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AI/ML progress in 5GC and RAN (R16/17) 

• 3GPP has started work on AI for 5GC and RAN, e.g., eNA, eNA_ph2, FS_eMDAS 

• RAN3 study item (FS_NR_ENDC_data_collect) focuses on use cases for higher layer, e.g., 
load balancing etc 
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AI/ML for physical layer 

• AI/ML for physical layer is expected to improve system performance, and gains 
lots of interest from both industry and academia. 

• Advantages of AI/ML for physical layer 
– Learn hidden structure, hidden parameters and approximate any non-linear function 

– Optimization for system without precise mathematical model 

• Challenges for AI/ML for physical layer 
– Algorithm suitable for wireless communication is unknown, CNN, DNN, DRL… 

– Lacking well recognized dataset for training, like ImageNet 

– Real-time training/inference may be a challenging task for gNB and UE 

• Two approaches to use AI/ML for physical layer 
– AI-integrated physical layer 

– AI-empowered physical layer 
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AI-integrated physical layer 

• One or multiple modules of a traditional physical layer processing chain is substituted by AI-based 
module, e.g.,  

– Channel coding, modulation, beamforming 

• This is a fundamental change of communication system and is capable of improving system performance 
significantly. 

– Learning the optimal design of a specific module, e.g., modulation 

• This is a long-term evolution, huge amount of work required 
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AI-empowered physical layer 

• Parameters/configurations of one or more modules of a physical layer processing chain is optimized by 
an AI module. 

• This is more like optimization algorithm we used in the past. The difference is that AI module is data-
driven instead of model-driven. 

• This might be feasible in short-term, e.g., Rel-18, Rel-19 
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AI-empowered physical layer 

• AI@Network 

– The AI module is stored at network 

– Training and inference happen at network 

– UE provides information reporting to help network 
train model or get inference result – spec. impact 

• AI@UE 

– The AI module is stored at the UE 

– Inference happens only at UE 

– Network provides signalling for UE to train model 
or provides AI module – spec. impact 

• AI@Network and UE 

– Both network and UE store parts of the AI module 

– The training and inference involve both of the 
network and UE – spec. impact 

– Higher complexity and extra burden on air 
interface is expected 
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Potential usages of AI 

• AI for MIMO 

– AI for beam prediction/trajectory 
prediction (AI@Network) 

– AI for CSI compression/prediction 
(AI@Network, AI@UE and 
Network) 
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Potential usages of AI 

• AI for positioning (AI@Network) 
– UE provides measurements, e.g., received signal power, for LMF to calculate position using a well 

trained neural network 

– The network is scenario-specific 

• AI for performance improvement – similar to performance improvement with advanced 
algorithm such as MMSE-IRC 
– Channel estimation (AI@UE) -> enhancement on reference signal design 

– Demodulation (AI@UE) -> enhancement on DMRS 

– Decoding (AI@UE)  
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Potential work on AI/ML for physical layer 

• Study the feasibility of AI-empowered  physical layer 
– Identify use cases of AI-empowered physical layer 

– Study the methodology for evaluation of AI/ML algorithms for physical 
layer 

• Methodology to construct data set for training and validation 

• Methodology for fair comparison between different AI/ML algorithms 

– The study should avoid the case that an AI module is distributed between 
network and UE due to its higher complexity and extra burden on air 
interface 
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