Agenda item:

Source: Ericsson
Title: \quad CR 25.214-009: Updates to Random Access Procedure, Rev 1
Document for: Decision

This document is revision of R1-99i65. Compared to the original document, the following modifications have been done:

- New wording for the description of the random function.
- The word "negative" added to step 8 in the random-access procedure (correction).

This CR requests some changes to the description of the physical random access procedure in Section 6.1 of 25.214. The modifications are mainly intended to align the description with current WG2 assumptions.

- Section 6.1 is renamed "Physical Random Access Procedure". This better reflects what is actually described in the section.
- It is clarified what parameters are received from RRC, from MAC, or derived internally within Layer 1.
- The description of dynamic persistence is removed. Dynamic persistence is carried out before the physical random access procedure is initiated, i.e. it should not be a part of the Layer 1 description.
- At the reception of a negative AI, the physical random access procedure is terminated with no other Layer 1 activities.

Furthermore

- The power-ramping step is described in such a way that it is clear that the power-ramping step is a multiple of 1 dB.
- A short text that further clarifies the RACH sub-channels is included.
- The "Random functions" previously TBD are specified to be uniform.
- Some editorial updates are made.

CHANGE REQUEST

25.214 CR 009

Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly. Current Version: 3.0.0

For submission to: TSG-RAN \#6 list expected approval meeting \# here \uparrow
for approval for information

strategic
\square (for SMG non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects:	(U)SIM \square	\square	ME $\quad \mathbf{X}$
UTRAN / Radio	\mathbf{X}	Core Network \square	

(at least one should be marked with an X)

Source:
 Ericsson

Date: 1999-11-25
Subject: Update of Random Access Procedure

Work item:

Category:
F Correction
A Corresponds to a correction in an earlier release
(only one category
B Addition of feature
shall be marked
C Functional modification of feature
with an X)
D Editorial modification

Release: Phase 2 Release 96
Release 97
Release 98
Release 99
Release 00

Reason for Aligns the Random Access Procedure with the assumptions of WG2 and adds some change: general clarifications.

Clauses affected: 6.1

Other

comments:
<--------- double-click here for help and instructions on how to create a CR.

6.1 Physical random access procedure

The physical random access procedure described in this section is initiated upon request of a PHY-Data-REQ primitive from the MAC sublayer (cf. TS 25.321).

Before the physical random-access procedure can be initiated, Layer 1 shall receive the following information from the higher layers (RRC):

- The preamble scrambling code.
- The AICH_Transmission_Timing parameter [0 or 1].
- The available signatures and RACH sub-channel groups for each Access Service Class (ASC), where a subchannel group is defined as a group of some of the sub-channels defined in Section 6.1.1.
- The power-ramping factor Power_Ramp_Step [integer > 0].
- The parameter Preamble_Retrans_Max [integer > 0].
- The initial preamble power Preamble_Initial_Power.
- The set of Transport Format parameters. This includes the power offser $\Delta \mathrm{P}_{\mathrm{p}-\mathrm{m}}$ between the preamble and the message part for each Transport Format.

Note that the above parameters may be updated from higher layers before each physical random access procedure is initiated.

At each initiation of the physical random access procedure, Layer 1 shall receive the following information from the higher layers (MAC):

- The Transport Format to be used for the PRACH message part.
- The ASC of the PRACH transmission.
- The data to be transmitted (Transport Block Set).

The physical random-access procedure shall be performed as follows:
1 Randomly select the RACH sub-channel group from the available ones for the given ASC. The random function shall be usch that each of the allowed selections is chosen with equal probability.

2 Derive the available access slots in the next two frames, defined by SFN and SFN+1 in the selected RACH subchannel group with the help of SFN and table 7. Randomly select one uplink access slot from the available access slots in the next frame, defined by SFN, if there is one available. If there is no access slot available in the next frame, defined by SFN then, randomly select one access slot from the available access slots in the following frame, defined by $\mathrm{SFN}+1$. The random function shall be such that each of the allowed selections is chosen with equal probability.

3 Randomly select a signature from the available signatures for the given ASC. The random function shall be such that each of the allowed selections is chosen with equal probability.

4 Set the Preamble Retransmission Counter to Preamble_Retrans_Max.
5 Set the preamble transmission power to Preamble_Initial_Power.
6 Transmit a preamble using the selected uplink access slot, signature, and preamble transmission power.
7 If no positive or negative acquisition indicator corresponding to the selected signature is detected in the downlink access slot corresponding to the selected uplink access slot:
7.1 Select a new uplink access slot as next available access slot, i.e. next access slot in the sub-channel group used, as selected in 1
7.2 Randomly select a new signature from the available signatures within the given ASC. The random function shall be such that each of the allowed selections is chosen with equal probability.
7.3 Increase the preamble transmission power by $\Delta \mathrm{P}_{0}=$ Power_Ramp_Step [dB].
7.4 Decrease the Preamble Retransmission Counter by one.
7.5 If the Preamble Retransmission Counter > 0 then repeat from step 6. Otherwise pass L1 status ("No ack on AICH") to the higher layers (MAC) and exit the physical random access procedure.

8 If a negative acquisition indicator corresponding to the selected signature is detected in the downlink access slot corresponding to the selected uplink access slot, pass L1 status ("Nack on AICH received") to the higher layers (MAC) and exit the physical random access procedure.

9 Transmit the random access message three or four uplink access slots after the uplink access slot of the last transmitted preamble depending on the AICH transmission timing parameter. Transmission power of the random access message is modified from that of the last transmitted preamble with the specified offset $\Delta \mathrm{P}_{\mathrm{p}-\mathrm{m}}$.

10 Pass L1 status "RACH message transmitted" to the higher layers and exit the physical random access procedure.

6.1.1 RACH sub-channels

A RACH sub-channel defines a sub-set of the total set of access slots. There are a total of 12 RACH sub-channels. RACH sub-channel \#i $(i=0, \ldots, 11)$ consists of the following access slots:

- Access slot \#i transmitted in parallel to P-CCPCH frames for which SFN $\bmod 8=0$ or SFN $\bmod 8=1$.
- Every $12^{\text {th }}$ access slot relative to this access slot.

The access slots of different RACH sub-channels are also illustrated in Table 7.
Table 7: The available access slots for different RACH sub-channels

	Sub-channel Number											
SFN modulo 8	0	1	2	3	4	5	6	7	8	9	10	11
0	0	1	2	3	4	5	6	7				
1	12	13	14						8	9	10	11
2				0	1	2	3	4	5	6	7	
3	9	10	11	12	13	14						8
4	6	7					0	1	2	3	4	5
5			8	9	10	11	12	13	14			
6	3	4	5	6	7					0	1	2
7						8	9	10	11	12	13	14

