Page 1

3GPP TSG-RAN WG5 Testing
R5s150275
01 Jan – 31 Dec 2015
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	34.123-3
	CR
	3353
	rev
	
	Current version:
	11.6.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Correction to function f_CheckUE_SupportedEUTRA_Bands_Chunk()

	
	

	Source to WG:
	Anite

	Source to TSG:
	R5

	
	

	Work item code:
	TEI8_Test
	
	Date:
	2015-04-01

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-11

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	If a UE supports EUTRAN BAND over 14, the current TTCN implementation checks those bands which are greater than 14 in the first loop where it needs to check BAND 1 to BAND 14. Which crashes the TC.

	
	

	Summary of change:
	Modified the support of ETRAN BAND check with lower bound value of the substring from the chunk of band supported by the UE.

	
	

	Consequences if not approved:
	A Conformant UE supporting EUTRAN BAND over 14 would fail the TestCase.

	
	

	Clauses affected:
	8.1.5.7

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	

	affected:
	
	X
	 Test specifications
	

	(show related CRs)
	
	X
	 O&M Specifications
	

	
	

	Other comments:
	

1.1 f_CheckUE_SupportedEUTRA_Bands_Chunk()
	Record Name
	f_CheckUE_SupportedEUTRA_Bands_Chunk()

	Reason for change
	If a UE supports EUTRAN BAND over 14, the current TTCN implementation checks those bands which are greater than 14 in the first loop where it needs to check BAND 1 to BAND 14. Which crashes the TC.

	Summary of change
	Modified the support of ETRAN BAND check with lower bound value of the substring from the chunk of band supported by the UE.

	Source of change
	EUTRA_CapabilityFunctions.ttcn

Before:
	 function f_CheckUE_SupportedEUTRA_Bands_Chunk(UE_EUTRA_Capability p_ReceivedCapabilityMsg,

 bitstring p_DerivedChunk,

 integer p_OffsetPICS,

 integer p_OffsetReport,

 integer p_LengthPICS) return integer

 {

 var UE_EUTRA_Capability v_ReceivedCapabilityMsg := p_ReceivedCapabilityMsg;

 var bitstring v_DerivedChunk := p_DerivedChunk;

 var integer v_OffsetPICS := p_OffsetPICS;

 var integer v_OffsetReport := p_OffsetReport;

 var integer v_LengthPICS := p_LengthPICS;

 var integer i;

 var integer v_BandEUTRA;

 var integer v_BitStringIndex;

 var bitstring v_SuppEutraBandsReported := int2bit(0, 64); // 1... maxbands

 var integer v_MaxBandsReported := lengthof(v_ReceivedCapabilityMsg.rf_Parameters.supportedBandListEUTRA);

 // It is no longer checked that number of supported EUTRA bands match the set PICS parameters (pc_eBanda_Supp)

 // There may be more bands reported than there are PICS defined for bands

 // Check that any value B such that pc_eBandB_Supp is TRUE and different from all eutra-Band[k] where k = 1 to a - 1

 // Go through the received supportedBandListEUTRA and match against the supported bands according to the PICS

 for (i := 0; i < v_LengthPICS; i := i + 1) {

 //It is assumed that UE reports the bands in order in the list

 if ((i + v_OffsetReport) >= v_MaxBandsReported) {return 0}; // there are no more bands reported which need to be checked

 v_BandEUTRA := v_ReceivedCapabilityMsg.rf_Parameters.supportedBandListEUTRA[i + v_OffsetReport].bandEUTRA;

 if (v_BandEUTRA > (i + v_LengthPICS)) { return (i + v_OffsetReport)}; // if the bands reported become greater than the range of bands checked we are done
 v_BitStringIndex := v_BandEUTRA - 1;

 if (not f_Bitstring_BitIsSet(v_DerivedChunk, v_BitStringIndex)) {

 f_SetVerdict(fail, __FILE__, __LINE__, "PICS does not match reported capability for band nr. " & int2str(v_BandEUTRA)); // @sic R5-133612 sic@

 } else {

 if (f_Bitstring_BitIsSet(v_SuppEutraBandsReported, v_BitStringIndex)) {

 f_SetVerdict(fail, __FILE__, __LINE__, "support of band nr. " & int2str(v_BandEUTRA) & " is reported more than once"); // @sic R5-133612 sic@

 }

 v_SuppEutraBandsReported[v_BitStringIndex] := '1'B;

 }

 // NOTE: number of bands reported by the UE and number of bands acc. to PICS setting may not be equal. None of the bands is reported twice by the UE.

 }

 return (i + v_OffsetReport);

 }

After:

	 function f_CheckUE_SupportedEUTRA_Bands_Chunk(UE_EUTRA_Capability p_ReceivedCapabilityMsg,

 bitstring p_DerivedChunk,

 integer p_OffsetPICS,

 integer p_OffsetReport,

 integer p_LengthPICS) return integer

 {

 var UE_EUTRA_Capability v_ReceivedCapabilityMsg := p_ReceivedCapabilityMsg;

 var bitstring v_DerivedChunk := p_DerivedChunk;

 var integer v_OffsetPICS := p_OffsetPICS;

 var integer v_OffsetReport := p_OffsetReport;

 var integer v_LengthPICS := p_LengthPICS;

 var integer i;

 var integer v_BandEUTRA;

 var integer v_BitStringIndex;

 var bitstring v_SuppEutraBandsReported := int2bit(0, 64); // 1... maxbands

 var integer v_MaxBandsReported := lengthof(v_ReceivedCapabilityMsg.rf_Parameters.supportedBandListEUTRA);

 // It is no longer checked that number of supported EUTRA bands match the set PICS parameters (pc_eBanda_Supp)

 // There may be more bands reported than there are PICS defined for bands

 // Check that any value B such that pc_eBandB_Supp is TRUE and different from all eutra-Band[k] where k = 1 to a - 1

 // Go through the received supportedBandListEUTRA and match against the supported bands according to the PICS

 for (i := 0; i < v_LengthPICS; i := i + 1) {

 //It is assumed that UE reports the bands in order in the list

 if ((i + v_OffsetReport) >= v_MaxBandsReported) {return 0}; // there are no more bands reported which need to be checked

 v_BandEUTRA := v_ReceivedCapabilityMsg.rf_Parameters.supportedBandListEUTRA[i + v_OffsetReport].bandEUTRA;

 if (v_BandEUTRA > (p_OffsetPICS + v_LengthPICS)) { return (i + v_OffsetReport)}; // if the bands reported become greater than the range of bands checked we are done
 v_BitStringIndex := v_BandEUTRA - 1;

 if (not f_Bitstring_BitIsSet(v_DerivedChunk, (v_BitStringIndex - p_OffsetPICS))) {

 f_SetVerdict(fail, __FILE__, __LINE__, "PICS does not match reported capability for band nr. " & int2str(v_BandEUTRA)); // @sic R5-133612 sic@

 } else {

 if (f_Bitstring_BitIsSet(v_SuppEutraBandsReported, v_BitStringIndex)) {

 f_SetVerdict(fail, __FILE__, __LINE__, "support of band nr. " & int2str(v_BandEUTRA) & " is reported more than once"); // @sic R5-133612 sic@

 }

 v_SuppEutraBandsReported[v_BitStringIndex] := '1'B;

 }

 // NOTE: number of bands reported by the UE and number of bands acc. to PICS setting may not be equal. None of the bands is reported twice by the UE.

 }

 return (i + v_OffsetReport);

 }

