

	
3GPP TSG-RAN5 Meeting #2022-TTCN email	R5s220117
Online, , 13th Dec 2021 - 31st Dec 2022
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	38.523-3
	CR
	2318
	rev
	-
	Current version:
	17.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at 
http://www.3gpp.org/Change-Requests.

	



	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	



	

	Title:	
	Correction for TCP function

	
	

	Source to WG:
	Keysight Technologies

	Source to TSG:
	R5

	
	

	Work item code:
	5GS_NR_LTE-UEConTest
	
	Date:
	2022-02-08

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-17

	
	Use one of the following categories:
F  (correction)
A  (mirror corresponding to a change in an earlier 													release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	some scenarios (including emergency call release) the SS and UE may be attempting to close multiple TCP sockets at the same time. In the TTCN the call to f_TCP_Close() is usually blocking waiting for a confirmation from SS. Any sockets closed by the UE during this time will generate an IP_SOCKET_IND which will then not be handled and will remain in the message queue, blocking the eventually IP_SOCKET_CNF and causing test case execution to hang.


	
	

	Summary of change:
	Add an option in f_TCP_Close() to absorb any TCP close indication coming while waiting for TCP close cnf, even for a different TCP connection.


	
	

	Consequences if not approved:
	IMS test case execution can sometimes stall 

	
	

	Clauses affected:
	11,4,x and others

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ... 

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ... 

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ... 

	
	

	Other comments:
	

	
	

	This CR's revision history:
	



Page 1


[bookmark: _Toc95247795]Table of Contents
Table of Contents	2
1	Overview	3
2	Corrections required	3
2.1	Change 1	3


1. [bookmark: _Toc122434485][bookmark: _Toc95247796]Overview
This document lists all the changes needed to correct issues in the ATS iwd-TTCN3-B2020-09_D12wk49 related to the title of this CR.
Contact:	Shaun Harry
	shaun.harry@keysight.com


1. [bookmark: _Toc122434488][bookmark: _Toc295288959][bookmark: _Toc95247797]Corrections required
1. [bookmark: _Toc30685521][bookmark: _Toc83829269][bookmark: _Toc95247798]Change 1
	Function name
	fl_TCP_Close()

	Reason for change
	In some scenarios (including emergency call release) the SS and UE may be attempting to close multiple TCP sockets at the same time. In the TTCN the call to f_TCP_Close() is usually blocking waiting for a confirmation from SS. Any sockets closed by the UE during this time will generate an IP_SOCKET_IND which will then not be handled and will remain in the message queue, blocking the eventually IP_SOCKET_CNF and causing test case execution to hang.


	Summary of change
	Add an option in f_TCP_Close() to absorb any TCP close indication coming while waiting for TCP close cnf, even for a different TCP connection.

Note : This is an extension of the correction proposed under R5s220106. In that CR the main scenario being addressed was the SS and UE closing the same TCP socket at the same time. This CR is addressing the more general case that the UE may be concurrently closing a different TCP socket, but the result is the same and will cause test case execution to hang. So the correction of R5s220106 may no longer be required following the correction in the current CR. The “before” code below is based on R5s220106 implemented.

	TTCN module
	TCP_Functions.ttcn

	MCC160 Comment
	



Before Change
	function fl_TCP_Close(template (value) IP_Connection_Type p_IP_Connection,
boolean p_WaitForCNF) runs on IP_PTC
{
IP_SOCK_CTRL.send(cs_TCP_CLOSE_REQ(p_IP_Connection));
if (p_WaitForCNF) {
alt {
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_CNF(p_IP_Connection)) { }
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_CNF(?)) { repeat; } /* @sic R5s170043: pending CNF for previous call with p_WaitForCNF==false sic@
* NOTE: in general the CNFs in case of p_WaitForCNF==false may occur at any time */
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_IND(cr_TCP_ConnectionId (p_IP_Connection.Local, *))) { repeat; }
}
}
}    



After Change
	function fl_TCP_Close(template (value) IP_Connection_Type p_IP_Connection,
boolean p_WaitForCNF) runs on IP_PTC
{
IP_SOCK_CTRL.send(cs_TCP_CLOSE_REQ(p_IP_Connection));
if (p_WaitForCNF) {
alt {
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_CNF(p_IP_Connection)) { }
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_CNF(?)) { repeat; } /* @sic R5s170043: pending CNF for previous call with p_WaitForCNF==false sic@
* NOTE: in general the CNFs in case of p_WaitForCNF==false may occur at any time */
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_IND(cr_TCP_ConnectionId (p_IP_Connection.Local, *))) { repeat; }
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_IND(?)) { repeat; }
}
}
}    




