TSG-RAN Working Group 1 meeting #9 Dresden, Germany November 30 – December 3, 1999

TSGR1#9(99)i51

Agenda item:

Source:	Ericsson
Title:	CR 25.212-006: Removal of compressed mode by puncturing
Document for:	Decision

It was proposed in TSGR1#8(99)g78 that compressed mode by puncturing should be removed. At TSG-RAN Working Group 1 meeting #8 it was recommended that a CR should be generated from the text proposal in g78.

help.doc

Document ???99???

e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

		CHANGE I	REQI	JEST	Please see page for ins	embedded help fi structions on how	le at the bottom of th to fill in this form cor	nis rectly.
		25.212	CR	006	С	urrent Versio	on: <u>3.0.0</u>	
GSM (AA.BB) or 3	3G (AA.BBB) specifi	cation number ↑		↑ Cł	R number as a	llocated by MCC s	upport team	
For submission	n to: TSG-RA	AN #6 for ap	pproval rmation	X		Strateg non-strateg	gic (for SI gic use or	MG nly)
Proposed char (at least one should be	nge affects: e marked with an X)		ME	X L	JTRAN / R	Radio X	Core Network	<-v2.doc
Source:	Ericsson					Date:	1999-11-04	
Subject:	Removal o	<mark>f compressed mod</mark>	<mark>de by pu</mark>	ncturing				
Work item:								
Category: (only one category shall be marked with an X)	F Correction A Correspon B Addition o C Functiona D Editorial m	nds to a correction f feature I modification of fe nodification	in an ea eature	rlier relea	ise	<u>Release:</u>	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	X
<u>Reason for</u> change:	Compress moved out	ed mode by punctu of release 99.	uring is r	not sufficie	ently desc	ribed and sh	ould therefore	be
Clauses affecte	ed: 4.3.5.	<mark>3, 4.4.3, 4.4.4.3</mark>						
Other specs affected:	Other 3G cc Other GSM specifica MS test spe BSS test sp O&M specifi	ore specifications core tions cifications ecifications cations			CRs: CRs: CRs: CRs: CRs: CRs:			
Other comments:								

<----- double-click here for help and instructions on how to create a CR.

Slot		TFCI code word bits in split mode											
0	$b_{1,14}^1$	$b_{1,14}^2$	$b_{1,14}^3$	$b_{1,14}^4$	$b_{2,14}^1$	$b_{2,14}^2$	$b_{2,14}^3$	$b_{2,14}^4$					
1	$b_{1,13}^1$	$b_{1,13}^2$	$b_{1,13}^3$	$b_{1,13}^4$	$b_{2,13}^1$	$b_{2,13}^2$	$b_{2,13}^3$	$b_{2,13}^4$					
2	$b_{1,12}^1$	$b_{1,12}^2$	$b_{1,12}^3$	$b_{1,12}^4$	$b_{2,12}^1$	$b_{2,12}^2$	$b_{2,12}^3$	$b_{2,12}^4$					
3	$b_{1,11}^1$	$b_{1,11}^2$	$b_{1,11}^3$	$b_{1,11}^4$	$b_{2,11}^1$	$b_{2,11}^2$	$b_{2,11}^3$	$b_{2,11}^4$					
4	$b_{1,10}^1$	$b_{1,10}^2$	$b_{1,10}^3$	$b_{1,10}^4$	$b_{2,10}^1$	$b_{2,10}^2$	$b_{2,10}^3$	$b_{2,10}^4$					
5	$b_{1,9}^{1}$	$b_{1,9}^2$	$b_{1,9}^{3}$	$b_{1,9}^4$	$b_{2,9}^{1}$	$b_{2,9}^2$	$b_{2,9}^{3}$	$b_{2,9}^4$					
6	$b_{1,8}^1$	$b_{1,8}^2$	$b_{1,8}^3$	$b_{1,8}^4$	$b_{2,8}^{1}$	$b_{2,8}^2$	$b_{2,8}^3$	$b_{2,8}^4$					
7	$b_{\!\!1,7}^1$	$b_{\!\!1,7}^{2}$	$b_{1,7}^3$	$b_{\!\!1,7}^4$	$b_{2,7}^{1}$	$b_{2,7}^2$	$b_{2,7}^3$	$b_{2,7}^4$					
8	$b^1_{1,6}$	$b_{1,6}^2$	$b_{1,6}^{3}$	$b_{1,6}^4$	$b_{2,6}^{1}$	$b_{2,6}^2$	$b_{2,6}^{3}$	$b_{2,6}^4$					
9	$b_{1,5}^{1}$	$b_{1,5}^2$	$b_{1,5}^{3}$	$b_{1,5}^4$	$b_{2,5}^{1}$	$b_{2,5}^2$	$b_{2,5}^{3}$	$b_{2,5}^4$					
10	$b_{\!\!1,4}^1$	$b_{1,4}^2$	$b_{1,4}^{3}$	$b_{1,4}^4$	$b^1_{2,4}$	$b_{2,4}^2$	$b_{2,4}^{3}$	$b_{2,4}^4$					
11	$b_{1,3}^1$	$b_{1,3}^2$	$b_{1,3}^3$	$b_{1,3}^4$	$b_{2,3}^1$	$b_{2,3}^2$	$b_{2,3}^3$	$b_{2,3}^4$					
12	$b_{1,2}^1$	$b_{1,2}^2$	$b_{1,2}^3$	$b_{1,2}^4$	$b_{2,2}^{1}$	$b_{2,2}^2$	$b_{2,2}^3$	$b_{2,2}^4$					
13	$b^1_{1,1}$	$b_{1,1}^2$	$b_{1,1}^3$	$b_{1,1}^4$	$b_{2,1}^1$	$b_{2,1}^2$	$b_{2,1}^{3}$	$b_{2,1}^4$					
14	$b_{1,0}^1$	$b_{1,0}^2$	$b_{1,0}^{3}$	$b_{1,0}^4$	$b_{2,0}^{1}$	$b_{2,0}^2$	$b_{2,0}^{3}$	$b_{2,0}^4$					

Table 10: Mapping order of repetition encoded TFCI code word bits to slots in Split Mode

4.3.5.3 Mapping of TFCI in compressed mode

The mapping of the TFCI bits in compressed mode is dependent on the transmission time reduction method. Denote the TFCI bits by c_0 , c_1 , c_2 , c_3 , c_4 , ..., c_c , where:

- $c_k = b_k$, C = 29, when there are 2 TFCI bit in each slot.

-
$$c_0 = b_0^4, c_1 = b_0^3, c_2 = b_0^2, c_3 = b_0^1, c_4 = b_1^4, c_5 = b_1^3, \dots, c_{119} = b_{14}^1$$
, when there are 8 TFCI bits in each slot.

- $c_0 = b_{2,0}, c_1 = b_{1,0}, c_3 = b_{2,1}, c_4 = b_{1,1}, \dots, c_{29} = b_{1,14}$, in split mode when there are 2 TFCI bits in each slot.
- $c_0 = b_{2,0}^4, c_1 = b_{2,0}^3, c_2 = b_{2,0}^2, c_3 = b_{2,0}^1, c_4 = b_{1,0}^4, c_5 = b_{1,0}^3, \dots, c_{119} = b_{1,14}^1$, in split mode when there are 8 TFCI bits in each slot.

The TFCI mapping for each transmission method is given in the sections below.

4.3.5.4.1 Compressed mode method A

For compressed mode by method A, all the TFCI bits are mapped to the remaining slots. The number of bits per slot in uncompressed mode is denoted by Z and Z = (C + 1)/15. The mapping to slots for different TGLs are defined below.

4.2.5.4.1.1 TGL of 3 slots

Slot number 3 + 2x contain bits $c_{C-(\frac{5}{2}Z)x}, c_{C-(\frac{5}{2}Z)x-1}, \dots, c_{C-(\frac{5}{2}Z)x-(\frac{3}{2}Z-1)}$, where x = 0, 1, 2, 3, 4, 5

The case when C = 29 is illustrated in figure 14.

Figure 14: Mapping of TFCI code with TGL of 3 slots.

4.2.5.4.1.2 TGL of 4 slots

Slot number 4 does not contain any TFCI bits.

Slot number 5 + x contain bits $c_{\frac{C}{C-(\frac{3}{2}Z)x}}, c_{\frac{3}{C-(\frac{3}{2}Z)x-1}}, \dots, c_{\frac{3}{2}Z-1}, \frac{3}{2}, \dots, \frac{3}{2}$, where $x = 0, 1, 2, 3, \dots, 9$

The case when C = 29 is illustrated in figure 15.

4.3.5.<u>34.1</u>2 Uplink Ccompressed mode method B

4.2.5.4.2.1 Uplink

For uplink compressed mode, by method B the frameslot format is changed so that no TFCI bits are lost. The different frameslot formats in compressed mode cando not match the exact number of TFCI bits for all possible TGLs. Repetition of the TFCI bits is therefore used.

Denote the number of bits available in the TFCI fields of one compressed radio frame by *D*, the repeated bits by d_k , and the number of bits in the TFCI field in a slot by N_{TFCI} . Let $E=30-1-(N_{first}N_{TFCI}) \mod 30$. If $N_{last}\neq 14$, then *E* corresponds to the number of the first TFCI bit in the slot directly after the TG. The following relations then define the repetition.

 $d_{D-31} = c_{E \mod 30}, d_{D-32} = c_{(E-1) \mod 30}, d_{D-33} = c_{(E-2) \mod 30}, \dots, d_0 = c_{(E-(D-31)) \mod 30}$

The bits are mapped to the slots in descending order starting with the original bits and followed by the repeated ones, i.e. c_{29} is sent as first bit in the TFCI field of the first transmitted slot and d_0 as last bit in the TFCI field of the last transmitted slot.

4.32.5.34.2.2 Downlink compressed mode

<Editor's note: Detailed description for downlink is FFS>

4.4 Compressed mode

In compressed mode, slots N_{first} to N_{last} are not used for transmission of data. As illustrated in figure 16, which shows the example of fixed transmission gap position with single frame method, the instantaneous transmit power is increased in the compressed frame in order to keep the quality (BER, FER, etc.) unaffected by the reduced processing gain. The amount of power increase depends on the transmission time reduction method (see section 4.4.3). What frames are compressed, are decided by the network. When in compressed mode, compressed frames can occur periodically, as illustrated in figure 16, or requested on demand. The rate and type of compressed frames is variable and depends on the environment and the measurement requirements.

Figure 16: Compressed mode transmission

4.4.1 Frame structure in the uplink

The frame structure for uplink compressed mode is illustrated in figure 17.

Figure 17: Frame structure in uplink compressed transmission

4.4.2 Frame structure types in the downlink

There are two different types of frame structures defined for downlink compressed transmission. Type A is the basic case, which maximises the transmission gap length. Type B, which is more optimised for power control, can be used if the requirement of the transmission gap length allows that.

- With frame structure of type A, BTS transmission is off from the beginning of TFCI field in slot N_{first} , until the end of Data2 field in slot N_{last} (figure 18(a)).
- With frame structure of type B, BTS transmission is off from the beginning of Data2 field in slot N_{first} , until the end of Data2 field in slot N_{last} (figure 18(b)) Dummy bits are transmitted in the TFCI and Data1 fields of slot N_{first} , and BTS and MS do not use the dummy bits. Thus BTS and MS utilize only the TPC field of N_{first} .

(b) Frame structure type B

Figure 18: Frame structure types in downlink compressed transmission

4.4.3 Transmission time reduction method

When in compressed mode, the information normally transmitted during a 10 ms frame is compressed in time. The mechanism provided for achieving this is either changing the code rate (method A), which means puncturing in practice, or the reduction of the spreading factor by a factor of two (method B). In the downlink, both method A and B are supported while only method B is used in the uplink. The maximum idle length is defined to be 7 slots per one 10 ms frame.

4.4.3.1 Method A: By puncturing

During compressed mode, rate matching (puncturing) is applied for creating transmission gap in one frame. The algorithm for rate matching (puncturing) as described in section 4.2.7 is used.

DPDCH and DPCCH fields for compressed mode when puncturing 4 slots and 3 slots, respectively, are shown in table 11 and table 12. Because of higher encoding rate, some DPDCH symbols remain unused and shall be indicated as DTX.

Channel Bit Rate (kbps)	Channel Symbol Rate	SF	Bi	ts/Frame	•	Bits/ Slot	DPDCH Bits/Slot		DPCCH Bits/Slot			Extra DPDCH symbols
	(ksps)		DPDCH	DPCCH	TOT		N _{Data1}	N _{Data2}	NTECI	NTPC	N _{Pilot}	for DTX
15	7.5	512	40	66	110	10	2	2	θ	2	4	4
30	15	256	160	44	220	20	2	14	θ	2	2	16
30	15	256	140	74	220	20	θ	14 ¹	2 ⁴	2	2	6
30	15	256	140	66	220	20	2	12	θ	2	4	14
30	15	256	120	96	220	20	θ	12 ¹	2 ¹	2	4	4
30	15	256	100	110	220	20	2	8	θ	2	ø	10
30	15	256	80	140	220	20	θ	8 1	2 ¹	2	ø	θ
60	30	128	340	66	440	40	6	28	θ	2	4	3 4
60	30	128	320	96	44 0	40	4 ¹	28	<u>2</u> ¹	2	4	2 4
60	30	128	300	110	440	40	6	24	θ	2	\$	30
60	30	128	280	140	440	40	4 ¹	24	21	2	୫	20
120	60	64	600	252	880	80	4 ¹	56	8 ^{1,2}	4	୫	28
240	120	32	1400	252	1760	160	20 ⁴	120	8 ^{1,2}	4	୫	108
480	240	16	2880	384	3520	320	48 ⁴	240	8 ^{1,2}	8	16	256
960	480	8	6080	384	7040	640	112^{1}	496	8 ^{1,2}	8	16	576
1920	960	4	12480	384	14080	1280	240 ¹	1008	8 ^{1,2}	8	16	1216

Table 11: DPDCH and DPCCH fields in compressed mode when puncturing 4 slots

This figure does not take into account the extra TFCI bits from deleted slots
If TFCI bits are not used, then DTX shall be used in TFCI field

NOTE: Compressed mode with puncturing cannot be used for SF=512 with TFCI.

Channel Bit Rate (kbps)	Channel Symbol Rate	SF	Bits/Frame			Bits/ Slot	DPDCH Bits/Slot		4	Extra DPDCH symbols		
	(ksps)		DPDCH	DPCCH	TOT		N _{Data1}	N _{Data2}	NTECI	N _{TPC}	N _{Pilot}	for DTX
15	7.5	512	40	72	120	10	2	2	θ	2	4	8
30	15	256	160	48	240	20	2	14	θ	2	2	32
30	15	256	140	78	240	20	θ	14 ¹	2 ¹	2	2	22
30	15	256	140	72	240	20	2	12	θ	2	4	28
30	15	256	120	102	240	20	θ	12 ¹	2 ¹	2	4	18
30	15	256	100	120	240	20	2	8	θ	2	8	20
30	15	256	80	150	240	20	θ	8 ¹	<u>2</u> ¹	2	8	10
60	30	128	340	72	4 80	40	6	28	0	2	4	68
60	30	128	320	102	4 80	40	4 ¹	28	2 ¹	2	4	58
60	30	128	300	120	480	40	6	24	θ	2	8	60
60	30	128	280	150	480	40	4 ¹	24	2 ¹	2	8	50
120	60	64	600	264	960	80	4 ¹	56	8 ^{1,2}	4	8	96
240	120	32	1400	264	1920	160	20 ¹	120	8 ^{1,2}	4	8	256
480	240	16	2880	408	3840	320	48 ¹	240	8 ^{1,2}	8	16	552
960	480	8	6080	408	7680	640	112 ¹	496	8 ^{1,2}	8	16	1192
1920	960	4	12480	408	15360	1280	240 ¹	1008	8 ^{1,2}	8	16	2472

Table 12: DPDCH and DPCCH fields in compressed mode frame when puncturing 3 slots

This figure does not take into account the extra TFCI bits from deleted slots
If TFCI bits are not used, then DTX shall be used in TFCI field

NOTE: Compressed mode with puncturing cannot be used for SF=512 with TFCI

4.4.3.<u>1</u>2 Method B:<u>Compressed mode</u> Bby reducing the spreading factor by 2

During compressed mode, the spreading factor (SF) can be reduced by 2 to enable the transmission of the information bits in the remaining time slots of a compressed frame.

Figure 20: Adjustable transmission gap lengths position

4.4.4.3 Parameters for downlink compressed mode

< Editor's note: WG1 suggestion is that there is need for further clarifications in table 15 (e.g. rationales between change of coding rate/puncturing/change of spreading factor and idle time size, spreading factor range for different modes, etc.).>

Table 15 shows the detailed parameters for each transmission gap length-when transmission time reduction methods A or B are used.

TGL	Туре	Adjustable /fixed gap	Spreading Factor	ldle length[ms]	Transmission time Reduction method	Idle frame Combining
		position				_
3	А	Adjustable	512 – 4	1.73-1.99	Puncturing	(S)
	В	Or	256-4	1.60-1.86	Spreading factoer	(D) = (1,2), (2,1)
4	А	512 - 4 2.40-2.66	512 - 4 2.40-2.66 reduction by 2	(S)		
	В		256-4	2.27-2.53		(D) = (1,3), (2,2), (3,1)
7	А		512 -4	4.40-4.66		(S)
	В	-	256- 4	4.27-4.53		(D)=(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)
10	А		512 - 4	6.40-6.66		(D)=(3,7),(4,6),(5,5),(6,4),(7,
	В		256-4	6.27-6.53		3)
14	А	Fixed	512 - 4	9.07-9.33		(D) =(7,7)
	В		256-4	8.93-9.19	1	

Table 15: Parameters for compressed mode

(S): (D):

Single-frame method as shown in figure 19 (1). Double-frame method as shown in figure 19 (2). (x,y) indicates x: the number of idle slots in the first frame, y: the number of idle slots in the second frame.

NOTE: Details for the use of the spreading factor reduction method with SF=4 are FFS