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ML/AI for Wireless: Motivation

• ML/AI, deep learning, has proven to be a powerful mechanism in many image-processing 
and speech recognition related tasks and in developing data-driven signal processing 
algorithms.

• Artificial neural networks (ANN) or neural networks (NN) in short are generally designed 
to approximate other functions by selecting the parameter  to minimize the 
approximation error.
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• Fully connected neural network (FCN) can approximate any continuous function arbitrarily well by utilizing a large but finite
number of parameters [1].

• Convolutional neural network (CNN) and recurrent neural network (RNN) are good at approximating certain types of 
functions by extracting spatial and temporal features from the input while requiring fewer parameters [2].

• Numerous research works have demonstrated deep learning is very effective in dealing with PHY communication problems [3]. A
natural question/task for us is to identify the use cases where the powerful function  approximation capability can be utilized to 
achieve large improvements compared to conventional techniques. 

• ML/AI related activities in the standards:

• RAN3 study on further enhancements for data collection (RP-201304) has been approved and upper layer RAN use cases 
are agreed/approved in RAN3 #112-e.

• In the effort to answer the above question, ITU launched “AI/ML 5G Challenge” last year to explore how to best apply 
ML/AI in communication networks. Various PHY layer use cases were part of the challenge competition, e.g., channel 
estimation, best MIMO beam selection.

• ITU-T Y.3170 SERIES Y “Machine learning in future networks” has introduced PHY layer use cases.

AI/ML



ML/AI for Wireless Potentials
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Candidate problem areas for ML/AI

• Complicated non-convex optimization 

problems that are lacking optimal 

analytical solutions.

• Computationally complicated problems 

that are too costly to solve in real-time 

due to latency constraints.

• Increased margin of error caused by a 

chain of multiple sub-optimal solutions.

• Finding optimal solutions in ever-

changing real-world with many 

imperfections.

• CSI compression, channel estimation, 

reconstruction and prediction

• Beam selection/tracking 

• mmWave signal blockage detection 

and prediction

• Link adaptation (MCS selection)

• End-to-end PHY layer optimization or 

joint-optimization of multi-functions.

• Data-driven user localization

Potential Use Cases



ML/AI for PHY: CSI feedback compression and reconstruction

• ML/AI based CSI feedback compression and reconstruction

• Problem: In FDD, as the number of antenna increases, the feedback quantities increase dramatically

• ML/AI approach

• Device side: using NN encoder to encode the original CSI matrix and output an Mx1 encoded 
vector, where M << Nc x Nt

• gNB side: NN decoder decode the received input Mx1 then predict the original full CSI matrix.

• Potential benefits:

• Improve CSI reconstruction accuracy using low complexity NN encoder

• May apply lossless compression after encoding to further reduce the overhead
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ML/AI for PHY: CSI feedback compression and reconstruction

• Preliminary results for ML/AI-based CSI compression
• Antennas at gNB: 4 x 8

• Antennas at UE: 1

• Subcarriers: 2048

• Evaluation metrics: NMSE, cosine similarity
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Compression 

Rate

NMSE Cosine Similarity

64X 0.006287 0.937651

128X 0.011067 0.898369

ML model training and validation loss

(compression rate =64x)



ML/AI for PHY: Channel Prediction

• ML/AI based Channel Prediction

• Problem: In rapid channel variation scenarios, e.g., high mobility, accurate channel estimation is 
especially important but more challenging 

• ML/AI approach

• Predict subsequent channels by exploiting the strong temporal correlation in channel history

• Potential benefits:

• Reduce RS overhead with improved accuracy

• Adaptive to changing environment in mobility scenario
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ML/AI for PHY: Beam Selection

• ML/AI based Beam Selection

• Problem:

• When the number of antennas is large, it is not possible to obtain complete channel state 
information to determine the optimal beamforming due to high signaling overhead.

• Using a limited set of beamforming vectors is a practical alternative. The transceiver can 
switch beams among a predefined beam sets (gNB performs exhaustive search to find the 
optimal beam vector).
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• ML/AI approach

• Using the received signals at Rx, 
adaptively find the beamforming vector 
that maximize the channel capacity.  

• Potential benefits:

• Reduce the time/search overhead

• Improve accuracy / spectral 
efficiency

• Adaptive to changing environment



ML/AI for PHY: mmWave blockage prediction

• ML/AI based mmWave blockage prediction

• Problem:

• mmWave bands provide many benefits like increased performance and higher BW. However, 
mmWave radio signals are sensitive to blockage. Sudden blockage in the LOS link leads to 
abrupt disconnection.
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• ML/AI approach

• Predict the upcoming blockage in advance using learned pre-blockage characteristics from 
measurements prior to the blockage.  

• Predict the timing when the blockage will occur.

• Potential benefits

• Allow proactive HO to another gNB

• Reduce overhead associated with disconnection then re-establishment



ML/AI for PHY: Link Adaptation (MCS Selection)
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• Problem: channel fading causes 

variations in the SNR

• Large-scale and small-scale variations

• Due to time frequency channel dynamics and 

interference

• 5G Solution: link adaptation

• Rate control (AMC) + Transmit power control 

(uplink)

• Goal is to enable reliable transmission at a 

data rate that maximizes the throughput

• In this proposal, we focus on AMC (MCS 

Selection).

• 5G Approaches: 

• Inner Loop Link Adaptation (ILLA)

• Outer Loop Link Adaptation (OLLA)

Issues of ILLA and OLLA
• Performance depends heavily on the accuracy of CSI; 

• The CQI feedback is often out of date and cannot capture the interference in 
the actual downlink transmission

• Link adaptation in 5G with large numbers of antennas and channels is more 
challenging due to the high CSI dimension

• The initial OLLA offset parameter, if not selected carefully, could lead to a 
slow convergence;

• Slow convergence of the OLLA has a negative impact on the performance;



ML/AI for PHY: Link Adaptation (MCS Selection)

• How can ML/AI help MCS selection?
• By using historical channel condition data and corresponding KPIs, ML/AI can help to find 

the optimized MCS and rank.

• Applying ML/AI to the problem
• ML/AI can be used to enhance performance of ILLA and/or OLLA

• Example: ML/AI can be used to adapt the step size of OLLA

• As an ultimate form, ML/AI can be used to replace ILLA and/or OLLA. 
• In this case, ML/AI can learn a policy to select the most appropriate MCS index for a certain 

environment state

• Potential benefits:
• Higher link throughput

• Faster convergence time

• Higher spectral efficiency

• Lower block error rate
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ML/AI for PHY: Joint optimization of multi-functions at PHY 

• Multi-function optimization at PHY using deep learning

• Problem:

• Conventional block-by-block design communication model increases complexity of PHY layer 
optimization.

• When applying ML/AI approach to individual blocks, prediction errors may propagate, and the 
amount of data required to train multiple ML/AI models may be massive.
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• Multi-function optimization using ML/AI

• Tx side: feeding information bits (e.g., k-bit 
codeword) into a NN information encoder.

• Rx side: feeding the received characteristic 
representation of the information bits into a 
NN information decoder to estimate the 
original message(s).

• Potential benefits

• Joint optimization of multiple functional 
blocks in PHY

• Alleviate the data demand for training 
multiple ML/AI models, one for each 
block.



ML/AI for Wireless: Proposal
• Propose to have an R18 SI to:

• Focus on study ML/AI based PHY/link layer enhancement

• Consider the following ML/AI based PHY enhancement use cases

• CSI feedback compression and reconstruction, channel prediction

• Beam selection/tracking enhancement

• mmWave signal blockage prediction

• Link Adaption (MCS Selection)

• Multi-functional-block PHY optimization

• For each PHY enhancement use case:

• Study the potential gains using ML/AI based approach in comparison with existing method

• Investigate deployment scenario, feasibility, trade-offs, and justification for ML/AI based approach

• Study standardization impacts (leveraging the framework introduced in the R17 SI FS_NR_ENDC_data_collect), 
including:

• New input and output requirements related to the use case

• Information to be exchanged across interfaces and interoperability

• Requirements on hardware, software, UE capability etc.

• Use case prioritization based on preliminary performance evaluation and standards impact

• Study methodology of performance and robustness evaluation for ML/AI-based approach for PHY layer enhancement 

• Consider establishing common test datasets to facilitate performance evaluation and benchmark study
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