CHANGE REQUEST

 page for instructions on how to fill in this form correctly.
25.222 CR 001rv2 Current Version: 3.0.0

GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow
$\uparrow C R$ number as allocated by MCC support team

For submission to: RAN \#6
list expected approval meeting \# here \uparrow

Form: CR cover sheet, version 2 for 3GPP and SMG -
The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.do
Proposed change affects:
(U)SIM \square ME X UTRAN / Radio \mathbf{X} Core Network \square
(at least one should be marked with an X)
Source:
Siemens, LGIC
Date: 20.11.99
Subject: \quad Correction of rate matching parameters for repetition after 1st Interleaving in 25.222

Work item:

Category:	F	Correction	X	Release:	Phase 2	
	A	Corresponds to a correction in an earlier release			Release 96	
(only one category	B	Addition of feature			Release 97	
shall be marked	C	Functional modification of feature			Release 98	
with an X)	D	Editorial modification			Release 99	
					Release 00	

Reason for For rate matching after first interleaving the formula was erroneous for high repetition change: rates.

Clauses affected: 4.2.7.1 Determination of rate matching parameters

Other specs	Other 3G core specifications Offected:	Other GSM core specifications MS test specifications BSS test specifications	
	\rightarrow List of CRs:		
	\rightarrow List of CRs:		
	\rightarrow	\rightarrow List of CRs:	
	\rightarrow List of CRs:		

Other	Identical change should be introduced in 25.212 as well.
comments:	Revision 2: Editorial revision due to new CR-form and official version 3.0.0

4.2.7.1 Determination of rate matching parameters

The following relations are used when calculating the rate matching pattern:

$$
\begin{aligned}
Z_{0, j} & =0 \\
Z_{i j} & =\left\lfloor\frac{\sum_{m=1}^{i} R M_{m} \cdot N_{m j}}{\sum_{m=1}^{I} R M_{m} \cdot N_{m j}} \cdot N_{\text {data, } j}\right\rfloor \quad \text { for all } \mathrm{i}=1 . . \mathrm{I} \\
\Delta N_{i j} & =Z_{i j}-Z_{i-1, j}-N_{i j} \quad \text { for all } \mathrm{i}=1 . . \mathrm{I}
\end{aligned}
$$

Puncturing can be used to minimise the required transmission capacity. The maximum amount of puncturing that can be applied is signalled from higher layers and denoted by PL. The possible values for $\mathrm{N}_{\text {data }}$ in depend on the number of dedicated physical channels and on their characteristics (spreading factor, length of midamble and TFCI, usage of TPC and multiframe structure), respectively. The supported set of $\mathrm{N}_{\text {data }}$, denoted SET0, depends on the UE capabilities.
$\mathrm{N}_{\text {data, } \mathrm{j}}$ for the transport format combination j is determined by executing the following algorithm:

$$
\begin{aligned}
& \mathrm{SET} 1=\left\{\mathrm{N}_{\mathrm{data}} \text { in SET0 such that } N_{\text {data }}-P L \cdot \sum_{x=1}^{I} \frac{R M_{x}}{\min _{1 \leq y \leq I}\left\{R M_{y}\right\}} \cdot N_{x, j} \text { is non negative }\right\} \\
& \mathrm{N}_{\mathrm{data}, \mathrm{j}}=\min \text { SET } 1
\end{aligned}
$$

The number of bits to be repeated or punctured, $\Delta \mathrm{N}_{\mathrm{ij}}$, within one radio frame for each TrCHi is calculated with the relations given at the beginning of this section for all possible transport format combinations j and selected every radio frame.

If $\Delta \mathrm{N}_{\mathrm{ij}}=0$ then the output data of the rate matching is the same as the input data and the rate matching algorithm of section 4.2.7.3 does not need to be executed.

Otherwise, the rate matching pattern is calculated with the algorithm described in section 4.2.7.3. For this algorithm the parameters $\mathrm{e}_{\mathrm{ini}}, \mathrm{e}_{\text {plus }}, \mathrm{e}_{\text {minus }}$, and N are needed, which are calculated according to the following equations:

For convolutional codes,

```
\(\mathrm{a}=2\)
\(\Delta \mathrm{N}=\Delta \mathrm{N}_{\mathrm{i}, \mathrm{j}}\)
\(\mathrm{N}=\mathrm{N}_{\mathrm{i}, \mathrm{j}}\)
\(\underline{R}=\Delta N_{i j} \bmod N_{i j}--\) note: in this context \(\Delta N_{i j} \bmod N_{i j}\) is in the range of 0 to \(N_{i j}-1\) i.e. \(-1 \bmod 10=9\).
    if \(\mathrm{R} \neq 0\) and \(2 \mathrm{R} \leq \mathrm{N}_{\mathrm{ij}}\)
    then \(\mathrm{q}=\left\lceil\mathrm{N}_{\mathrm{ij}} / \mathrm{R}\right\rceil\)
```

 else
 \(\mathrm{q}=\left\lceil\mathrm{N}_{\mathrm{ij}} /\left(\mathrm{R}-\mathrm{N}_{\mathrm{ij}}\right)\right]\)
 endif
 -- note: q is a signed quantity.
$q=\lfloor\mathrm{N} H(|\Delta \mathrm{~N}|)\rfloor$

If q is even
then $\mathrm{q}^{\prime}=\mathrm{q} \pm-\operatorname{gcd}\left(\left\lfloor\mathrm{q} \mid, \mathrm{F}_{\mathrm{i}}\right) / \mathrm{F}_{\mathrm{i}}--\right.$ where $\operatorname{gcd}\left(\left\lfloor\mathrm{q} \underline{,}, \mathrm{F}_{\mathrm{i}}\right)\right.$ means greatest common divisor of $\left\lfloor\mathrm{q} \mid\right.$ and F_{i} -- note that q ' is not an integer, but a multiple of $1 / 8$
else

$$
q^{\prime}=q
$$

endif

$$
\text { for } \mathrm{x}=0 \text { to } \mathrm{F}_{\mathrm{i}}-1
$$

$$
\left.\left.\mathrm{S}\left(\mathrm{I}_{\mathrm{F}}\left(\left[\underline{\lfloor } \mathrm{x}^{*} \mathrm{q}^{\prime}\right\rfloor\right] \bmod \mathrm{F}_{\mathrm{i}}\right)\right)=\left(\mathrm{H} \underline{\lfloor } \mathrm{x}^{*} \mathrm{q}^{\prime}\right\rfloor \mid 7 \operatorname{div} \mathrm{~F}_{\mathrm{i}}\right)-
$$

eEnd for

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{ini}}=\left(\mathrm{a} \cdot \mathrm{~S}\left(\mathrm{n}_{\mathrm{i}}\right) \cdot|\Delta \mathrm{N}|+\mathrm{N}\right) \bmod \mathrm{a} \cdot \mathrm{~N}, \text { if } \mathrm{e}_{\mathrm{ini}}=0 \text { then } \mathrm{e}_{\mathrm{ini}}=\mathrm{a} \cdot \mathrm{~N} \\
& \mathrm{e}_{\mathrm{plus}}=\mathrm{a} \cdot \mathrm{~N} \\
& e_{\text {minus }}=a \cdot|\Delta N|
\end{aligned}
$$

puncturing for $\Delta N<0$, repeating otherwise.
For turbo codes, if repetition is to be performed, such as $\Delta N_{i, j}>0$, parameters for turbo codes are the same as parameter for convolutional codes. If puncturing is to be performed, parameters are as follows.
$\mathrm{a}=2$ for Y sequence, and
$\mathrm{a}=1$ for Y^{\prime} sequence.

$$
\Delta \mathrm{N}=\left\{\begin{array}{l}
\left\lfloor\Delta N_{i, j} / 2\right\rfloor \text { for } \mathrm{Y} \text { sequence } \\
\left\lfloor\Delta N_{i, j} / 2\right\rceil \text { for } \mathrm{Y}^{\prime} \text { sequence }
\end{array}\right.
$$

$$
\mathrm{N}=\left\lfloor\mathrm{N}_{\mathrm{i}, \mathrm{j}} / 3\right\rfloor
$$

$$
\mathrm{q}=\lfloor\mathrm{N} /|\Delta \mathrm{N}|\rfloor
$$

$$
\text { if }(\mathrm{q} \leq 2)
$$

$$
\text { for } x=0 \text { to } F_{i}-1
$$

if(Y sequence)
$\mathrm{S}\left[\mathrm{I}_{\mathrm{F}}\left[(3 \mathrm{x}+1) \bmod \mathrm{F}_{\mathrm{i}}\right]\right]=\mathrm{x} \bmod 2 ;$
if(Y^{\prime} sequence)

$$
\mathrm{S}\left[\mathrm{I}_{\mathrm{F}}\left[(3 \mathrm{x}+2) \bmod \mathrm{F}_{\mathrm{i}}\right]\right]=\mathrm{x} \bmod 2
$$

end for
else
if q is even
then $q^{\prime}=q-\operatorname{gcd}\left(q, F_{i}\right) / F_{i} \quad-$ where $\operatorname{gcd}\left(q, F_{i}\right)$ means greatest common divisor of q and F_{i}
-- note that q^{\prime} is not an integer, but a multiple of $1 / 8$

$$
\text { else } \quad q^{\prime}=q
$$

endif
for $x=0$ to $F_{i}-1$

