Agenda item:

Source:
Title:
Document for: Decision

1 Introduction

In 25.214 the setting of the β-values, when it is calculated, is only relevant when one code is transmitted. Therefore this contribution is proposing a calculation that also works when the number of physical channels in the reference TFC and the targeted TFC is different.

2
 Proposal

In 25.214, paragraph 5.1.2.4.3 the variable on which the offset amplitude between DPDCH and DPCCH is based is given as
$A_{j}=\frac{\beta_{d, \text { ref }}}{\beta_{c, \text { ref }}} \cdot \sqrt{\frac{K_{j}}{K_{\text {ref }}}}$
but when the number of physical channel varies between the reference channel and the actual channel this must of course be taken into account when calculating the parameter. Defining $L_{r e f}$ as the number of DPDCHs used for the reference TFC and L_{j} as the number of DPDCHs used for the TFC in the j :th radio frame, the parameter A_{j} shall be defined as below.
$A_{j}=\frac{\beta_{d, r e f}}{\beta_{c, \text { ref }}} \cdot \sqrt{\frac{L_{r e f}}{L_{j}}} \sqrt{\frac{K_{j}}{K_{\text {ref }}}}$
In this proposal is also added a note so that the calculated β-value never can be equal to 0 .

CHANGE REQUEST

 page for instructions on how to fill in this form correctly.
25.214 CR 013

Current Version: 3.0.0
\uparrow CR number as allocated by MCC support team
For submission to: TSG-RAN \#6
List expected approval meeting \# here

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc
Proposed change affects:
(U)SIM \square ME \mathbf{X} UTRAN / Radio X Core Network \qquad
(at least one should be marked with an X)

Source:
 Ericsson

Date: 1999-11-18
Subject: Setting of beta values for multi-code

Work item:

Category:	F	Correction	X	Release:	Phase 2
	A	Corresponds to a correction in an earlier release			Release 96
(only one category	B	Addition of feature			Release 97
shall be marked	c	Functional modification of feature			Release 98
with an X)	D	Editorial modification			Release 99
					Release 00

Reason for Multicode in uplink is not supported in the current specified calculation of the offset change: gains (beta-values).

Clauses affected:

5.1.2.4.3

Other specs	$\begin{array}{l}\text { Other 3G core specifications } \\ \text { affected: } \\ \text { Other GSM core } \\ \text { specifications }\end{array}$	\square	\rightarrow List of CRs:
	\rightarrow List of CRs:		
	$\begin{array}{ll}\text { MS test specifications } \\ & \rightarrow \text { List of CRs: }\end{array}$		
	$\begin{array}{ll}\text { BSS test specifications } \\ \text { O\&M specifications }\end{array}$	\rightarrow	\rightarrow List of CRs:
		\rightarrow List of CRs:	

Other
 comments:

<--------- double-click here for help and instructions on how to create a CR.

Combinations of the two above methods may be used to associate β_{c} and β_{d} values to all TFCs in the TFCS. The two methods are described in sections 5.1.2.4.2 and 5.1.2.4.3 respectively. Several reference TFCs may be signalled from higher layers.

The gain factors may vary on radio frame basis depending on the current TFC used. Further, the setting of gain factors is independent of the inner loop power control. This means that at the start of a frame, the gain factors are determined and the inner loop power control step is applied on top of that.

Appropriate scaling of the output power shall be performed by the UE, so that the output DPCCH power follows the inner loop power control with power steps of $\pm \Delta_{\text {TPC }} d B$.

5.1.2.4.2 Signalled gain factors

When the gain factors β_{c} and β_{d} are signalled by higher layers for a certain TFC, the signalled values are used directly for weighting of DPCCH and DPDCH(s).

5.1.2.4.3 Computed gain factors

The gain factors β_{c} and β_{d} may also be computed for certain TFCs, based on the signalled settings for a reference TFC.

Let $\beta_{c, \text { ref }}$ and $\beta_{d, \text { ref }}$ denote the signalled gain factors for the reference TFC. Further, let $\beta_{c, j}$ and $\beta_{d, j}$ denote the gain factors used for the TFC in the j :th radio frame. Also let $L_{\text {ref }}$ denote the number of DPDCHs used for the reference TFC and L_{i} denote the number of DPDCHs used for the TFC in the j :th radio frame.

Define the variable

$$
K_{r e f}=\sum_{i} R M_{i} \cdot N_{i}
$$

where $R M_{\mathrm{i}}$ is the semi-static rate matching attribute for transport channel i (defined in TS 25.212 section 4.2.7), N_{i} is the number of bits output from the radio frame segmentation block for transport channel i (defined in TS 25.212 section 4.2.6.1), and the sum is taken over all the transport channels i in the reference TFC.

Similarly, define the variable

$$
K_{j}=\sum_{i} R M_{i} \cdot N_{i}
$$

where the sum is taken over all the transport channels i in the TFC used in the j :th frame.
The variable A_{j} is then computed as:

$$
A_{j}=\frac{\beta_{d, r e f}}{\beta_{c, \text { ref }}} \cdot \sqrt{\frac{L_{r e f}}{L_{j}}} \sqrt{\frac{K_{j}}{K_{r e f}}}
$$

The gain factors for the TFC in the j :th radio frame are then computed as follows:
If $A_{j}>1$, then $\beta_{d, j}=1.0$ and $\beta_{c, j}=\left\lfloor 1 / A_{j}\right\rfloor$, where $\lfloor\bullet\rfloor$ means rounding to closest lower quantized β-value. Since $\beta_{c, j}$ may not be set to zero, if the above rounding results in a zero value, $\beta_{c, j}$ shall be set to the lowest quantized amplitude ratio of 0.0667 as specified in TS 25.213.

If $A_{j} \leq 1$, then $\beta_{d, j}=\left|A_{j}\right|$ and $\beta_{c, j}=1.0$, where $\lceil\bullet\rceil$ means rounding to closest higher quantized β-value.

The quantized β-values is defined in TS 25.213 section 4.2.1, table 1.

