Page 1

3GPP TSG-RAN5 Meeting #2019-TTCN email
R5s190706
Online, 16th Dec 2019, - 31st Dec 2019
	CR-Form-v12.0

	CHANGE REQUEST

	

	
	38.523-3
	CR
	0302
	rev
	-
	Current version:
	15.4.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Correction to f_NR5GC_RegistrationReject

	
	

	Source to WG:
	ROHDE & SCHWARZ

	Source to TSG:
	R5

	
	

	Work item code:
	5GS_NR_LTE-UEConTest
	
	Date:
	2019-08-09

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	In the current TTCN implementation of the function f_NR5GC_RegistrationReject the function f_NR5GC_RRC_Idle_Steps5_9_AKA is called before function f_NR_RRCRelease.

This causes problems because the function f_NR_RRCRelease tries to calls the function f_NR_RRCRelease(f_NR_RRCRelease_Common(f_NR_RRCRelease_Local(f_NR_SS_RRC_ReleaseSecurity, but the RRC security was never really configured since the function f_NR_RRC_ActivateSecurity is never called.

This needs to be addressed.

	
	

	Summary of change:
	Updated the functions f_NR_RRCRelease, f_NR_RRCRelease_Common and f_NR_RRCRelease_Local by adding a Boolean flag IsSecurityConfigured, which is by default set to true.

Based on the value of this variable, called the function f_NR_RRCRelease_Local(f_NR_SS_RRC_ReleaseSecurity.

As a consequence, updated the function f_NR5GC_RegistrationReject.

Please see below.

	
	

	Consequences if not approved:
	TTCN implementation will not be correct

	
	

	Clauses affected:
	All NR5GC testcases that use function f_NR5GC_RegistrationReject.

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	x
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	x
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

1.1 f_NR5GC_RegistrationReject
	Function name
	f_NR5GC_RegistrationReject

	Reason for change
	In the current TTCN implementation of the function f_NR5GC_RegistrationReject the function f_NR5GC_RRC_Idle_Steps5_9_AKA is called before function f_NR_RRCRelease.

This causes problems because the function f_NR_RRCRelease tries to calls the function f_NR_RRCRelease(f_NR_RRCRelease_Common(f_NR_RRCRelease_Local(f_NR_SS_RRC_ReleaseSecurity, but the RRC security was never really configured since the function f_NR_RRC_ActivateSecurity is never called.

This needs to be addressed.

	Summary of change
	Updated the functions f_NR_RRCRelease, f_NR_RRCRelease_Common and f_NR_RRCRelease_Local by adding a Boolean flag IsSecurityConfigured, which is by default set to true.

Based on the value of this variable, called the function f_NR_RRCRelease_Local(f_NR_SS_RRC_ReleaseSecurity.

As a consequence, updated the function f_NR5GC_RegistrationReject.

Please see below.

	TTCN module
	NR_5GC_NASSteps.ttcn

	MCC160 Comment
	

Before Change:
	<<SKIPPED CODE>>

// Step 8
 SRB.send(cas_NR_SRB_NasPdu_REQ(p_CellId,
 tsc_NR_RbId_SRB1, // No SRB2 so must be on SRB1
 cs_TimingInfo_Now,
 cs_NG_NAS_Request(tsc_SHT_IntegrityProtected_Ciphered /*WA#9_1_2_1 R5s190435 v_SecurityHeader*/, cs_NG_REGISTRATION_REJECT(cs_GMM_GSM_Cause(omit, p_Cause)))));
 // Step 9
 f_NR_RRCRelease (p_CellId);
 // Step 10
<<SKIPPED CODE>>

After Change:

	<<SKIPPED CODE>>

// Step 8
 SRB.send(cas_NR_SRB_NasPdu_REQ(p_CellId,
 tsc_NR_RbId_SRB1, // No SRB2 so must be on SRB1
 cs_TimingInfo_Now,
 cs_NG_NAS_Request(tsc_SHT_IntegrityProtected_Ciphered /*WA#9_1_2_1 R5s190435 v_SecurityHeader*/, cs_NG_REGISTRATION_REJECT(cs_GMM_GSM_Cause(omit, p_Cause)))));
 // Step 9
 f_NR_RRCRelease (p_CellId,-,false);//WA#SA
 // Step 10

<<SKIPPED CODE>>

1.2 f_NR_RRCRelease_Common
	Function name
	f_NR_RRCRelease_Common

	Reason for change
	This change is needed as a result of change 1.1

	Summary of change
	Please see below

	TTCN module
	NR5GC_RRCSteps.ttcn

	MCC160 Comment
	

Before Change:

	function f_NR_RRCRelease_Common(NR_CellId_Type p_CellId,
 template(value) DL_DCCH_Message p_RRCRelease,
 template (value) TimingInfo_Type p_TimingInfo := cs_TimingInfo_Now) runs on NR_BASE_PTC
 {
 var SubFrameTiming_Type v_TimingAtT; // time T: sending of RRCConnectionRelease acc. to 38.523-3 clause 7.3.5.2
 var SubFrameTiming_Type v_TimingNow;
 var integer v_MilliSecondsDelay := tsc_NR_DelayBeforeIntraCellHO;
 var integer v_Duration;
 timer t_Timer;
 if (f_TimingInfo_IsNow(p_TimingInfo)) {
 v_TimingAtT := f_NR_GetNextSendOccasion_DL(p_CellId, v_MilliSecondsDelay);
 v_Duration := v_MilliSecondsDelay;
 } else { // dedicated timing info is given
 v_TimingAtT := valueof(p_TimingInfo.SubFrame); //It is assume that there is no need to handle slot in the duration
 v_TimingNow := f_NR_GetCurrentTiming(p_CellId);
 v_Duration := f_SubFrameTiming_Duration(v_TimingNow, v_TimingAtT);
 }
 v_Duration := v_Duration + tsc_NR_DelayAfterRRCRelease;
 t_Timer.start (int2float(v_Duration) / 1000.0);
 /* Step 1: At T: Send RRCRelease */
 SRB.send(cas_NR_SRB1_RrcPdu_REQ(p_CellId, cs_TimingInfo_NR(v_TimingAtT), p_RRCRelease)); //@sic R5s190306 sic@
 f_NR_RRCRelease_Local(p_CellId, v_TimingAtT);
 alt {
 [] t_Timer.timeout {}
 [] SRB.check(receive(car_NR_SRB0_RrcPdu_IND_AnyCell(cr_38508_RRCSetupRequest(-)))) {
 // there is an RRCConnectionRequest sent by the UE which can be received by TTCN-3 in a sub-sequent function
 t_Timer.stop;
 }
 }
 }

After Change:

	function f_NR_RRCRelease_Common(NR_CellId_Type p_CellId,
 template(value) DL_DCCH_Message p_RRCRelease,
 template (value) TimingInfo_Type p_TimingInfo := cs_TimingInfo_Now,
 boolean IsSecurityConfigured := true /*WA#SA*/) runs on NR_BASE_PTC
 {
 var SubFrameTiming_Type v_TimingAtT; // time T: sending of RRCConnectionRelease acc. to 38.523-3 clause 7.3.5.2
 var SubFrameTiming_Type v_TimingNow;
 var integer v_MilliSecondsDelay := tsc_NR_DelayBeforeIntraCellHO;
 var integer v_Duration;
 timer t_Timer;
 if (f_TimingInfo_IsNow(p_TimingInfo)) {
 v_TimingAtT := f_NR_GetNextSendOccasion_DL(p_CellId, v_MilliSecondsDelay);
 v_Duration := v_MilliSecondsDelay;
 } else { // dedicated timing info is given
 v_TimingAtT := valueof(p_TimingInfo.SubFrame); //It is assume that there is no need to handle slot in the duration
 v_TimingNow := f_NR_GetCurrentTiming(p_CellId);
 v_Duration := f_SubFrameTiming_Duration(v_TimingNow, v_TimingAtT);
 }
 v_Duration := v_Duration + tsc_NR_DelayAfterRRCRelease;
 t_Timer.start (int2float(v_Duration) / 1000.0);
 /* Step 1: At T: Send RRCRelease */
 SRB.send(cas_NR_SRB1_RrcPdu_REQ(p_CellId, cs_TimingInfo_NR(v_TimingAtT), p_RRCRelease)); //@sic R5s190306 sic@
 f_NR_RRCRelease_Local(p_CellId, v_TimingAtT,IsSecurityConfigured /*WA#SA*/);
 alt {
 [] t_Timer.timeout {}
 [] SRB.check(receive(car_NR_SRB0_RrcPdu_IND_AnyCell(cr_38508_RRCSetupRequest(-)))) {
 // there is an RRCConnectionRequest sent by the UE which can be received by TTCN-3 in a sub-sequent function
 t_Timer.stop;
 }
 }
 }

1.3 f_NR_RRCRelease_Local
	Function name
	f_NR_RRCRelease_Local

	Reason for change
	This change is needed as a result of change 1.1

	Summary of change
	Please see below

	TTCN module
	NR5GC_RRCSteps.ttcn

	MCC160 Comment
	

Before Change:

	function f_NR_RRCRelease_Local(NR_CellId_Type p_CellId,
 SubFrameTiming_Type p_TimingAtT) runs on NR_BASE_PTC
 { /* NOTE: the function schedules all steps to release and reconfigure the SRBs and (default) DRB
 * => this will in fact happen in the future */
 var SubFrameTiming_Type v_Timing := p_TimingAtT;
 var IntegerList_Type v_DrbIdList := f_NR_GetActiveDRBs(p_CellId);
 /* Step 1 At T: Send RRCRelease(done already), stop UL grants */
 f_NR_ULGrantConfiguration_Stop(p_CellId, cs_TimingInfo_NR(v_Timing));
 /* Step 2 at T+5ms: release security */
 v_Timing := f_SubFrameTiming_AddMilliSeconds(p_TimingAtT, 5);
 f_NR_SS_RRC_ReleaseSecurity(p_CellId, cs_TimingInfo_NR(v_Timing));
 /* Step 3 at T+10ms: Release DRX configuration at the SS. */
 //NR FFS DRX not configured so far
 /* Step 4: At T + 15ms: Release measurement gap configuration at the SS. */
 //NR FFS no meas gap so far
 /* Step 5 at T+55ms: Release SRBs and DRBs */
 v_Timing := f_SubFrameTiming_AddMilliSeconds(p_TimingAtT, 55);
 f_NR_SS_SRBs_DRBs_Release(p_CellId, cs_TimingInfo_NR(v_Timing), v_DrbIdList);
 /* Step 6 at T+60ms: Configure SRBs */
 // DRBs to be reconfigure during RRCReconfiguration
 v_Timing := f_SubFrameTiming_AddMilliSeconds(p_TimingAtT, 60);
 f_NR_SS_SRBs_DRBs_Config(p_CellId, cs_TimingInfo_NR(v_Timing), omit); //@sic R5s190109 change 23 sic@
 }

After Change:

	function f_NR_RRCRelease_Local(NR_CellId_Type p_CellId,
 SubFrameTiming_Type p_TimingAtT,
 boolean IsSecurityConfigured := true /*WA#SA*/) runs on NR_BASE_PTC
 { /* NOTE: the function schedules all steps to release and reconfigure the SRBs and (default) DRB
 * => this will in fact happen in the future */
 var SubFrameTiming_Type v_Timing := p_TimingAtT;
 var IntegerList_Type v_DrbIdList := f_NR_GetActiveDRBs(p_CellId);
 /* Step 1 At T: Send RRCRelease(done already), stop UL grants */
 f_NR_ULGrantConfiguration_Stop(p_CellId, cs_TimingInfo_NR(v_Timing));
 /* Step 2 at T+5ms: release security */
 v_Timing := f_SubFrameTiming_AddMilliSeconds(p_TimingAtT, 5);
 if(IsSecurityConfigured){//WA#SA
 f_NR_SS_RRC_ReleaseSecurity(p_CellId, cs_TimingInfo_NR(v_Timing));
 }
 /* Step 3 at T+10ms: Release DRX configuration at the SS. */
 //NR FFS DRX not configured so far
 /* Step 4: At T + 15ms: Release measurement gap configuration at the SS. */
 //NR FFS no meas gap so far
 /* Step 5 at T+55ms: Release SRBs and DRBs */
 v_Timing := f_SubFrameTiming_AddMilliSeconds(p_TimingAtT, 55);
 f_NR_SS_SRBs_DRBs_Release(p_CellId, cs_TimingInfo_NR(v_Timing), v_DrbIdList);
 /* Step 6 at T+60ms: Configure SRBs */
 // DRBs to be reconfigure during RRCReconfiguration
 v_Timing := f_SubFrameTiming_AddMilliSeconds(p_TimingAtT, 60);
 f_NR_SS_SRBs_DRBs_Config(p_CellId, cs_TimingInfo_NR(v_Timing), omit); //@sic R5s190109 change 23 sic@
 }

1.4 f_NR_RRCRelease
	Function name
	f_NR_RRCRelease

	Reason for change
	This change is needed as a result of change 1.1

	Summary of change
	Please see below

	TTCN module
	NR5GC_RRCSteps.ttcn

	MCC160 Comment
	

Before Change:

	function f_NR_RRCRelease(NR_CellId_Type p_CellId,
 template(omit) SuspendConfig p_SuspendConfig := omit) runs on NR_BASE_PTC
 {
 f_NR_RRCRelease_Common(p_CellId, cs_38508_RRCRelease (tsc_NR_RRC_TI_Def, p_SuspendConfig));
 }

After Change:

	function f_NR_RRCRelease(NR_CellId_Type p_CellId,
 template(omit) SuspendConfig p_SuspendConfig := omit,
 boolean IsSecurityConfigured := true /*WA#SA*/) runs on NR_BASE_PTC
 {
 f_NR_RRCRelease_Common(p_CellId, cs_38508_RRCRelease (tsc_NR_RRC_TI_Def, p_SuspendConfig),IsSecurityConfigured);
 }

