\uparrow CR number as allocated by MCC support team

For submission to: RAN \#9 list expected approval meeting \# here \uparrow

for approval	
for information	\mathbf{X}

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Work item: TS25.221

Category:
(only one category
shall be marked
with an X)

F Correction
A Corresponds to a correction in an earlier release
B Addition of feature
C Functional modification of feature
D Editorial modification

Release: Phase 2
Release 96
Release 97
Release 98
Release 99
Release 00

Reason for Improvement in performance by reduction of false paths. change:

Clauses affected: $\quad 5.4$

Other comments:

<--------- double-click here for help and instructions on how to create a CR.

5.4 The physical synchronisation channel (PSCH)

In TDD mode code group of a cell can be derived from the synchronisation channel. Additional information, received from higher layers on SCH transport channel, is also transmitted to the UE in PSCH in case 3 from below. In order not to limit the uplink/downlink asymmetry the PSCH is mapped on one or two downlink slots per frame only.

There are three cases of PSCH and PCCPCH allocation as follows:
Case 1) PSCH and PCCPCH allocated in TS\#k, k=0... 14
Case 2) PSCH in two TS and PCCPCH in the same two TS: TS\#k and TS\#k+8, $\mathrm{k}=0 \ldots 6$
Case 3) PSCH in two TS, TS\#k and TS\#k $+8, \mathrm{k}=0 \ldots 6$, and the PCCPCH in TS\#i, $\mathrm{i}=0 \ldots 14$, pointed by PSCH. Pointing is determined via the SCH from the higher layers.

These three cases are addressed by higher layers using the SCCH in TDD Mode. The position of PSCH (value of k) in frame can change on a long term basis in any case.

Due to this PSCH scheme, the position of PCCPCH is known from the PSCH. The PCCPCH are using burst type 1, spreading code $a_{Q=16}^{(k=1)}$ and midamble $m_{1}^{(1)}$. To simplify measurements of PCCPCH power, this midamble shall not be used by other physical channels in the same timeslot.

Figure 15 is an example for transmission of $\mathrm{PSCH}, \mathrm{k}=0$, of Case 2 or Case 3.

Figure 15: Scheme for Physical Synchronisation channel PSCH consisting of one primary sequence C_{p} and $N=3$ parallel secondary sequences in slot k and $k+8$
(example for $\mathrm{k}=0$ in Case 2 or Case 3)
As depicted in figure 15, the PSCH consists of a primary and three secondary code sequences with 256 chips length. The PSCH is modulated by $\mathrm{a}+1$ or -1 to aid in cell identification, which is useful for GSM to TDD handover. This modulation is presented in Section 7.2 of [8]. The primary and secondary code sequences are defined in TS 25.223 chapter 7 'Synchronisation codes'. The secondary codes are transmitted either in the I channel or the Q channel, depending on the code group.

Due to mobile to mobile interference, it is mandatory for public TDD systems to keep synchronisation between base stations. As a consequence of this, a capture effect concerning PSCH can arise. The time offset $\mathrm{t}_{\text {offset }}$ enables the system to overcome the capture effect.

The time offset $\mathrm{t}_{\text {offset }}$ is one of 32 values, depending on the cell parameter, thus on the code group of the cell, cf. 'table 7 Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and $\mathrm{t}_{\text {offset }}$ ' in [8]. Note that the cell parameter will change from frame to frame, cf. 'Table 8 Alignment of cell parameter cycling and system frame number' in [8], but the cell will belong to only one code group and thus have one time offset $\mathrm{t}_{\text {offset. }}$ The exact value for $\mathrm{t}_{\text {offset }}$, regarding column 'Associated $\mathrm{t}_{\text {offset }}$ ' in table 7 from [8] is given by:

$$
\begin{aligned}
t_{\text {offset,n}} & =n \cdot T_{c}\left\lfloor\frac{2560-96-256}{31}\right\rfloor \\
& =n \cdot 71 T_{c} ; n=0, \ldots, 31
\end{aligned}
$$

Please note that $\lfloor x\rfloor$ denotes the largest integer number less or equal to x and that T_{c} denotes the chip duration.

