Document	R1-99i37
	or 3GPP use the format TP-99xxx for SMG, use the format P-99-xxx

			CHANGE I	REQI	JEST			ile at the bottom of th to fill in this form cor	
			25.211	CR	009	Cu	irrent Versio	on: 3.0.0	
GSM (AA.BB) or	3G (/	AA.BBB) specifica	ation number \uparrow		↑ <i>CI</i>	R number as allo	ocated by MCC s	support team	
For submissic	l mee	eting # here ↑	for infor		X		strate non-strate	gic use of	nly)
Proposed cha (at least one should b	nge	e affects:	sion 2 for 3GPP and SMG	The latest		orm is available fro		rg/Information/CR-Form	
Source:		Nokia					Date:	24.11.99	
Subject:		20 ms RAC	H message lengt	h					
Work item:									
Category: (only one category shall be marked with an X)	F A B C D	Addition of	modification of fe		rlier relea	ise X	<u>Release:</u>	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	X
<u>Reason for</u> change:			20 ms RACH mes documents R1-9				RAN WG1#	8 (New York 1	2
Clauses affect	ted:	5.2.2.1	.1, 5.2.2.1.3 and	5.2.2.1.4	4				
Other specs affected:	C M B	Other 3G cor Other GSM c specificat IS test spec SS test spe 0&M specific	ions ifications cifications	-		CRs: CRs: CRs:			
<u>Other</u> comments:									

<----- double-click here for help and instructions on how to create a CR.

5.2.2 Common uplink physical channels

5.2.2.1 Physical Random Access Channel (PRACH)

The Physical Random Access Channel (PRACH) is used to carry the RACH.

5.2.2.1.1 RACH transmission

The random-access transmission is based on a Slotted ALOHA approach with fast acquisition indication. The UE can start the transmission at a number of well-defined time-offsets, denoted *access slots*. There are 15 access slots per two frames and they are spaced 5120 chips apart. Timing information on the access slots and the acquisition indication is given in section 7.3. Figure 3 shows the access slot numbers and their spacing to each other. Information on what access slots are available in the current cell is given by higher layers.

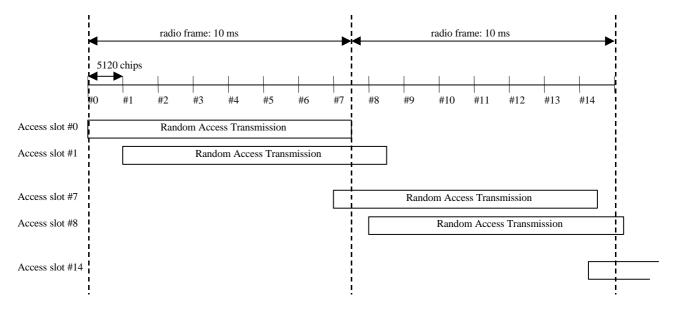
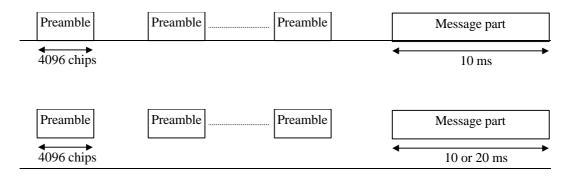
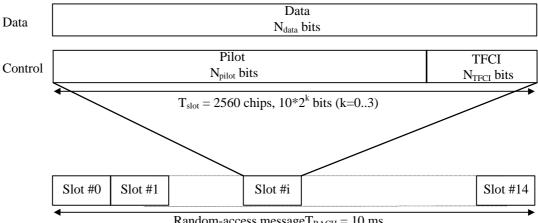



Figure 3: RACH access slot numbers and their spacing

The structure of the random-access transmission is shown in Figure . The random-access transmission consists of one or several *preambles* of length 4096 chips and a *message* of length 10 or 20 ms. The message length is informed by BCH or by higher layers.

Figure 4: Structure of the random-access transmission.

5.2.2.1.2 RACH preamble part


The preamble part of the random-access burst consists of 256 repetitions of a signature. There are a total of 16 different signatures, based on the Hadamard code set of length 16 (see [4] for more details).

5.2.2.1.3 RACH message part for 10 ms message

Figure 5 shows the structure of the Random-access message part for 10 ms message length. The 10 ms message is split into 15 slots, each of length $T_{slot} = 2560$ chips. Each slot consists of two parts, a data part that carries Layer 2 information and a control part that carries Layer 1 control information. The data and control parts are transmitted in parallel.

The data part consists of $10*2^k$ bits, where k=0,1,2,3. This corresponds to a spreading factor of 256, 128, 64, and 32 respectively for the message data part.

The control part consists of 8 known pilot bits to support channel estimation for coherent detection and 2 TFCI bits. This corresponds to a spreading factor of 256 for the message control part. The pilot bit pattern is described in table 8. The total number of TFCI bits in the random-access message is 15*2 = 30. The TFCI value corresponds to a certain transport format of the current Random-access message.

Random-access message $T_{RACH} = 10 \text{ ms}$

Figure 5: Structure of the random-access message part for 10 ms message.

Slot Format #i	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	SF	Bits/ Frame	Bits/ Slot	N _{data}
0	15	15	256	150	10	10
1	30	30	128	300	20	20
2	60	60	64	600	40	40
3	120	120	32	1200	80	80

Table 6: Random-access message data fields.

Table 7: Random-access message control fields

Slot Format #i	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	SF	Bits/ Frame	Bits/ Slot	N _{pilot}	N _{TFCI}
0	15	15	256	150	10	8	2

Table 8: Pilot bit patterns for I	RACH message part with $N_{pilot} = 8$.
-----------------------------------	--

				N _{pilo}	t = 8			
Bit #	0	1	2	3	4	5	6	7
Slot #0	1	1	1	1	1	1	1	0
1	1	0	1	0	1	1	1	0
2	1	0	1	1	1	0	1	1
3	1	0	1	0	1	0	1	0
4	1	1	1	0	1	0	1	1
5	1	1	1	1	1	1	1	0
6	1	1	1	1	1	0	1	0
7	1	1	1	0	1	0	1	0
8	1	0	1	1	1	1	1	0
9	1	1	1	1	1	1	1	1
10	1	0	1	1	1	0	1	1
11	1	1	1	0	1	1	1	1
12	1	1	1	0	1	0	1	0
13	1	0	1	0	1	1	1	1
14	1	0	1	0	1	1	1	1

5.2.2.1.4 RACH message part for 20 ms message

The structure of Random-access message part for 20 ms message length is the same as two 10 ms Random-access messages sent consecutively.