB \leq SIR			

5.1.8 CPICH Ec/No

Definition	The received energy per chip divided by the power density in the band. The Ec/No is identical to RSCP/RSSI. The reference point for Ec/No is the antenna connector at the UE.			
Applicable for	idle mode, connected mode (inter-frequency)			
Range/mapping	CPICH Ec/No is given with a resolution of 1 dB with the range [-24,, 0] dB. CPICH Ec/No shall be reported in the unit CPICH Ec/No where: CPICH Ec/No 00: CPICH Ec/No < -24dB CPICH Ec/No 01: -24dB ≤ CPICH Ec/No < -23dB CPICH Ec/No 02: -23dB ≤ CPICH Ec/No < -22dB CPICH Ec/No 23: -2dB ≤ CPICH Ec/No < -1dB CPICH Ec/No 24: -1dB ≤ CPICH Ec/No < 0dB CPICH Ec/No 25: 0dB ≤ CPICH Ec/No			

5.1.9 Physical channel BER

Definition	The physical channel BER is an estimation of the average bit error rate (BER) before channel decoding of the data.				
Applicable for	connected mode (intra-frequency)				
Range/mapping	Physical channel BER is given with a logarithmic resolution of 0.065 with the range [10^-4.03 1] including a separate case Physical channel BER=0. Physical channel BER shall be reported in the unit PhCH_BER_dB, where: PhCH_BER_dB_00: BER = 0 PhCH_BER_dB_01: -∞ < Log10(Physical channel BER) < -4.030 PhCH_BER_dB_02: -4.030 ≤ Log10(Physical channel BER) < -3.965 PhCH_BER_dB_03: -3.965 ≤ Log10(Physical channel BER) < -3.900 PhCH_BER_dB_61: -0.195 ≤ Log10(Physical channel BER) < -0.130 PhCH_BER_dB_62: -0.130 ≤ Log10(Physical channel BER) < -0.065 PhCH_BER_dB_63: -0.065 ≤ Log10(Physical channel BER) ≤ 0.000				

5.1.10 Transport channel BLER

Definition	Estimation of the transport channel block error rate (BLER). The BLER estimation shall be based on evaluating the CRC on each transport block.					
Applicable for	Connected mode (intra-frequency)					
Range/mapping	[10^-4.03 1] including	g a separate cas	a logarithmic resolution of 0.065 with the e Transport channel BLER=0. ted in the unit TCH_BLER_dB, where: < Log10(Transport channel BLER) < ≤ Log10(Transport channel BLER) <	-4.030 -3.965 -3.900 -0.130 -0.065 0.000		

5.1.11 UE transmitted power

Definition	The total UE transmitted power on one carrier measured in a timeslot. The reference point for the UE transmitted power shall be the UE antenna connector.			
Applicable for	Connected mode (intra-frequency).			
Range/mapping	UE transmitted power is given with a resolution of 1dBm with the range [-50,, 33] dBm. UE transmitted power shall be reported in the unit UE_TX_POWER, where:			
	UE TX_POWER_102: 31dBm ≤ UE transmitted power < 32dBm UE TX_POWER_103: 32dBm ≤ UE transmitted power < 33dBm UE TX_POWER_104: 33dBm ≤ UE transmitted power < 34dBm			

5.1.12 SFN-SFN observed time difference

Definition	Time difference in the frame timing between the serving TDD cell and the frame timing of the				
	target UTRA cell measured by means of PCCPCH for a TDD cell and by means of CPICH for				
	an FDD cell.				
	un i DD cen.				
	SFN-SFN observed time difference is the time difference of the reception times of frames from				
	two cells (serving and target) measured in the UE and expressed in chips. It is distinguished in				
	two types: Type 2 applies if the serving and the target cell have the same frame timing and				
	SFN numbering. Type 1 applies in all other cases.				
	Type 1:				
	SFN-SFN observed time difference = OFF \times 38400+ T_m in chips, where:				
	$\underline{T}_{m} = \underline{T}_{RxSFNk} - \underline{T}_{RxSFNi}$, given in chip units with the range [0, 1,, 38399] chips				
	$\underline{T_{RxSFNi}}$: time of start of the received frame SFN _i of the serving TDD cell i.				
	$\underline{T_{RxSFNk}}$: time of start of the received frame SFN_k of the target UTRA cell k after the time				
	instant T_{RxSFNi} in the UE. If the next frame of the target UTRA cell is received				
	exactly at T_{RxSFNi} then $T_{RxSFNk} = T_{RxSFNi}$ (which leads to $T_m = 0$)				
	OFF=(SFN _k - SFN _i) mod 256, given in number of frames with the range [0, 1,, 255] frames				
	SFNi: system frame number for downlink frame from serving TDD cell i in the UE at the				
	time T _{RxSFNi} .				
	SFNk: system frame number for downlink frame from target UTRA cell k received in the				
	UE at the time T _{RxSFNk} .(for FDD: the P-CCPCH frame)				
	Type 2: SFN-SFN observed time difference = T_{RxTSk} - T_{RxTSi} , in chips, where				
	T _{RxTSi} : time of start of a timeslot received of the serving TDD cell i.				
	$T_{R\times TSk}$: time of start of a timeslot received from the target UTRA cell k that is closest in				
	time to the start of the timeslot of the serving TDD cell i.				
	unie to the start of the unlesfor of the serving TDD cent.				
Applicable for	idle mode, connected mode (intra-frequency)				
D /	Type 1:				
Range/mapping	SFN-SFN observed time difference is given with a resolution of 1 chip with the range				
	[0; 9830400) chips (24 bits).				
	SFN-SFN observed time difference shall be reported in the unit T1_SFN-SFN_TIME, where				
	*				
	T1 SFN-SFN TIME N:				
	N* 1 chip ≤ SFN-SFN observed time difference < (N+1)* 1 chip				
	With N= 0, 1, 2,, 9830399				
	Type 2:				
	SFN-SFN observed time difference is given with a resolution of 0.25 chip with the range				
	(-1280; 1280] chips (14 bits).				
	SFN-SFN observed time difference shall be reported in the unit T2 SFN-SFN TIME, where				
	T2_SFN-SFN_TIME_N:				
	N* 0.25 chip −1280 chips < SFN-SFN observed time difference \leq (N+1)* 0.25 chip −1280 chips				
	With N= 0, 1, 2,, 10239				

5.1.13 Observed time difference to GSM cell

Definition	Time difference between the Primary CCPCH of the current cell and the timing of the GSM cell
	Observed time difference to GSM cell is the time difference T_m in ms, where $\frac{T_m = T_{RxGSMk} - T_{RxSFN0i}}{T_{RxSFN0i}:}$ time of start of the received frame SFN=0 of the serving TDD cell i $\frac{T_{RxGSMk}:}{T_{RxGSMk}:}$ time of start of the received 51-GSM-multiframe of the considered target GSM beacon frequency k which is following next after the start of frame SFN=0 of the serving TDD cell.

Applicable for	Idle mode, connected mode (inter-frequency)
	Observed time difference to GSM cell is given with a resolution of 3060ms/(13*4096) (12 bit) with the range [0, 3060) ms. Observed time difference to GSM cell shall be reported in the unit GSM_TIME, where $\frac{\text{GSM_TIME_N:}}{\text{N* 3060ms/(13*4096)}} \le \text{Observed time difference to GSM cell} < (N+1)* 3060ms/(13*4096)$ $\frac{\text{With N= 0, 1, 2,, 4095}}{\text{With N= 0, 1, 2,, 4095}}$

5.2 UTRAN measurement abilities

NOTE 1: If the UTRAN supports multiple frequency bands then the measurements apply for each frequency band individually.

NOTE 2: The RSCP can either be measured on the data part or the midamble of a burst, since there is no power offset between both. However, in order to have a common reference, the measurement on the midamble is assumed.

5.2.1 RSCP

Definition	Received Signal Code Power, the received power on one DPCH, PRACH or PUSCH code after despreading. The reference point for the RSCP shall be the antenna connector.			
Range/mapping	RSCP is given with a resolution of 0.5 dBm with the range [-120,, -80] dBm.			
	RSCP shall be reported in the unit UTRAN_RSCP_LEV where:			
	UTRAN_RSCP_LEV00: RSCP < -120.0dBm			
	UTRAN RSCP LEV01: -120.0dBm ≤ RSCP < −119.5dBm			
	UTRAN_RSCP_LEV02: -119.5 dBm \leq RSCP < -119.0 dBm			
	<u></u>			
	$\overline{\text{UTRAN_RSCP_LEV79}}$: $-81.0\text{dBm} \le \text{RSCP} < -80.5\text{dBm}$			
	UTRAN_RSCP_LEV80: $-80.5 dBm \le RSCP < -80.0 dBm$			
	UTRAN RSCP LEV81: -80.0dBm ≤ RSCP			

5.2.2 Timeslot ISCP

Definition	Interference Signal Code Power, the interference on the received signal in a specified timeslot after despreading. Only the non-orthogonal part of the interference is included in the measurement. The reference point for the ISCP shall be the antenna connector.			
Range/mapping	Timeslot ISCP is given with a resolution of 0.5 dBm with the range [-120,, -80] dBm. Timeslot ISCP shall be reported in the unit UTRAN_TS_ISCP_LEV where: UTRAN_TS_ISCP_LEV00:			

5.2.3 RSSI

Definition	Received Signal Strength Indicator, the wide-band received power within the UTRAN UL channel bandwidth in a specified timeslot. The reference point for the RSSI shall be the antenna connector.				
Range/mapping	RSSI is given with a resolution of 0.5dBm with the range [-105,, -74] dBm. RSSI shall be reported in the unit RSSI LEV, where: RSSI_LEV00: RSSI < -105.0dBm RSSI_LEV01: -105.0dBm \leq RSSI < -104.5dBm RSSI LEV02: -104.5dBm \leq RSSI < -104.0dBm				

5.2.4 SIR

Definition	Signal to Interference Ratio, defined as the RSCP of the DPCH or PUSCH divided by ISCP of the same timeslot. The reference point for the SIR shall be the antenna connector.		
Range/mapping	SIR is given with a resolution of 0.5 dB with the range [-11,, 20] dB. SIR shall be reported in the unit SIR where: SIR_00: SIR < -11.0dB SIR_01: -11.0dB \leq SIR < -10.5dB SIR_02: -10.5dB \leq SIR < -10.0dB SIR_61: 19.0dB \leq SIR < 19.5dB		
	SIR 62: 19.5dB ≤ $SIR < 20.0dBSIR_63: 20.0dB ≤ SIR$		

5.2.5 Physical channel BER

Definition	The physical channel BER is an estimation of the average bit error rate (BER) of a DPCH or PUSCH before channel decoding of the data.
Range/mapping	Physical channel BER is given with a logarithmic resolution of 0.065 with the range [10^-4.03 1] including a separate case Physical channel BER=0. Physical channel BER shall be reported in the unit PhCH_BER_dB, where: PhCH_BER_dB_00: BER = 0 PhCH_BER_dB_01: -∞ < Log10(Physical channel BER) < -4.030 PhCH_BER_dB_02: -4.030 ≤ Log10(Physical channel BER) < -3.965 PhCH_BER_dB_03: -3.965 ≤ Log10(Physical channel BER) < -3.900 PhCH_BER_dB_61: -0.195 ≤ Log10(Physical channel BER) < -0.130 PhCH_BER_dB_62: -0.130 ≤ Log10(Physical channel BER) < -0.065
	$ PhCH_BER_dB_63: -0.065 \le Log 10(Physical channel BER) \le 0.000$

5.2.6 Transport channel BLER

Definition	Estimation of the transport channel block error rate (BLER) of a DCH or USCH. The BLER estimation shall be based on evaluating the CRC on each transport block.			
Range/mapping	Transport channel BLER is given with a logarithmic resolution of 0.065 with the range			
	[10^-4.03 1] including	g a separate cas	se Transport channel BLER=0.	
	Transport channel BLEF	R shall be repor	ted in the unit TCH_BLER_dB, where:	
	TCH_BLER_dB_00:	BLER = 0		
	TCH_BLER_dB_01:	-∞	< Log10(Transport channel BLER) < -4.030	<u>)</u>
	TCH_BLER_dB_02:	-4.030	≤ Log10(Transport channel BLER) < -3.965	<u>;</u>
	TCH_BLER_dB_03:	-3.965	≤ Log10(Transport channel BLER) < -3.900	<u>)</u>
	<u></u>			
	TCH_BLER_dB_61:	-0.195	≤ Log10(Transport channel BLER) < -0.130	<u>)</u>
	TCH BLER dB 62:	-0.130	\leq Log10(Transport channel BLER) < -0.065	<u>,</u>
	TCH_BLER_dB_63:	-0.065	\leq Log10(Transport channel BLER) \leq 0.000	<u>)</u>

5.2.7 Transmitted carrier power

Definition	Transmitted carrier power, is the total transmitted power on one DL carrier from one UTRAN access point measured in a timeslot. The reference point for the UTRAN total transmitted power measurement shall be the antenna connector.					
Range/mapping	Transmitted carrier power is given	Transmitted carrier power is given with a resolution of 0.5dBm with the range [0,, 50] dBm.				
	Transmitted carrier power shall be	reported in the	unit UTRAN_TX_POWER, where:			
	UTRAN_TX_POWER_000 to UTR	RAN_TX_POW	ER_015: reserved			
	UTRAN_TX_POWER_016:	0.0dBm ≤	Transmitted carrier power < 0.5dBm			
	UTRAN_TX_POWER_017:	0.5dBm ≤	Transmitted carrier power < 1.0dBm			
	UTRAN_TX_POWER_018:	1.0dBm ≤	Transmitted carrier power < 1.5dBm			
	<u></u>					
	UTRAN TX POWER 114:	49.0dBm ≤	Transmitted carrier power < 49.5dBm			
	UTRAN_TX_POWER_115:	49.5dBm ≤	Transmitted carrier power < 50.0dBm			
	UTRAN_TX_POWER_116:	50.0dBm ≤	Transmitted carrier power < 50.5dBm			

5.2.8 Transmitted code power

Definition	Transmitted Code Power, is the transmitted power on one carrier and one channelisation code in one timeslot. The reference point for the transmitted code power measurement shall be the antenna connector at the UTRAN access point cabinet.			
Range/mapping	Transmitted code power is given with a resolution of 0.5dBm with the range [-10,, 46] dBm.			
	<u>Transmitted code power shall be reported in the unit UTRAN_TX_CODE_POWER, where:</u>			
	UTRAN_TX_CODE_POWER_000 to UTRAN_TX_POWER_009: reserved			
	UTRAN_TX_ CODE_POWER_010: -10.0dBm ≤ CODE_POWER < -9.5dBm			
	UTRAN TX CODE POWER 011: -9.5dBm ≤ CODE POWER < -8.5dBm			
	<u>UTRAN_TX_CODE_POWER_012:</u> -8.5dBm ≤ <u>CODE_POWER < -7.5dBm</u>			
	<u></u>			
	UTRAN_TX_ CODE_POWER_120: 45.0dBm ≤ CODE_POWER < 45.5dBm			
	UTRAN_TX_ CODE_POWER_121: 45.5dBm ≤ CODE_POWER < 46.0dBm			
	UTRAN_TX_ CODE_POWER_122: 46.0dBm ≤ CODE_POWER < 46.5dBm			

5.2.9 RX Timing Deviation

Definition	The difference of the time of arrival of the UL transmissions in relation to the arrival time of a signal with zero propagation delay.
	'RX Timing Deviation' is the time difference TRXdev = TTS – TRXpath in chips, with
	TRXpath: time of the reception in the Node B of the first significant uplink path to be used in the detection process
	TTS: time of the beginning of the respective slot according to the Node B internal timing
Range/mapping	RX Timing Deviation is given with a resolution of 0.25 chip with the range [0; 1024) chips (12 bit). RX Timing Deviation cell shall be reported in the unit RX TIME DEV, where RX_TIME_DEV: N* 0.25 chips \leq RX Timing Deviation $<$ (N+1)* 0.25 chips With N= 0, 1, 2,, 4095

NOTE: This measurement can be used for timing advance calculation or location services.