TSG-RAN Working Group 1 meeting #9		TSGR1#9(99)j41
Dresden, Germany November 30 – December 3, 1999		
Agenda item:	AH 16	
Source:	Ericsson	
Title:	CR 25.215-007r01: Ranges and reso	lution of timing measurements
Document for:	Decision	

1. Introduction

This CR is a revised version of the CR in R1-99i73. In the attached CR in this contribution the definition of the measurement "Observed time difference to GSM cell" has been aligned with the proposal in R1-99i69.

The aim of this document is to define ranges for some timing measurements in TS 25.215.

2. UE Rx-Tx time difference and Round trip time

In figure 1 the internal timing in the UE is shown. The UE is in soft handover with 3 radio links in the active set, indexed i, j and k in the figure.

Figure 1 UE internal timing

The receiving window in the UE is set to 2α where $\alpha = (128+20)=148$ chips, see TS 25.214 section 4.3.3. The UE Rx-Tx timing is defined as the difference in time between the $T_{UE,Tx}$ and the time for reception of the donwlink frame from the cells in the active set, e.g.: T_{UETx} - T_{UERx} , where:

 T_{UETx} is the time when the UE transmits an uplink DPCCH/DPDCH frame.

 T_{UERx} is the time when the first significant path of the downlink DPCH frame from the measured radio link is received in the UE.

 T_0 is defined in TS 25.211 section 7.1.3 and equals 1024 chips.

The UE Rx-Tx time difference will therefore always be within the interval To $\pm \alpha$.

As the UE Rx-Tx time difference is intended to be used for positioning applications and taking into account that the SFN-SFN observed time difference type 2 has a resolution of ½ chip, it is proposed that this is valid also for the UE Rx-Tx time difference measurement.

• The UE Rx-Tx time difference is given with the resolution of ½ chip with the range [876, ..., 1172] chips.

The UTRAN Round trip time (RTT) measurement will basically measure: (2*propoagation delay + UE Rx-Tx time difference). The lower bound for the measurement will be determined by assuming a propagation delay of zero, which gives RTT=876.

The upper boundary will be set by the maximum cell radius that we would like to support by the measurement. At some cell radius the 1-slot delay power control loop will be impossible to maintain but that issue is not treated here.

In the table below the maximum cell radius that is possible to estimate using different number of bits to map the RTT measurement on is shown. It is proposed that the RTT also is measured with $\frac{1}{2}$ chip resolution.

Number of bits for RTT	Upper limit for RTT (assuming lower limit is 876 chips)	Maximum cell radius
10	1387.5 chips	8.4 km
11	1899.5 chips	28.4 km
12	2923.5 chips	68.4 km

It is proposed that 12 bits is used for the RTT measurement, which will lead to the possibility to represent propagation delays corresponding to a cell radius of up to 68.4 km.

• The Round trip time is given with the resolution of 1/2 chip with the range [876, ..., 2923.5] chips.

3. Observed time difference to GSM cell

The measurement of "Observed time difference to GSM cell" is shown in figure 1.

X: TDMA idle frame

As the GSM 51-multiframe structure is repeated every 51 GSM frames, the upper range for the measurement is one multiframe, e.g. 3060/13 ms. One possible usage of the measurement is to position the CM-pattern for measuring on GSM cells. As positioning is made in entire slots an upper limit of the resolution could be something like half a slot ~ 1/3 ms. There could be gain by being able to schedule the measurements with a finer resolution if several GSM-cells shall be measured within a TGL. A resolution of $1/13 \text{ms} \approx 76.9 \,\mu\text{s}$ (approx. 0.13 GSM slots) will give 3060 values of the timing measurement, requiring 12 bits. With 12 bits 4096 values can be represented and therefore it is proposed to

divide the range of the measurement into 4096 intervals corresponding to a resolution of 3060/(4096*13) ms ≈ 57.5 µs (approx. 0.1 GSM-slot).

The Observed time difference to GSM cell is given with the resolution of 3060/(4096*13) ms with the range [0, ..., 3060/13-3060/(4096*13)] ms.

Document ???99???

e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

		CHANGE F	REQI	JEST	Please s page for	see embedded help fi r instructions on how	ile at the bottom of t to fill in this form co	nis rrectly.
		25.215	CR	007r	01	Current Versio	on: <u>3.0.0</u>	
GSM (AA.BB) or 30	G (AA.BBB) specifica	tion number ↑		↑ CI	R number a	s allocated by MCC s	support team	
For submission	to: TSG-RA	N #6 for ap for infor	oproval mation	X	form is availab	strate	gic (for S. gic use o	MG nly)
Proposed chan (at least one should be	ge affects: marked with an X)	(U)SIM	ME	X L	JTRAN /	/ Radio X	Core Network	(
Source:	Ericsson					Date:	1999-11-24	
Subject:	Ranges and	l resolution of timi	ing mea	surement	ts			
Work item:								
Category:F(only one categoryEshall be markedCwith an X)E	 Correction Correspond Addition of Functional Editorial model 	ls to a correction i feature modification of fea odification	in an ea ature	rlier relea	ase X	Release:	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	X
<u>Reason for</u> change:	Define rang Rx-Tx time	e and resolution f difference, Round	or three d trip tim	timing m e and Ot	easuren oserved	nents in TS 25 time difference	.215, namely e to GSM cell.	UE
Clauses affecte	ed: 5.1 UE 5.2.7 F	measurement ab Round trip time	oilities					
Other specs affected:	Other 3G corr Other GSM c specificati MS test spec BSS test spec O&M specific	e specifications ore ons ifications cifications ations		 → List of 	CRs: CRs: CRs: CRs: CRs: CRs:			
<u>Other</u> comments:								

<----- double-click here for help and instructions on how to create a CR.

5.1.11 CFN-SFN observed time difference

Definition	The CFN-SFN observed time difference to cell is defined as: OFF×38400+ T_m , where: $T_m = T_{RxSFN} - (T_{UETx}-T_0)$, given in chip units with the range [0, 1,, 38399] chips T_{UETx} is the time when the UE transmits an uplink DPCCH/DPDCH frame. T_0 is defined in TS 25.211 section 7.1.3. T_{RxSFN} is time at the beginning of the next received neighbouring P-CCPCH frame after the time
	instant T_{UETx} - T_0 in the UE. If the next neighbouring P-CCPCH frame is received exactly at T_{UETx} - T_0 then T_{RxSFN} = T_{UETx} - T_0 (which leads to T_m =0). and
	OFF=(CFN _{Tx} -SFN) mod 256, given in number of frames with the range [0, 1,, 255] frames CFN _{Tx} is the connection frame number for the UE transmission of an uplink DPCCH/DPDCH frame at the time T_{UETx} .
	SFN = the system frame number for the neighbouring P-CCPCH frame received in the UE at the time T_{RxSFN} .
Applicable for	Connected Inter, Connected Intra
Range/mapping	Time difference is given with the resolution of one chip with the range [0,, 9830399] chips.

5.1.12 SFN-SFN observed time difference

Definition	
	The SEN-SEN observed time difference to cell is defined as: $OFE \times 38400 + T_m$, where:
	T _{RXSENi} is the time at the beginning of a received neighbouring P-CCPCH frame from cell j.
	T _{RXSFNi} is time at the beginning of the next received neighbouring P-CCPCH frame from cell i
	after the time instant T _{RxSFNj} in the UE. If the next neighbouring P-CCPCH frame is received
	exactly at T_{RxSFNj} then T_{RxSFNj} = T_{RxSFNi} (which leads to T_m =0).
	And OFE-(SEN- SEN) mod 256 given in number of frames with the range [0, 1, 255] frames
	$SFN_i =$ the system frame number for downlink P-CCPCH frame from cell i in the UE at the time
	T _{RXSFNj} .
	SFN_i = the system frame number for the P-CCPCH frame from cell i received in the UE at the
	time T _{RxSFNi} .
	<u>Iype 2:</u> The relative timing difference between cell i and cell i defined on Terror Terror where:
	Trefleative timing difference between cell j and cell i, defined as TCPICHRxj - TCPICHRxi, where.
	T _{CPICHRxi} is the time when the UE receives the CPICH slot from cell i that is closest in time to the
	CPICH slot received from cell j
Applicable for	Type 1: Idle, Connected Intra
	Type 2: Idle, Connected Intra, Connected Inter
Range/mapping	Type 1: Time difference is given with a resolution of one chip with the range [0,, 9830399]
	Chips.
	Type 2: Time difference is given with a resolution of 0.5 chip with the range [-1279,, 1280] chips
	on por

5.1.13 UE Rx-Tx time difference

Definition	The difference in time between the UE uplink DPCCH/DPDCH frame transmission and the first significant path, of the downlink DPCH frame from the measured radio link. Measurement shall be made for each cell included in the active set. Note: The definition of "first significant path" needs further elaboration.
Applicable for	Connected Intra
Range/mapping	Always positive. The UE Rx-Tx time difference is given with the resolution of ½ chip with the range [876,, 1172] chips.

10

5.1.15 Observed time difference to GSM cell

Definition	The Observed time difference to GSM cell is defined as: TRXGSMi - TRXSFNI, where:
	T _{RxSFNi} is the time at the beginning of the P-CCPCH frame with SFN=0 from cell i
	T _{RxGSMi} is the time at the beginning of the GSM BCCH 51-multiframe from GSM frequency j
	received closest in time after the time T _{RxSFNi} . If the next GSM multiframe is received exactly at
	T_{RxSFNi} then $T_{RxGSMi} = T_{RxSFNi}$ (which leads to $T_{RxGSMi} - T_{RxSFNi} = 0$). The timing measurement shall
	reflect the timing situation when the most recent (in time) P-CCPCH with SFN=0 was received
	in the UE.
Applicable for	Idle, Connected Inter
Range/mapping	The Observed time difference to GSM cell is given with the resolution of 3060/(4096*13) ms
	with the range [0,, 3060/13-3060/(4096*13)] ms.

UTRAN measurement abilities 5.2

The structure of the table defining a UTRAN measurement quantity is shown below:

Column field	Comment
Definition	Contains the definition of the measurement.
Range/mapping	Gives the range and mapping to bits for the measurements quantity.

5.2.1 RSSI

Definition	Received Signal Strength Indicator, the wide-band received power within the UTRAN uplink carrier channel bandwidth in an UTRAN access point. The reference point for the RSSI measurements shall be the antenna connector.
Range/mapping	

5.2.2 SIR

Definition	Signal to Interference Ratio, is defined as the RSCP divided by the ISCP. Measurement shall be performed on the DPCCH after RL combination in Node B. The reference point for the SIR measurements shall be the antenna connector.
Range/mapping	

Transmitted carrier power 5.2.3

Definition	Transmitted carrier power, is the total transmitted power on one carrier from one UTRAN access point. Measurement shall be possible on any carrier transmitted from the UTRAN access point. The reference point for the total transmitted power measurement shall be the antenna connector. In case of Tx diversity the total transmitted power for each branch shall be measured.
Range/mapping	

Transmitted code power 5.2.4

Definition	Transmitted code power, is the transmitted power on one carrier, one scrambling code and one channelisation code. Measurement shall be possible on any channelisation code transmitted from the UTRAN access point. The reference point for the transmitted code power measurement shall be the antenna connector. In case of Tx diversity the transmitted code power for each branch shall be measured.
Range/mapping	

11

5.2.5 Transport channel BLER

Definition	Estimation of the transport channel block error rate (BLER). The BLER estimation shall be based on evaluating the CRC on each transport block. Measurement shall be possible to perform on any transport channel after RL combination in Node B. BLER estimation is only required for transport channels containing CRC.
Range/mapping	

5.2.6 Physical channel BER

Definition	The physical channel BER is an estimation of the average bit error rate (BER) before channel decoding of the DPDCH data after RL combination in Node B. It shall be possible to report a physical channel BER estimate at the end of each TTI for the transferred TrCh's, e.g. for TrCh's with a TTI of x ms a x ms averaged physical channel BER shall be possible to report every x ms.
Range/mapping	

5.2.7 Round trip time

Note: The relation between this measurement and the TOA measurement defined by WG2 needs clarification.

Definition	Round trip time (RTT), is defined as
	$RTT = T_{RX} - T_{TX}$, where
	T_{TX} = The time of transmission of the beginning of a downlink DPCH frame to a UE.
	T_{RX} = The time of reception of the beginning (the first significant path) of the corresponding
	uplink DPCCH/DPDCH frame from the UE.
	Note: The definition of "first significant path" needs further elaboration.
	Measurement shall be possible on DPCH for each RL transmitted from an UTRAN access point
	and DPDCH/DPCCH for each RL received in the same UTRAN access point.
Range/mapping	The Round trip time is given with the resolution of 1/2 chip with the range [876,, 2923.5]
••	chips.