RP-050041

Title CRs (Rel-6) to 25.101, 25.133, 25.141, 25.942 under WI Small Technical

Enhancements and Improvements Rel-6

Source 3GPP TSG RAN WG4 (Radio)

Agenda Item 9.8

WG Tdoc	Spec	CR	R	Cat	Rel	Curr Ver	Title	Work Item
R4-050044	25.101	397		F	Rel-6	6.6.0	Minimum performance for constant BLER testcases	TEI6
R4-050265	25.101	401	1	F	Rel-6	6.6.0	OCNS definition for transmit diversity	TEI6
R4-050139	25.101	402		F	Rel-6	6.6.0	Corrections to 9.2 demodulation of HS-DSCH	TEI6, HSDPA-RF
R4-050204	25.101	406		F	Rel-6	6.6.0	Update UMTS FDD Receiver Blocking Specifications	TEI6
R4-050051	25.133	719		F	Rel-6	6.8.0	GSM BSIC reconfirmation	TEI6
R4-050052	25.133	720		F	Rel-6	6.8.0	Cell Search Requirement	TEI6
R4-050075	25.133	721		F	Rel-6	6.8.0	Correction of error in the implementation of CR502	TEI6
R4-050145	25.141	362		F	Rel-6	6.8.0	Test model usage for TX diversity test case	TEI6
R4-050283	25.141	363	1	F	Rel-6	6.8.0	Description of test procedure for Time alignment error in TX Diversity	TEI6
R4-050104	25.942	018		F	Rel-6	6.3.0	Scenarios for UE Receiver Blocking Specification	TEI6

Core Network

3GPP TSG RAN WG4 (Radio) Meeting #34 Scottsdale, US 14 - 18 February 2005

Proposed change affects: UICC apps #

•					(CR-Form-v7.1
	CHANG	GE REQU	ES1	Γ		
[≆] <mark>25.101</mark>	CR 397	жrev	ж	Current version:	6.6.0	¥
For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the # symbols.						

Title: # Minimum performance requirements for constant BLER test cases. Source: 第 3GPP TSG RAN WG4 (Radio) Date: # 28/02/2005 ₩ F Category: Release: # Rel-6 Use one of the following categories: Use one of the following releases: F (correction) Ph2 (GSM Phase 2) **A** (corresponds to a correction in an earlier release) R96 (Release 1996) R97 (Release 1997) **B** (addition of feature), **C** (functional modification of feature) R98 (Release 1998) **D** (editorial modification) R99 (Release 1999) (Release 4) Detailed explanations of the above categories can Rel-4 be found in 3GPP TR 21.900. Rel-5 (Release 5)

Reason for change: # - To define downlink power control test cases with constant BLER.

- To define new reference measurement channel, which is to be used for the new test cases for the UE performance.

Rel-6

Rel-7

(Release 6)

(Release 7)

ME X Radio Access Network

Summary of change: # Two new downlink power control test cases are defined:

- Test 3 is defined to test the outerloop power control in the UE at high BLER target (10%). The BLER target of 10% is set on both DTCH and DCCH as the test parameters in table 8.29. The test requirements are specified in table 8.30 in terms of DPCH_Ec/lor (-9.2 dB) and quality measurement (BLER) on DTCH. The accuracy of the DTCH quality measurement is specified as \pm 30%.
- Test 4 is defined to test the outerloop power control in the UE at low BLER target (0.1%). The DCCH and DTCH BLER targets are set at 10% and 0.1% respectively, as the test parameters in table 8.29. The test requirements are specified in table 8.30 in terms of DPCH_Ec/lor (-10.4 dB) and quality measurement (BLER) on DTCH. The accuracy of the DTCH quality measurement is specified as $\pm\,30\%$.
- In both tests a new reference measurement channel (64 kbps) is used in which the DTCH has 4 transport blocks per TTI. The DCCH has an information rate of 3.4 kbps, with one transport block per TTI.
- Currently all the downlink reference measurement channels (12.2 kbps, 64 kbps, 144 kbps and 384 kbps) used in annex A.3 for the UE performance contain one transport block per TTI. But in real network operation, a transport channel may have several transport blocks in a TTI, which has an impact on the UE outer loop power control behaviour.

Consequences if not approved:	\mathfrak{R}		e outer loop power control will not be tested using a measurement annel, which has multiple transport blocks per TTI.
		ii. Th	ere will be insufficient coverage of the constant BLER test cases.
		b)	Proper outer loop power control at high BLER targets (e.g. 10%) is not guaranteed.
		c)	Proper outer loop power control at low BLER targets (e.g. 0.1%) is not guaranteed.

Clauses affected:	第 8.8.1, A.3
Other specs affected:	Y N X Other core specifications Test specifications X O&M Specifications 34.121, 34.108
Other comments:	**************************************

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.8 Power control in downlink

Power control in the downlink is the ability of the UE receiver to converge to required link quality set by the network while using as low power as possible in downlink. If a BLER target has been assigned to a DCCH (See Annex A.3), then it has to be such that outer loop is based on DTCH and not on DCCH.

8.8.1 Power control in the downlink, constant BLER target

8.8.1.1 Minimum requirements

For the parameters specified in Table 8.29 the downlink $\frac{DPCH_E_c}{I_{or}}$ power ratio measured values, which are

averaged over one slot, shall be below the specified value in Table 8.30 more than 90% of the time. BLER shall be as shown in Table 8.30. Power control in downlink is ON during the test.

Table 8.29: Test parameter for downlink power control

Parameter	Unit	Test 1	Test 2	Test 3	Test 4	
\hat{I}_{or}/I_{oc}	dB	9	-1	<u>4</u>	<u>9</u>	
I_{oc}	dBm/3.84 MHz	-60				
Information Data Rate	kbps	12	2.2	64		
Reference channel in annex A (25.101)	<u>=</u>	<u>A.</u> :	<u>3.1</u>	<u>A.3.x</u>		
Target quality value on DTCH	BLER	0.	01	0.1	0.001	
Target quality value on DCCH	BLER	<u>=</u>		0.1	0.1	
Propagation condition		Case 4				
Maximum_DL_Power *	dB	7				
Minimum_DL_Power *	dB	-18		-18		
DL Power Control step size, Δ _{TPC}	dB	1		1		
Limited Power Increase	-	- "Not used"				

NOTE: Power is compared to P-CPICH as specified in [4].

Table 8.30: Requirements in downlink power control

Parameter	Unit	Test 1	Test 2	Test 3	Test 4
$\frac{DPCH_E_c}{I_{or}}$	dB	-16.0	-9.0	<u>-9.0</u>	<u>-10.3</u>
Measured quality on DTCH	BLER	0.01±30%	0.01±30%	<u>0.1±30%</u>	0.001±30%

-----NEXT SECTION-----

A.3.x DL reference measurement channel 2 (64 kbps)

The parameters for the DL reference measurement channel for 64 kbps are specified in Table A.yy and Table A.zz. The channel coding is shown for information in Figure A.xz.

Table A.yy: DL reference measurement channel physical parameters (64 kbps)

Parameter Parame	<u>Unit</u>	<u>Level</u>
Information bit rate (DTCH)	<u>kbps</u>	<u>64</u>
Information bit rate (DCCH)	<u>kbps</u>	<u>3.4</u>
<u>DPCH</u>	<u>ksps</u>	<u>120</u>
Slot Format #i	<u>=</u>	<u>13</u>
TFCI	<u>_</u>	<u>On</u>
Puncturing (DTCH)	<u>%</u>	<u>8.6</u>
Repetition (DCCH)	<u>%</u>	<u>27.9</u>

Table A.zz: DL reference measurement channel, transport channel parameters (64 kbps)

<u>Parameter</u>	DTCH	DCCH
Transport Channel Number	<u>1</u>	2
Transport Block Size	<u>336</u>	<u>148</u>
Transport Block Set Size	<u>1344</u>	<u>148</u>
Transport blocks per TTI	<u>4</u>	<u>1</u>
Transmission Time Interval	<u>20 ms</u>	<u>40 ms</u>
Type of Error Protection	<u>Turbo Coding</u>	Convolution Coding
Coding Rate	<u>1/3</u>	<u>1/3</u>
Rate Matching attribute	<u>143</u>	<u>200</u>
Size of CRC	<u>16</u>	<u>16</u>
Position of TrCH in radio frame	fixed	fixed

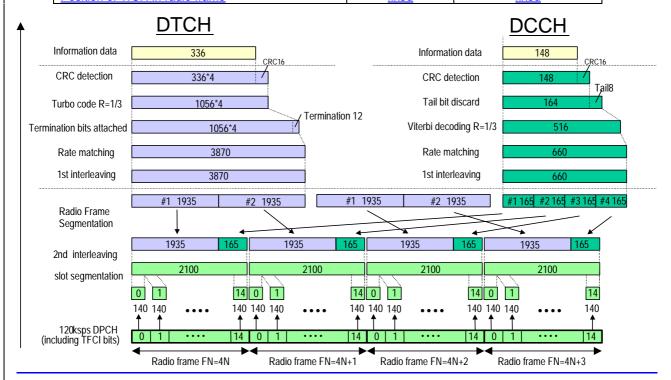


Figure A.xz (Informative): Channel coding of DL reference measurement channel 2 (64 kbps)

R4-050265

CR-Form-v7.1

3GPP TSG RAN WG4 (Radio) Meeting #34 Scottsdale, US 14 - 18 February 2005

		C	CHANGE	REQ	UE	ST				
*	25.101	CR	401	жrev	1	Ж	Current vers	sion:	6.6.0	æ
For <u>HELP</u> on t	using this fo	m, see	bottom of this	s page or	look a	at th	e pop-up text	over	the % s	/mbols.
Proposed change	affects:	JICC a	pps#	ME X	Rac	lio A	ccess Netwo	rk	Core N	letwork
Title:	OCNS de	fintion	for transmit di	versity						
Source: #	3GPP TS	G RAN	WG4 (Radio))						
Work item code: ₩	TEI6						Date: ♯	28/	02/2005	
Category: अ	F (cor A (cor B (add C (fun D (edi	rection) respond dition of ctional r torial mo	wing categories Is to a correction feature), modification of the podification) as of the above TR 21.900.	on in an ear feature)		elease	Release: 光 Use <u>one</u> of Ph2 e) R96 R97 R98 R99 Rel-4 Rel-5 Rel-6	the for (GSN (Relea (Relea (Relea (Relea (Relea (Relea (Relea (Relea		?) 5) 7) 8)
Reason for change			on of OCNS ves using close				·			OCNS
January C. Shang	powe	er calcu	lation shall as regaredless	ssume tha	at the	DPC	CH power for	Anter	nna 1 an	d Antenna

Clauses affected:	\mathfrak{H}	Anne	ex C.3		
Other specs	¥	Y N	Other core specifications	¥	
affected:		Y X	Test specifications O&M Specifications		34.121

uncorrelated sources.

the OCNS on each antenna shall be either STTD encoded or generated from

The strict definition of OCNS would have requried a very complex method of

generation that does not warrant the effort and anyway Is not representative of real life sceanrios. Without a clearer definition, the implementation of OCNS would likely have been variable and led to inconsistent conformance test results.

How to create CRs using this form:

Consequences if

not approved:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked \(\mathcal{H} \) contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

C.3 During connection

The following clauses, describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done. For these measurements the offset between DPCH and SCH shall be zero chips at Node B meaning that SCH is overlapping with the first symbols in DPCH in the beginning of DPCH slot structure.

C.3.1 Measurement of Rx Characteristics

Table C.2 is applicable for measurements on the Receiver Characteristics (clause 7) with the exception of subclause 7.4 (Maximum input level).

Table C.2: Downlink Physical Channels transmitted during a connection

Physical Channel	Power ratio
P-CPICH	P-CPICH_Ec / DPCH_Ec = 7 dB
P-CCPCH	P-CCPCH_Ec / DPCH_Ec = 5 dB
SCH	SCH_Ec / DPCH_Ec = 5 dB
PICH	PICH_Ec / DPCH_Ec = 2 dB
DPCH	Test dependent power

C.3.2 Measurement of Performance requirements

Table C.3 is applicable for measurements on the Performance requirements (clause 8), including subclause 7.4 (Maximum input level) and subclause 6.4.4 (Out-of-synchronization handling of output power).

Table C.3: Downlink Physical Channels transmitted during a connection¹

Physical Channel	Power ratio	NOTE
P-CPICH	P-CPICH_Ec/lor = -10 dB	Use of P-CPICH or S-CPICH as phase reference is specified for each requirement and is also set by higher layer signalling.
S-CPICH	S-CPICH_Ec/lor = -10 dB	When S-CPICH is the phase reference in a test condition, the phase of S-CPICH shall be 180 degrees offset from the phase of P-CPICH. When S-CPICH is not the phase reference, it is not transmitted.
P-CCPCH	P-CCPCH_Ec/lor = -12 dB	
SCH	SCH_Ec/lor = -12 dB	This power shall be divided equally between Primary and Secondary Synchronous channels
PICH	PICH_Ec/lor = -15 dB	
DPCH	Test dependent power	When S-CPICH is the phase reference in a test condition, the phase of DPCH shall be 180 degrees offset from the phase of P-CPICH.
OCNS	Necessary power so that total transmit power spectral density of Node B (lor) adds to one ¹	OCNS interference consists of 16 dedicated data channels as specified in table C.6.

NOTE 1 For dynamic power correction required to compensate for the presence of transient channels, e.g. control channels, a subset of the DPCH channels may be used.

C.3.3 Connection with open-loop transmit diversity mode

Table C.4 is applicable for measurements for subclause 8.6.1 (Demodulation of DCH in open loop transmit diversity mode).

Table C.4: Downlink Physical Channels transmitted during a connection¹

Physical Channel	Power ratio	NOTE
P-CPICH (antenna 1)	P-CPICH_Ec1/lor = -13 dB	1. Total P-CPICH_Ec/lor = -10 dB
P-CPICH (antenna 2)	P-CPICH_Ec2/lor = -13 dB	
P-CCPCH (antenna 1)	P-CCPCH_Ec1/lor = -15 dB	STTD applied
P-CCPCH (antenna 2)	P-CCPCH_Ec2/lor = -15 dB	2. Total P-CCPCH_Ec/lor = -12 dB
SCH (antenna 1 / 2)	SCH_Ec/lor = -12 dB	TSTD applied. This power shall be divided equally between Primary and Secondary Synchronous channels
PICH (antenna 1)	PICH_Ec1/lor = -18 dB	STTD applied
PICH (antenna 2)	PICH_Ec2/lor = -18 dB	2. Total PICH_Ec/lor = -15 dB
DPCH	Test dependent power	STTD applied Total power from both antennas
OCNS	Necessary power so that total transmit power spectral density of Node B (lor) adds to one ¹	1.This power shall be divided equally between antennas 2.OCNS interference consists of 16 dedicated data channels as specified in Table C.6.

NOTE 1 For dynamic power correction required to compensate for the presence of transient channels, e.g. control channels, a subset of the DPCH channels may be used.

C.3.4 Connection with closed loop transmit diversity mode

Table C.5 is applicable for measurements for subclause 8.6.2 (Demodulation of DCH in closed loop transmit diversity mode).

Table C.5: Downlink Physical Channels transmitted during a connection¹

Physical Channel	Power ratio	NOTE
P-CPICH (antenna 1)	P-CPICH_Ec1/lor = -13 dB	1. Total P-CPICH_Ec/lor = -10 dB
P-CPICH (antenna 2)	P-CPICH_Ec2/lor = -13 dB	1. Total P-CPICH_EC/IOI = -10 dB
P-CCPCH (antenna 1)	P-CCPCH_Ec1/lor = -15 dB	STTD applied
P-CCPCH (antenna 2)	P-CCPCH_Ec2/lor = -15 dB	 STTD applied, total P-CCPCH_Ec/lor = -12 dB
SCH (antenna 1 / 2)	SCH_Ec/lor = -12 dB	TSTD applied
PICH (antenna 1)	PICH_Ec1/lor = -18 dB	STTD applied
PICH (antenna 2)	PICH_Ec2/lor = -18 dB	2. STTD applied, total PICH_Ec/lor = -15 dB
DPCH	Test dependent power	Total power from both antennas
OCNS	Necessary power so that total transmit power spectral density of Node B (lor) adds to one 12	1.This power shall be divided equally between antennas 2. OCNS interference consists of 16 dedicated data channels. as specified in Table C.6.

NOTE 1 For dynamic power correction required to compensate for the presence of transient channels, e.g. control channels, a subset of the DPCH channels may be used.

Note 2 For the case of DPCH with transmit diversity, the OCNS power calculation shall be based on the addition of the power from Antenna 1 and Antenna 2, i.e. disregarding any phase relationship between the antennas.

Table C.6: DPCH Channelization Code and relative level settings for OCNS signal

Channelization Code at SF=128	Relative Level setting (dB) (Note 1)	DPCH Data
2	-1	The DPCH data
11	-3	for each
17	-3	channelization
23	-5	code shall be
31	-2	uncorrelated
38	-4	with each other
47	-8	and with any
55	-7	wanted signal
62	-4	over the period
69	-6	of any
78	-5	measurement.
85	-9	For OCNS with
94	-10	transmit diversity the
125	-8	DPCH data sent
113	-6	to each antenna
119	0	shall be either STTD encoded or generated from uncorrelated sources.

NOTE 1 The relative level setting specified in dB refers only to the relationship between the OCNS channels. The level of the OCNS channels relative to the Ior of the complete signal is a function of the power of the other channels in the signal with the intention that the power of the group of OCNS channels is used to make the total signal add up to 1.

NOTE: The DPCH Channelization Codes and relative level settings are chosen to simulate a signal with realistic Peak to Average Ratio.

C.3.5 Connection with tests having DPCCH as a phase reference

Table C.6A is applicable for measurements for tests 21, 22, 23, 24 and 25 in subclause 8.3.1.

Table C.6A: Downlink Physical Channels transmitted during a connection

Physical	Antenna	Power	NOTE
Channel	(gain)		
P-CPICH		P-CPICH_Ec/lor = -10 dB	UE is informed by higher layer signalling that P-CPICH shall not be used as a phase reference
P-CCPCH	Sector (0 dB)	P-CCPCH_Ec/lor = -12 dB	
SCH	Sector (0 db)	SCH_Ec/lor = -12 dB	This power shall be divided equally between Primary and Secondary Synchronous channels
PICH		PICH_Ec/lor = -15 dB	
DPCH		Test dependent power	DPCH phase shall be uncorrelated with the phase of P-CPICH (different propagation in sector and beam)
OCNS	Beam (6.0dB)	Necessary power so that Beam total transmit power is 20 % of Node B total transmit power	 OCNS interference consists of 16 dedicated data channels as specified in Table C.6. 60% of the power from Node B (lor) is not involved in the tests, but is still counted as a part of the transmitted power.

C.4 W-CDMA Modulated Interferer

Table C.7 describes the downlink Channels that are transmitted as part of the W-CDMA modulated interferer.

Table C.7: Spreading Code, Timing offsets and relative level settings for W-CDMA Modulated Interferer signal channels

Channel Type	Spreading Factor	Channelization Code	Timing offset (x256T _{chip})	Power	NOTE
P-CCPCH	256	1	0	P-CCPCH_Ec/lor = -10 dB	
SCH	256	-	0	SCH_Ec/lor = -10 dB	The SCH power shall be divided equally between Primary and Secondary Synchronous channels
P-CPICH	256	0	0	P-CPICH_Ec/lor = -10 dB	
PICH	256	16	16	PICH_Ec/lor = -15 dB	
OCNS		See table C.6		Necessary power so that total transmit power spectral density of Node B (lor) adds to one	OCNS interference consists of the dedicated data channels. as specified in Table C.6.

C.5 HSDPA DL Physical channels

C.5.1 Downlink Physical Channels connection set-up

Table C.8 is applicable for the measurements for tests in subclause 9.2.1 and 9.3. Table C.9 is applicable for the measurements for tests in subclause 9.2.2. Table C.10 is applicable for the measurements for tests in subclause 9.2.3. Table C.11 is applicable for the measurements for tests in subclause 9.4.

Table C.8: Downlink physical channels for HSDPA receiver testing for Single Link performance.

Physical Channel	Parameter	Value	Note
P-CPICH	P-CPICH_Ec/lor	-10dB	
P-CCPCH	P-CCPCH_Ec/lor	-12dB	Mean power level is shared with SCH.
SCH	SCH_Ec/lor	-12dB	Mean power level is shared with P-CCPCH – SCH includes P- and S-SCH, with power split between both. P-SCH code is S_dl,0 as per TS25.213 S-SCH pattern is scrambling code group 0
PICH	PICH_Ec/lor	-15dB	
DPCH	DPCH_Ec/lor	Test-specific	12.2 kbps DL reference measurement channel as defined in Annex A.3.1
HS-SCCH_1	HS-SCCH_Ec/lor	Test-specific	Specifies fraction of Node-B radiated power transmitted when TTI is active (i.e. due to minimum inter-TTI interval).
HS-SCCH_2	HS-SCCH_Ec/lor	DTX'd	No signalling scheduled, or power radiated, on this HS-SCCH, but signalled to the UE as present.
HS-SCCH_3	HS-SCCH_Ec/lor	DTX'd	As HS-SCCH_2.
HS-SCCH_4	HS-SCCH_Ec/lor	DTX'd	As HS-SCCH_2.
HS-PDSCH	HS-PDSCH_Ec/lor	Test-specific	
OCNS		Necessary power so that total transmit power spectral density of Node B (lor) adds to one	OCNS interference consists of 6 dedicated data channels as specified in table C.12.

Table C.9: Downlink physical channels for HSDPA receiver testing for Open Loop Transmit Diversity performance.

Physical Channel	Parameter	Value	Note
P-CPICH (antenna 1)	P-CPICH_Ec1/lor	-13dB	1. Total P-CPICH_Ec/lor = -10dB
P-CPICH (antenna 2)	P-CPICH_Ec2/lor	-13dB	
P-CCPCH (antenna 1)	P-CCPCH_Ec1/lor	-15dB	1. STTD applied.
P-CCPCH (antenna 2)	P-CCPCH_Ec2/lor	-15dB	2. Total P-CCPCH Ec/lor is –12dB.
SCH (antenna 1/2)	SCH_Ec/lor	-12dB	TSTD applied. Power divided equally between primary and secondary SCH.
PICH (antenna 1)	PICH_Ec1/lor	-18dB	1. STTD applied.
PICH (antenna 2)	PICH_Ec2/lor	-18dB	2. Total PICH Ec/lor is –15dB.
DPCH	DPCH_Ec/lor	Test-specific	1. STTD applied.
HS-SCCH_1	HS-SCCH_Ec/lor	Test-specific	STTD applied. Specifies fraction of Node-B radiated power transmitted when TTI is active (i.e. due to minimum inter-TTI interval).
HS-SCCH_2	HS-SCCH_Ec/lor	DTX'd	UE assumes STTD applied. No signalling scheduled, or power radiated, on this HS-SCCH, but signalled to the UE as present.
HS-SCCH_3	HS-SCCH_Ec/lor	DTX'd	1. As HS-SCCH_2.
HS-SCCH_4	HS-SCCH_Ec/lor	DTX'd	2. As HS-SCCH_2.
HS-PDSCH	HS-PDSCH_Ec/lor	Test-specific	1. STTD applied.
OCNS		Necessary power so that total transmit power spectral density of Node B (lor) adds to one*	1. STTD applied. 12. Balance of power I_{or} of the Node-B is assigned to OCNS. 23. Power divided equally between antennas. 34. OCNS interference consists of 6 dedicated data channels as specified in table C.12.

Note For the case of DPCH with transmit diversity, the OCNS power calculation shall be based on the addition of the power from Antenna 1 and Antenna 2, i.e. disregarding any phase relationship between the antennas.

Table C.10: Downlink physical channels for HSDPA receiver testing for Closed Loop. Transmit Diversity (Mode-1) performance.

Physical Channel	Parameter	Value	Note
P-CPICH (antenna 1)	P-CPICH_Ec1/lor	-13dB	1. Total P-CPICH_Ec/lor = -10dB
P-CPICH (antenna 2)	P-CPICH_Ec2/lor	-13dB	
P-CCPCH (antenna 1)	P-CCPCH_Ec1/lor	-15dB	1. STTD applied.
P-CCPCH (antenna 2)	P-CCPCH_Ec2/lor	-15dB	2. Total P-CCPCH Ec/lor is –12dB.
SCH (antenna 1/2)	SCH_Ec/lor	-12dB	TSTD applied. Power divided equally between primary and secondary SCH.
PICH (antenna 1)	PICH_Ec1/lor	-18dB	1. STTD applied.
PICH (antenna 2)	PICH_Ec2/lor	-18dB	2. Total PICH Ec/lor is –15dB.
DPCH	DPCH_Ec/lor	Test-specific	1. CL1 applied.
HS-SCCH_1	HS-SCCH_Ec/lor	Test-specific	STTD applied. Specifies fraction of Node-B radiated power transmitted when TTI is active (i.e. due to minimum inter-TTI interval).
HS-SCCH_2	HS-SCCH_Ec/lor	DTX'd	UE assumes STTD applied. No signalling scheduled, or power radiated, on this HS-SCCH, but signalled to the UE as present.
HS-SCCH_3	HS-SCCH_Ec/lor	DTX'd	1. As HS-SCCH_2.
HS-SCCH_4	HS-SCCH_Ec/lor	DTX'd	2. As HS-SCCH_2.
HS-PDSCH	HS-PDSCH_Ec/lor	Test-specific	1. CL1 applied.
OCNS		Necessary power so that total transmit power spectral density of Node B (lor) adds to one*	 1. STTD applied. 12. Balance of power I_{or} of the Node-B is assigned to OCNS. 23. Power divided equally between antennas. 34. OCNS interference consists of 6 dedicated data channels as specified in table C.12.

Note For the case of DPCH with transmit diversity, the OCNS power calculation shall be based on the addition of the power from Antenna 1 and Antenna 2, i.e. disregarding any phase relationship between the antennas.

Table C.11: Downlink physical channels for HSDPA receiver testing for HS-SCCH detection performance

Parameter	Units	Value	Comment
CPICH E_c/I_{or}	dB	-10	
P-CCPCH E_c/I_{or}	dB	-12	Mean power level is shared with SCH.
SCH E_c/I_{or}	dB	-12	Mean power level is shared with P-CCPCH – SCH includes P- and S-SCH, with power split between both. P-SCH code is S_dl,0 as per TS25.213 S-SCH pattern is scrambling code group 0
PICH E_c/I_{or}	dB	-15	
HS-DSCH-1 E_c/I_{or}	dB	-10	HS-DSCH associated with HS-SCCH-1. The HS-DSCH shall be transmitted continuously with constant power.
HS-DSCH-2 E_c/I_{or}	dB	DTX	HS-DSCH associated with HS-SCCH-2
HS-DSCH-3 E_c/I_{or}	dB	DTX	HS-DSCH associated with HS-SCCH-3
HS-DSCH-4 E_c/I_{or}	dB	DTX	HS-DSCH associated with HS-SCCH-4
$DPCH\ E_c/I_{\mathit{or}}$	dB	-8	12.2 kbps DL reference measurement channel as defined in Annex A.3.1
HS-SCCH-1 E_c/I_{or}	dB	Test Specific	All HS-SCCH's allocated equal $E_{\scriptscriptstyle c}/I_{\scriptscriptstyle or}$.
HS-SCCH-2 E_c/I_{or}	dB		Specifies E_{c}/I_{or} when TTI is active.
HS-SCCH-3 E_c/I_{or}	dB		
HS-SCCH-4 E_c/I_{or}	dB		
OCNS E_c/I_{or}	dB	Necessary power so that total transmit power spectral density of Node B (lor) adds to one*	1. Balance of power I_{or} of the Node-B is assigned to OCNS. 2. OCNS interference consists of 6 dedicated data channels as specified in table C.12.

Note For the case of DPCH with transmit diversity, the OCNS power calculation shall be based on the addition of the power from Antenna 1 and Antenna 2, i.e. disregarding any phase relationship between the antennas.

C.5.2 OCNS Definition

The selected channelization codes and relative power levels for OCNS transmission during for HSDPA performance assessment are defined in Table C.12. The selected codes are designed to have a single length-16 parent code.

Table C.12: OCNS definition for HSDPA receiver testing.

Channelization Code at SF=128	Relative Level setting (dB) (Note 1)	DPCH Data
122	0	The DPCH data for each
123	-2	channelization code shall be
124	-2	uncorrelated with each other and
125	-4	with any wanted signal over the
126	-1	period of any measurement. For
127	-3	OCNS with transmit diversity the DPCH data sent to each antenna shall be either STTD encoded or generated from uncorrelated sources.

NOTE 1: The relative level setting specified in dB refers only to the relationship between the OCNS channels. The level of the OCNS channels relative to the Ior of the complete signal is a function of the power of the other channels in the signal with the intention that the power of the group of OCNS channels is used to make the total signal add up to 1.

ME X Radio Access Network Core Network

3GPP TSG RAN WG4 (Radio) Meeting #34 Scottsdale, US 14 - 18 February 2005

Proposed change affects: UICC apps#

		CHANGE	E REQ	UEST	-	C	CR-Form-v7.1
*	25.101 C	R <mark>402</mark>	жrev	H	Current version:	6.6.0	*

For **HELP** on using this form, see bottom of this page or look at the pop-up text over the **%** symbols.

Title:	\mathfrak{H}	Corrections to 9.2 demodulation of HS-DSCH		
Source:	\mathbb{H}	3GPP TSG RAN WG4 (Radio)		
Work item code:	:₩	TEI6, HSDPA-RF	Date: ∺	28/02/2005
Category:	\mathbb{H}	F	Release: ₩	Rel-6
		Use <u>one</u> of the following categories:		the following releases:
		F (correction)	Ph2	(GSM Phase 2)
		A (corresponds to a correction in an earlier releas	,	(Release 1996)
		B (addition of feature),	R97	(Release 1997)
		C (functional modification of feature)	R98	(Release 1998)
		D (editorial modification)	R99	(Release 1999)
		Detailed explanations of the above categories can	Rel-4	(Release 4)
		pe found in 3GPP TR 21.900.	Rel-5	(Release 5)
			Rel-6	(Release 6)
			Rel-7	(Release 7)

Reason for change: # There are a number of gaps in the requirements and a need to clarify the text Summary of change: ₩ 1. Moved general statements applying to the requirements in subclauses 9.2, 9.3 and 9.4 from subclause 9.1 to clause 9 so they can apply. 2. Changed general reference to propagation conditions from table B.1B to Annex B.2.2 3. Made subclause 9.1 void 4. Added specific reference in subclause 9.2 to the propagation conditions in table B.1B 5. Clarified wording of minimum requirement in 9.2.1.1. Added specific references for the H-Sets and specific reference into Annex C.5 for the table to use for the downlink physical channel setup. This change is repeated for the other 8 equivalent minimum requirements in subclause 9.2. 6. Added note to table 9.2 and 8 other tables indicating that the HS-SCCH-1 and HS_PDSCH are transmitted continuously. 7. Clarified that the HS-SCCH-1 shall only use the identity of the UE under test for those TTI intended for the UE under test. (The UE identity used in the other TTI is not specified and will be a matter for the test implementation.) 8. Corrected four occurrences of 16-QAM to be 16QAM to match the standard usage in the document The testing of HS-DSCH demodulation will not be well defined and may result in Consequences if not approved: failing a good UE.

Clauses affected: # 9

Other specs affected:	¥	Y	Other core specifications Test specifications O&M Specifications	Ж	34.121
Other comments:	¥				

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

9 Performance requirement (HSDPA)

The performance requirements for the UE in this clause apply for the reference measurement channels specified in Annex A.7, the propagation conditions specified in Annex B.2.2 and the Down link Physical channels specified in Annex C.5. The specific references are provided separately for each requirement.

9.1 General Void

The performance requirements for the UE in this subclause apply for the reference measurement channels specified in Annex A.7, the propagation conditions specified in table B.1B of Annex B and the Down link Physical channels specified in Annex C.5.

9.2 Demodulation of HS-DSCH (Fixed Reference Channel)

The performance requirement for a particular UE belonging to certain HS-DSCH category are determined according to Table 9.1.

The propagation conditions for this subclause are defined in table B.1B.

Table 9.1: Mapping between HS-DSCH category and FRC

HS-DSCH category	Corresponding requirement
Category 1	H-Set 1
Category 2	H-Set 1
Category 3	H-Set 2
Category 4	H-Set 2
Category 5	H-Set 3
Category 6	H-Set 3
Category 7	H-Set 6
Category 8	H-Set 6
Category 11	H-Set 4
Category 12	H-Set 5

During the Fixed Reference Channel tests the behaviour of the Node-B emulator in response to the ACK/NACK signalling field of the HS-DPCCH is specified in Table 9.1A:

Table 9.1A: Node-B Emulator Behaviour in response to ACK/NACK/DTX

HS-DPCCH ACK/NACK Field State	Node-B Emulator Behaviour
ACK	ACK: new transmission using 1st
	redundancy and constellation version (RV)
NACK	NACK: retransmission using the next RV (up
	to the maximum permitted number or RV's)
DTX	DTX: retransmission using the RV
	previously transmitted to the same H-ARQ
	process

NOTE: Performance requirements in this section assume a sufficient power allocation to HS-SCCH_1 so that probability of reporting DTX is very low.

9.2.1 Single Link performance

The receiver single link performance of the High Speed Physical Downlink Shared Channel (HS-DSCH) in different multi-path fading environments are determined by the information bit throughput R

9.2.1.1 Requirement QPSK, Fixed Reference Channel (FRC) H-Set 1/2/3

For the parameters specified in Table 9.2, t<u>The</u> requirements are specified in terms of a minimum information bit throughput R as shown in Table 9.3 and Table 9.3A for the DL reference channels <u>H-set 1/2/3 (QPSK version)</u> specified in Annex A.7.1.1, A.7.1.2 and A.7.1.3 respectively, with the addition of the parameters in Table 9.2 and the downlink physical channel setup according to table C.8.

<u>Using this configuration the throughput shall meet or exceed the minimum requirements specified in table 9.3.</u> Enhanced performance requirements specified in Table 9.3A are based on receiver diversity.

Table 9.2: Test Parameters for Testing QPSK FRCs H-Set 1/H-Set 2/H-Set 3

Parameter	Unit	Test 1	Test 2	Test 3	Test 4
Phase reference			P-CPICH		
I_{oc}	dBm/3.84 MHz	-60			
Redundancy and constellation version coding sequence		{0,2,5,6}			
Maximum number of HARQ transmission		4			
Note: The HS-SCCH	-1 and HS-PDSCH shall be transmitted continuously with				
constant powe	r. HS-SCCH-1 shall o	-SCCH-1 shall only use the identity of the UE under test for			
those TTI inten	ided for the UE.	-	_		

Table 9.3: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation	Reference value				
Number	Conditions	$\begin{array}{c} \textbf{HS-PDSCH} \\ E_c/I_{or} \ \ \textbf{(dB)} \end{array}$	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 0 dB	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 10 dB		
1	PA3	-6	65	309		
1		-3	N/A	423		
2	PB3	-6	23	181		
	PDS	-3	138	287		
3	VA30	-6	22	190		
3	VASU	-3	142	295		
4	\/\120	-6	13	181		
4	VA120	-3	140	275		

^{*} Notes: 1) The reference value R is for the Fixed Reference Channel (FRC) H-Set 1

²⁾ For Fixed Reference Channel (FRC) H-Set 2 the reference values for R should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

³⁾ For Fixed Reference Channel (FRC) H-Set 3 the reference values for R should be scaled (multiplied by 3 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

Table 9.3A: Enhanced requirement QPSK, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation		Reference value	
Number	Conditions	HS-PDSCH	T-put R (kbps) *	T-put R (kbps) *
		E_c/I_{or} (dB)	\hat{I}_{or}/I_{oc} = 0 dB	\hat{I}_{or}/I_{oc} = 10 dB
		-12	N/A	740
1	PA3	-9	N/A	1137
'	FAS	-6	585	N/A
		-3	986	N/A
		-9	N/A	195
2	PB3	-6	156	316
		-3	263	N/A
		-9	N/A	212
3	VA30	-6	171	329
		-3	273	N/A
		-9	N/A	191
4	VA120	-6	168	293
		-3	263	N/A

* Notes:

9.2.1.2 Requirement 16QAM, Fixed Reference Channel (FRC) H-Set 1/2/3

For the parameters specified in Table 9.4, t<u>T</u>he requirements are specified in terms of a minimum information bit throughput R as shown in Table 9.5 and Table 9.5A for the DL reference channels <u>H-set 1/2/3 (16QAM version)</u> specified in Annex A.7.1.1, A.7.1.2 and A.7.1.3 respectively, with the addition of the parameters in Table 9.4 and the downlink physical channel setup according to table C.8.

<u>Using this configuration the throughput shall meet or exceed the minimum requirements specified in table 9.5.</u> Enhanced performance requirements specified in Table 9.5A are based on receiver diversity.

Table 9.4: Test Parameters for Testing 16-QAM FRCs H-Set 1/H-Set 2/H-Set 3

Parameter	Unit	Test 1	Test 2	Test 3	Test 4
Phase reference			P-CPICH		
I_{oc}	dBm/3.84 MHz	-60			
Redundancy and constellation version coding sequence		{6,2,1,5}			
Maximum number of HARQ transmission		4			

Note: The HS-SCCH-1 and HS-PDSCH shall be transmitted continuously with constant power. HS-SCCH-1 shall only use the identity of the UE under test for those TTI intended for the UE.

¹⁾ The reference value R is for the Fixed Reference Channel (FRC) H-Set 1

²⁾ For Fixed Reference Channel (FRC) H-Set 2 the reference values for R should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

³⁾ For Fixed Reference Channel (FRC) H-Set 3 the reference values for R should be scaled (multiplied by 3 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

Table 9.5: Minimum requirement 16QAM, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation		Reference value
Number	Conditions	$\begin{array}{c} \textbf{HS-PDSCH} \\ E_c/I_{or} \ \ \textbf{(dB)} \end{array}$	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 10 dB
1	PA3	-6	198
ı	PAS	-3	368
2	PB3	-6	34
	FB3	-3	219
3	VA30	-6	47
3	VASU	-3	214
1	\/\\120	-6	28
4	VA120	-3	167

* Notes: 1)The reference value R is for the Fixed Reference Channel (FRC) H-Set 1
2) For Fixed Reference Channel (FRC) H-Set 2 the reference values for R
should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in
kbps, where values of i+1/2 are rounded up to i+1, i integer)
3) For Fixed Reference Channel (FRC) H-Set 3 the reference values for R
should be scaled (multiplied by 3 and rounding to the nearest integer t-put in

kbps, where values of i+1/2 are rounded up to i+1, i integer)

Table 9.5A: Enhanced requirement 16QAM, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation	Reference value			
Number	Conditions	$\begin{array}{c} \textbf{HS-PDSCH} \\ E_c/I_{or} \ \ \textbf{(dB)} \end{array}$	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 10 dB		
1	PA3	-9	935		
'	FAS	-6	1462		
2	PB3	-6	275		
2	FBS	-3	408		
3	VA30	-6	296		
3	VA30	-3	430		
4	VA120	-6	271		
4	VA120	-3	392		

* Notes:

1) The reference value R is for the Fixed Reference Channel (FRC) H-Set 1

2) For Fixed Reference Channel (FRC) H-Set 2 the reference values for R should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

3) For Fixed Reference Channel (FRC) H-Set 3 the reference values for R should be scaled (multiplied by 3 and rounding to the nearest integer t-put in

9.2.1.3 Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 4/5

kbps, where values of i+1/2 are rounded up to i+1, i integer)

For the parameters specified in Table 9.6, t<u>The</u> requirements are specified in terms of a minimum information bit throughput R as shown in Table 9.7 and 9.8 for the DL reference channels <u>H-set 4/5</u> specified in Annex A.7.1.4 and A.7.1.5 <u>respectively</u>, with the addition of the parameters in Table 9.6 and the downlink physical channel setup according to table C.8.

<u>Using this configuration the throughput shall meet or exceed the minimum requirements specified in table 9.7 for H-Set 4 and table 9.8 for H-Set 5.</u>

Table 9.6: Test Parameters for Testing QPSK FRCs H-Set 4/H-Set 5

Parameter	Unit	Test 1	Test 2	Test 3	Test 4
Phase reference			P-CPICH		
I_{oc}	dBm/3.84 MHz	-60			
Redundancy and constellation version coding sequence		{0,2,5,6}			
Maximum number of HARQ transmission		4			
Note: The HS-SCCH	-1 and HS-PDSCH sh	and HS-PDSCH shall be transmitted continuously with			<u>th</u>
constant power	: HS-SCCH-1 shall o	nly use the	identity of t	he UE unde	er test for
those TTI inten	ded for the UE.	-	-		

Table 9.7: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 4

Test	Propagation	Reference value				
Number	Conditions	HS-PDSCH E_c/I_{or} (dB)	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 0 dB	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 10 dB		
1	DAG	-6	72	340		
1 PA3	PAS	-3	N/A	439		
2	0 DD0	-6	24	186		
2	PB3	-3	142	299		
3	VA30	-6	19	183		
3	VASU	-3	148	306		
1	VA120	-6	11	170		
4	VA120	-3	144	284		
* Note:	The reference value	ue R is for the Fixed Refere	nce Channel (FRC) H-Set 4	•		

Table 9.8: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 5

Test	Propagation	Reference value					
Number	Conditions	HS-PDSCH	T-put R (kbps) *	T-put R (kbps) *			
		E_c/I_{or} (dB)	\hat{I}_{or}/I_{oc} = 0 dB	\hat{I}_{or} / I_{oc} = 10 dB			
1	PA3	-6	98	464			
'	I PAS	-3	N/A	635			
2	2 PB3	-6	35	272			
2	FB3	-3	207	431			
3	VA30	-6	33	285			
3	VASU	-3	213	443			
4	VA120	-6	20	272			
4	VA120	-3	210	413			
* Note:	The reference val	ue R is for the Fixed Refere	ence Channel (FRC) H-Set 5				

9.2.1.4 Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 6

For the parameters specified in Table 9.8A, tThe requirements are specified in terms of a minimum information bit throughput R as shown in Table 9.8B for the DL reference channels H-Set 6 specified in Annex A.7.1.6 with the addition of the parameters in Table 9.8A and the downlink physical channel setup according to table C.8.

<u>Using this configuration the throughput shall meet or exceed the minimum requirements specified in table 9.8B.</u>

Table 9.8A: Test Parameters for Testing QPSK FRCs H-Set 6

Parameter		Unit	Test 1
Phas	se reference		P-CPICH
I_{oc}		dBm/3.84 MHz	-60
Redu	undancy and		
conste	llation version		{0,2,5,6}
codir	ng sequence		
Maxim	um number of		1
HARQ	transmission		4
Note: The HS-SCCH-1 and HS-PDSCH shall be transmitted			nall be transmitted
continuously with constant power. HS-SCCH-1 shall only			
use the identity of the UE under test for those TTI			
	intended for the	e UE.	

Table 9.8B: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 6

Test	Propagation	Reference value		
Number	Conditions	$\begin{array}{c} \textbf{HS-PDSCH} \\ E_c/I_{or} \ \ \textbf{(dB)} \end{array}$	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 10 dB	
1	PA3	-6	1407	
'	PAS	-3	2090	

9.2.1.5 Minimum requirement 16QAM, Fixed Reference Channel (FRC) H-Set 6

For the parameters specified in Table 9.8C, tThe requirements are specified in terms of a minimum information bit throughput R as shown in Table 9.8D for the DL reference channels H Set-6 specified in Annex A.7.1.6 with the addition of the parameters in Table 9.8C and the downlink physical channel setup according to table C.8.

Using this configuration the throughput shall meet or exceed the minimum requirements specified in table 9.8D.

Table 9.8C: Test Parameters for Testing 16-QAM FRCs H-Set 6

Parameter	Unit	Test 1	
Phase reference		P-CPICH	
I_{oc}	dBm/3.84 MHz	-60	
Redundancy and constellation version coding sequence		{6,2,1,5}	
Maximum number of HARQ transmission		4	
Note: The HS-SCCH	-1 and HS-PDSCH sh	nall be transmitted	
continuously with constant power. HS-SCCH-1 shall only			
use the identity of the UE under test for those TTI intende			
for the UE.			

Table 9.8D: Minimum requirement 16QAM, Fixed Reference Channel (FRC) H-Set 6

Test	Propagation	Reference value			
Number	Conditions	HS-PDSCH T-put R (kbps) *			
		E_c/I_{or} (dB)	\hat{I}_{or}/I_{oc} = 10 dB		
1	PA3	-6	887		
	1 73	-3	1664		

9.2.2 Open Loop Diversity performance

The receiver single open loop transmit diversity performance of the High Speed Physical Downlink Shared Channel (HS-DSCH) in multi-path fading environments are determined by the information bit throughput R.

9.2.2.1 Requirement QPSK, Fixed Reference Channel (FRC) H-Set 1/2/3

For the parameters specified in Table 9.9, tThe requirements are specified in terms of a minimum information bit throughput R as shown in Table 9.10 and Table 9.10A for the DL reference channels H-Set 1/2/3 (QPSK version) specified in Annex A.7.1.1, A.7.1.2 and A.7.1.3 respectively, with the addition of the parameters in Table 9.9 and the downlink physical channel setup according to table C.9.

<u>Using this configuration the throughput shall meet or exceed the minimum requirements specified in table 9.10.</u> Enhanced performance requirements specified in Table 9.10A are based on receiver diversity.

Table 9.9: Test Parameters for Testing QPSK FRCs H-Set 1/H-Set 2/H-Set 3

Parameter	Unit	Test 1	Test 2	Test 3
Phase reference			P-CPICH	
I_{oc}	dBm/3.84 MHz	-60		
Redundancy and constellation version coding sequence		{0,2,5,6}		
Maximum number of HARQ transmission		4		
Note: The HS-SCCH-1 and HS-PDSCH shall be transmitted continuously with				
constant power. HS-SCCH-1 shall only use the identity of the UE under test fo				inder test for
those TTI inte	nded for the UE.	-	-	

Table 9.10: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation	Reference value		
Number	Conditions	$\begin{array}{c} \textbf{HS-PDSCH} \\ E_c/I_{or} \ \ \textbf{(dB)} \end{array}$	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 0 dB	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 10 dB
4	DAG	-6	77	375
1 PA3	PAS	-3	180	475
2	PB3	-6	20	183
2	FDS	-3	154	274
3 VA30	1/420	-6	15	187
	VA30	-3	162	284

^{*} Notes: 1) The reference value R is for the Fixed Reference Channel (FRC) H-Set 1

²⁾ For Fixed Reference Channel (FRC) H-Set 2 the reference values for R should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

³⁾ For Fixed Reference Channel (FRC) H-Set 3 the reference values for R should be scaled (multiplied by 3 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

Table 9.10A: Enhanced requirement QPSK, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation Conditions		Reference value	
Number		HS-PDSCH E_c/I_{or} (dB)	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 0 dB	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 10 dB
		-12	N/A	803
1	PA3	-9	N/A	1221
ı	PAS	-6	590	N/A
		-3	1000	N/A
		-9	N/A	183
2	PB3	-6	152	288
		-3	251	N/A
		-9	N/A	197
3	VA30	-6	164	307
		-3	261	N/A

* Notes:

9.2.2.2 Requirement 16QAM, Fixed Reference Channel (FRC) H-Set 1/2/3

For the parameters specified in Table 9.11, tThe requirements are specified in terms of a minimum information bit throughput R as shown in Table 9.12 and Table 9.12A for the DL reference channels H-Set 1/2/3 (16QAM version) specified in Annex A.7.1.1, A.7.1.2 and A.7.1.3 respectively, with the addition of the parameters in Table 9.11 and the downlink physical channel setup according to table C.9.

<u>Using this configuration the throughput shall meet or exceed the minimum requirements specified in table 9.12.</u> Enhanced performance requirements specified in Table 9.12A are based on receiver diversity.

Table 9.11: Test Parameters for Testing 16-QAM FRCs H-Set 1/H-Set 2/H-Set 3

Parameter	Unit	Test 1	Test 2	Test 3
Phase reference		P-CPICH		
I_{oc}	dBm/3.84 MHz	-60		
Redundancy and constellation version coding sequence			{6,2,1,5}	
Maximum number of HARQ transmission		4		

Note: The HS-SCCH-1 and HS-PDSCH shall be transmitted continuously with constant power. HS-SCCH-1 shall only use the identity of the UE under test for those TTI intended for the UE.

¹⁾ The reference value R is for the Fixed Reference Channel (FRC) H-Set 1

²⁾ For Fixed Reference Channel (FRC) H-Set 2 the reference values for R should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

³⁾ For Fixed Reference Channel (FRC) H-Set 3 the reference values for R should be scaled (multiplied by 3 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

Table 9.12: Minimum requirement 16QAM, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation	Reference value			
Number	Conditions	HS-PDSCH T-put R (kbps) *			
		E_c/I_{or} (dB)	\hat{I}_{or}/I_{oc} = 10 dB		
1	PA3	-6	295		
ı ı		-3	463		
2	PB3	-6	24		
2	F D3	-3	243		
3	VA30	-6	35		
3		-3	251		

* Notes:

1)The reference value R is for the Fixed Reference Channel (FRC) H-Set 1
2) For Fixed Reference Channel (FRC) H-Set 2 the reference values for R should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)
3) For Fixed Reference Channel (FRC) H-Set 3 the reference values for R

should be scaled (multiplied by 3 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

Table 9.12A: Enhanced requirement 16QAM, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation	n Reference value			
Number	Conditions	HS-PDSCH	T-put R (kbps) *		
		E_c/I_{or} (dB)	\hat{I}_{or}/I_{oc} = 10 dB		
1	PA3	-9	1021		
'	PAS	-6	1540		
2	PB3	-6	251		
2	F 153	-3	374		
3	VA30	-6	280		
3		-3	398		

* Notes:

1)The reference value R is for the Fixed Reference Channel (FRC) H-Set 1
2) For Fixed Reference Channel (FRC) H-Set 2 the reference values for R should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)
3) For Fixed Reference Channel (FRC) H-Set 3 the reference values for R should be scaled (multiplied by 3 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

9.2.2.3 Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 4/5

For the parameters specified in Table 9.13, tThe requirements are specified in terms of a minimum information bit throughput R as shown in Tables 9.14 and 9.15 for the DL reference channels H-Set 4/5 specified in Annex A.7.1.4 and A.7.1.5 respectively, with the addition of the parameters in Table 9.13 and the downlink physical channel setup according to table C.9.

<u>Using this configuration the throughput shall meet or exceed the minimum requirements specified in table 9.14 for H-Set 4 and table 9.15 for H-Set 5.</u>

Table 9.13: Test Parameters for Testing QPSK FRCs H-Set 4/H-Set 5

Parameter	Unit	Test 1	Test 2	Test 3	Test 4
Phase reference			P-CI	PICH	
I_{oc}	dBm/3.84 MHz	-60			
Redundancy and constellation version coding sequence		{0,2,5,6}			
Maximum number of HARQ transmission				4	

Note: The HS-SCCH-1 and HS-PDSCH shall be transmitted continuously with constant power. HS-SCCH-1 shall only use the identity of the UE under test for those TTI intended for the UE.

Table 9.14: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 4

Test	Propagation	Reference value				
Number	Conditions	HS-PDSCH	T-put R (kbps) *	T-put R (kbps) *		
		E_c/I_{or} (dB)	\hat{I}_{or}/I_{oc} = 0 dB	\hat{I}_{or}/I_{oc} = 10 dB		
1	PA3	-6	70	369		
· ·	FAS	-3	171	471		
2	PB3	-6	14	180		
	FB3	-3	150	276		
3	VA30	-6	11	184		
3	VASU	-3	156	285		
* Note:	The reference value R is for the Fixed Reference Channel (FRC) H-Set 4					

Table 9.15: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 5

Test	Propagation		Reference value	
Number	Conditions	HS-PDSCH	T-put R (kbps) *	T-put R (kbps) *
		E_c/I_{or} (dB)	\hat{I}_{or} / I_{oc} = 0 dB	\hat{I}_{or}/I_{oc} = 10 dB
1	PA3	-6	116	563
ı	PAS	-3	270	713
2	PB3	-6	30	275
2	FDS	-3	231	411
3	VA30	-6	23	281
3	VASU	-3	243	426
* Note:	The reference val	ue R is for the Fixed Refere	ence Channel (FRC) H-Set 5	

9.2.3 Closed Loop Diversity Performance

The closed loop transmit diversity (Mode 1) performance of the High Speed Physical Downlink Shared Channel (HS-DSCH) in multi-path fading environments are determined by the information bit throughput R.

9.2.3.1 Requirement QPSK, Fixed Reference Channel (FRC) H-Set 1/2/3

For the parameters specified in Table 9.16, tThe requirements are specified in terms of a minimum information bit throughput R as shown in Table 9.17 and Table 9.17A for the DL reference channels H-Set 1/2/3 (QPSK version) specified in Annex A.7.1.1, A.7.1.2 and A.7.1.3 respectively, with the addition of the parameters in Table 9.16 and the downlink physical channel setup according to table C.10.

<u>Using this configuration the throughput shall meet or exceed the minimum requirements specified in table 9.17.</u> Enhanced performance requirements specified in Table 9.17A are based on receiver diversity.

Table 9.16: Test Parameters for Testing QPSK FRCs H-Set 1/H-Set 2/H-Set 3

Parameter	Unit	Test 1	Test 2	Test 3
Phase reference		P-CPICH		
I_{oc}	dBm/3.84 MHz		-60	
DPCH frame offset				
$(au_{DPCH,n})$	Chip		0	
Redundancy and			(0.0.5.0)	
constellation version coding sequence		{0,2,5,6}		
Maximum number of HARQ transmission			4	
Feedback Error Rate	%		4	
Closed loop timing adjustment mode			1	
Note: The HS-SCCH	-1 and HS-PDSCH sh	nall be transm	itted continuousl	y with
constant nowe	· US SCCU 1 chall o	nly use the ide	optity of the LIE i	inder test for

Note: The HS-SCCH-1 and HS-PDSCH shall be transmitted continuously with constant power. HS-SCCH-1 shall only use the identity of the UE under test for those TTI intended for the UE.

Table 9.17: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation		Reference value	
Number	Conditions	HS-PDSCH	T-put R (kbps) *	T-put R (kbps) *
		E_c/I_{or} (dB)	\hat{I}_{or}/I_{oc} = 0 dB	\hat{I}_{or}/I_{oc} = 10 dB
1	PA3	-6	118	399
ı	FAS	-3	225	458
2	PB3	-6	50	199
2	FD3	-3	173	301
3	VA30	-6	47	204
3	VA30	-3	172	305

* Notes: 1) The reference value R is for the Fixed Reference Channel (FRC) H-Set 1

2) For Fixed Reference Channel (FRC) H-Set 2 the reference values for R should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)s

3) For Fixed Reference Channel (FRC) H-Set 3 the reference values for R should be scaled (multiplied by 3 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

Table 9.17A: Enhanced requirement QPSK, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation		Reference value	
Number	Conditions	$\begin{array}{c} \textbf{HS-PDSCH} \\ E_c/I_{or} \ \ \textbf{(dB)} \end{array}$	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 0 dB	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 10 dB
		-12	N/A	891
1	PA3	-9	N/A	1231
'	FAS	-6	726	N/A
		-3	1106	N/A
		-9	N/A	194
2	PB3	-6	170	308
		-3	272	N/A
		-9	N/A	204
3	VA30	-6	172	315
		-3	270	N/A

* Notes: 1) The reference value R is for the Fixed Reference Channel (FRC) H-Set 1

2) For Fixed Reference Channel (FRC) H-Set 2 the reference values for R should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

3) For Fixed Reference Channel (FRC) H-Set 3 the reference values for R should be scaled (multiplied by 3 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to I+1, i integer)

9.2.3.2 Requirement 16QAM, Fixed Reference Channel (FRC) H-Set 1/2/3

For the parameters specified in Table 9.18, tThe requirements are specified in terms of a minimum information bit throughput R as shown in Table 9.19 and Table 9.19A for the DL reference channels H-set 1/2/3 (16QAM version) specified in Annex A.7.1.2 and A.7.1.3 respectively, with the addition of the parameters in Table 9.18 and the downlink physical channel setup according to table C.10.

<u>Using this configuration the throughput shall meet or exceed the minimum requirements specified in table 9.19.</u> Enhanced performance requirements specified in Table 9.19A are based on receiver diversity.

Table 9.18: Test Parameters for Testing 16-QAM FRCs H-Set 1/H-Set 2/H-Set 3

Unit	Test 1	Test 2	Test 3
	P-CPICH		
dBm/3.84 MHz		-60	
01.	_		
Chip		0	
	{6,2,1,5}		
		1	
			
%		4	
		1	
		ı	
-1 and HS-PDSCH sh	all be transm	itted continuous	ly with
	dBm/3.84 MHz Chip % 41 and HS-PDSCH sh	dBm/3.84 MHz Chip % 1 and HS-PDSCH shall be transm	P-CPICH dBm/3.84 MHz -60 Chip 0 {6,2,1,5}

Note: The HS-SCCH-1 and HS-PDSCH shall be transmitted continuously with constant power. HS-SCCH-1 shall only use the identity of the UE under test for those TTI intended for the UE.

Table 9.19: Minimum requirement 16QAM, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation	Re	eference value
Number	Conditions	$\begin{array}{c} {\rm HS\text{-}PDSCH} \\ E_c/I_{or} \ \ {\rm (dB)} \end{array}$	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 10 dB
1	PA3	-6	361
2	DDO	-3 -6	500 74
2	PB3	-3	255
3	VA30	-6	84
J	V A30	-3	254

* Notes: 1)The reference value R is for the Fixed Reference Channel (FRC) H-Set 1
2) For Fixed Reference Channel (FRC) H-Set 2 the reference values for R
should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

3) For Fixed Reference Channel (FRC) H-Set 3 the reference values for R should be scaled (multiplied by 3 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

Table 9.19A: Enhanced requirement 16QAM, Fixed Reference Channel (FRC) H-Set 1/2/3

Test	Propagation		Reference value
Number	Conditions	HS-PDSCH	T-put R (kbps) *
		E_c/I_{or} (dB)	\hat{I}_{or}/I_{oc} = 10 dB
1	PA3	-9	1129
	FAS	-6	1595
2	PB3	-6	267
	F B3	-3	393
3	VA30	-6	279
3	VA30	-3	404

* Notes: 1)The reference value R is for the Fixed Reference Channel (FRC) H-Set 1 2) For Fixed Reference Channel (FRC) H-Set 2 the reference values for R should be scaled (multiplied by 1.5 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

9.2.3.3 Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 4/5

For the parameters specified in Table 9.20, tThe requirements are specified in terms of a minimum information bit throughput R as shown in Tables 9.21 and 9.22 for the DL reference channels H-set 4/5 specified in Annex A.7.1.4 and A.7.1.5 respectively, with the addition of the parameters in Table 9.20 and the downlink physical channel setup according to table C.10.

<u>Using this configuration the throughput shall meet or exceed the minimum requirements specified in table 9.21 for H-Set 4 and table 9.22 for H-Set 5.</u>

Table 9.20: Test Parameters for Testing QPSK FRCs H-Set 4/H-Set 5

Parameter	Unit	Test 1	Test 2	Test 3
Phase reference			P-CPICH	
I_{oc}	dBm/3.84 MHz	-60		
DPCH frame offset	Oh:-			
$(au_{DPCH,n})$	Chip		0	
Redundancy and				
constellation version			{0,2,5,6}	
coding sequence				
Maximum number of			4	
HARQ transmission				
Feedback Error Rate	%		4	
Closed loop timing			1	
adjustment mode			ı	
Note: The HS-SCCH	-1 and HS-PDSCH sh	all be transm	itted continuous	v with

Note: The HS-SCCH-1 and HS-PDSCH shall be transmitted continuously with constant power. HS-SCCH-1 shall only use the identity of the UE under test for those TTI intended for the UE.

³⁾ For Fixed Reference Channel (FRC) H-Set 3 the reference values for R should be scaled (multiplied by 3 and rounding to the nearest integer t-put in kbps, where values of i+1/2 are rounded up to i+1, i integer)

Table 9.21: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 4

Test	Propagation		Reference value	
Number	Conditions	HS-PDSCH E_c/I_{or} (dB)	T-put R (kbps) * \hat{I}_{ar}/I_{ac} = 0 dB	T-put R (kbps) * \hat{I}_{or}/I_{oc} = 10 dB
1	PA3	-6	114	398
'	FAS	-3	223	457
2	PB3	-6	43	196
_	FDS	-3	167	292
3	VA30	-6	40	199
3	VASU	-3	170	305
* Notes:	1) The reference	value R is for the Fixed Ref	erence Channel (FRC) H-Set	4

Table 9.22: Minimum requirement QPSK, Fixed Reference Channel (FRC) H-Set 5

Test	Propagation		Reference value	
Number	Conditions	HS-PDSCH	T-put R (kbps) *	T-put R (kbps) *
		E_c/I_{or} (dB)	\hat{I}_{or}/I_{oc} = 0 dB	\hat{I}_{or}/I_{oc} = 10 dB
1	PA3	-6	177	599
ı	PAS	-3	338	687
2	PB3	-6	75	299
	FDS	-3	260	452
3	VA30	-6	71	306
3	VASU	-3	258	458
* Note:	The reference val	ue R is for the Fixed Refere	ence Channel (FRC) H-Set 5	

R4-050204

3GPP TSG RAN WG4 (Radio) Meeting #34 Scottsdale, US 14 - 18 February 2005

		CHAN	GE REQUI	EST		CR-Form-v	7.1
*	25.101	CR 406	≋rev	₩ Cu	rrent version:	6.6.0 **	
For <u>HELP</u> on us	sing this fo	rm, see bottom o	f this page or looi	k at the po	pp-up text ove	r the 光 symbols.	
Proposed change a	ffects:	UICC apps ₩	ME <mark>X</mark> Ra	adio Acce	ss Network	Core Network	
Title: ೫	Update U	MTS FDD Recei	ver Blocking Spe	cifications	}		
Source: #	3GPP TS	G RAN WG4 (Ra	adio)				
Work item code: ₩	TEI6				Date: 第 28	/02/2005	
	Use <u>one</u> of F (cor A (cor B (add C (fun D (edi Detailed ex	dition of feature), ectional modification torial modification)	ection in an earlier n of feature)	(release)	Ph2 (GS) R96 (Rel R97 (Rel R98 (Rel R99 (Rel Rel-4 (Rel Rel-5 (Rel Rel-6 (Rel	el-6 collowing releases: M Phase 2) ease 1996) ease 1997) ease 1998) ease 1999) ease 4) ease 5) ease 6) ease 7)	
Reason for change.			band blocker sponent in the assoc			arified to reflect th	те
Summary of change	e: Ж Cha	nges to Section 7	7.6 Blocking Char	acteristics	3		
Consequences if not approved:	impl		ect the required p co-existance for L				
Clauses affected:	ж						
Other specs affected:	¥ X	Other core spec Test specification O&M Specification	ons	TS 34.1	21.		
Other comments:	\mathbb{H}						

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

7.6 Blocking characteristics

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

7.6.1 Minimum requirement (In-band blocking)

The BER shall not exceed 0.001 for the parameters specified in Table 7.6. In-band blocking is defined for an unwanted interfering signal falling into the UE receive band or into the first 15 MHz below or above the UE receive band.

Parameter	Unit	Level		
DPCH_Ec	dBm/3.84 MHz	<refsens>+3 dB</refsens>		
Î _{or}	dBm/3.84 MHz	<refî<sub>or> + 3 dB</refî<sub>		
I _{blocking} mean power (modulated)	dBm	-56	-44	
F _{uw} offset		=±10 MHz	≤-15 MHz & ≥15 MHz	
F _{uw} (Band I operation)	MHz	2102.4≤ f ≤2177.6 (Note 2)	2095≤ f ≤2185	
F _{uw} (Band II operation)	MHz	1922.4≤ f ≤1997.6 (Note 2)	1915≤ f ≤2005	
F _{uw} (Band III operation)	MHz	1797.4≤ f ≤1887.6 (Note 2)	1790≤ f ≤1895	
F _{uw} (Band IV operation)	MHz	2102.4≤ f ≤2162.6 (Note 2)	2095≤ f ≤2170	
F _{uw} (Band V operation)	MHz	861.4≤ f ≤901.6 (Note 2)	854≤ f ≤909	
F _{uw} (Band VI operation)	MHz	867.4≤ f ≤892.6 (Note 2 and 3)	860≤ f ≤900 (Note 3)	
UE transmitted mean power	dBm	20 (for Power class 3) 18 (for Power class 4)		

Table 7.6: In-band blocking

- Note 1: I_{blocking} (modulated) consists of the common channels needed for tests as specified in Table C.7 and 16 dedicated data channels as specified in Table C.6.
- Note 2: For each carrier frequency the requirement is valid for two frequencies, the carrier frequency +/- 10 MHz.
- Note 3: For Band VI, the unwanted interfering signal does not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band.

7.6.2 Minimum requirement (Out of-band blocking)

The BER shall not exceed 0.001 for the parameters specified in Table 7.7. Out-of-band band blocking is defined for an unwanted interfering signal falling more than 15 MHz below or above the UE receive band.

For Table 7.7 in frequency range 1, 2 and 3, up to 24 exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1 MHz step size. For these exceptions the requirements of clause 7.7 Spurious response are applicable

For Table 7.7 in frequency range 4, up to 8 exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1 MHz step size. For these exceptions the requirements of clause 7.7 Spurious response are applicable

Table 7.7: Out of band blocking

Parameter	Unit	Frequency range	Frequency range	Frequency range	Frequency range	
Farailletei		11	2	3	<u>4</u>	
DPCH Ec	dBm/3.84	<refsens></refsens>	<refsens></refsens>	<refsens></refsens>	<refsens></refsens>	
DI OII_LC	MHz	+3 dB	+3 dB	+3 dB	<u>+3 dB</u>	
Î _{or}	dBm/3.84	<refî<sub>or></refî<sub>	<refî<sub>or></refî<sub>	<refî<sub>or></refî<sub>	<u><refl<sub>or></refl<sub></u>	
	MHz	+ 3 dB	+ 3 dB	+ 3 dB	<u>+ 3 dB</u>	
I _{blocking} (CW)	dBm	-44	-30	-15	<u>-15</u>	
F_{uw}	MHz	2050 <f< 2095<="" td=""><td>2025 <f≤ 2050<="" td=""><td>1< f ≤ 2025</td><td rowspan="2">=</td></f≤></td></f<>	2025 <f≤ 2050<="" td=""><td>1< f ≤ 2025</td><td rowspan="2">=</td></f≤>	1< f ≤ 2025	=	
(Band I operation)		2185 <f< 2230<="" td=""><td>2230 ≤f< 2255</td><td>2255 ≤f< 12750</td></f<>	2230 ≤f< 2255	2255 ≤f< 12750		
F _{uw}	MHz	1870 <f< 1915<="" td=""><td>1845 <f≤ 1870<="" td=""><td>1< f ≤ 1845</td><td rowspan="2"><u>1850 ≤ f ≤ 1910</u></td></f≤></td></f<>	1845 <f≤ 1870<="" td=""><td>1< f ≤ 1845</td><td rowspan="2"><u>1850 ≤ f ≤ 1910</u></td></f≤>	1< f ≤ 1845	<u>1850 ≤ f ≤ 1910</u>	
(Band II operation)		2005 <f< 2050<="" td=""><td>2050 ≤f< 2075</td><td>2075 ≤f< 12750</td></f<>	2050 ≤f< 2075	2075 ≤f< 12750		
F _{uw}	MHz	1745 <f< 1790<="" td=""><td>1720 <f≤ 1745<="" td=""><td>1< f ≤1720</td><td></td></f≤></td></f<>	1720 <f≤ 1745<="" td=""><td>1< f ≤1720</td><td></td></f≤>	1< f ≤1720		
(Band III operation)	IVII IZ	1895 <f< 1940<="" td=""><td>1940 ≤f< 1965</td><td>1965 ≤f<12750</td><td>=</td></f<>	1940 ≤f< 1965	1965 ≤f<12750	=	
I F _{uw}	MHz	2050 <f< 2095<="" td=""><td>2025 <f≤ 2050<="" td=""><td>1< f ≤ 2025</td><td></td></f≤></td></f<>	2025 <f≤ 2050<="" td=""><td>1< f ≤ 2025</td><td></td></f≤>	1< f ≤ 2025		
(Band IV operation)		2170 <f< 2215<="" td=""><td>2215 ≤< 2240</td><td>2240 ≤f< 12750</td><td>=</td></f<>	2215 ≤< 2240	2240 ≤f< 12750	=	
I F _{uw}	N 41 1-	809 <f< 854<="" td=""><td>784 <f≤ 809<="" td=""><td>1< f ≤ 784</td><td rowspan="2"><u>824 ≤ f ≤ 849</u></td></f≤></td></f<>	784 <f≤ 809<="" td=""><td>1< f ≤ 784</td><td rowspan="2"><u>824 ≤ f ≤ 849</u></td></f≤>	1< f ≤ 784	<u>824 ≤ f ≤ 849</u>	
(Band V operation)	MHz	909 <f< 954<="" td=""><td>954 ≤f< 979</td><td>979 ≤f< 12750</td></f<>	954 ≤f< 979	979 ≤f< 12750		
I F _{uw}	MHz	815 <f< 860<="" td=""><td>790 <f≤ 815<="" td=""><td>1 < f ≤ 790</td><td></td></f≤></td></f<>	790 <f≤ 815<="" td=""><td>1 < f ≤ 790</td><td></td></f≤>	1 < f ≤ 790		
(Band VI operation)		900 <f< 945<="" td=""><td>945 ≤f< 970</td><td>970 ≤ f < 12750</td><td>Ξ.</td></f<>	945 ≤f< 970	970 ≤ f < 12750	Ξ.	
UE transmitted	dDm	dBm 20 (for Power class 3)				
mean power	ubili		18 (for Power class 4)			
Band I operation	For 2095 ≤ f ≤ 2185 MHz, the appropriate in-band blocking or adjacent channel selectivity in subclause 7.5.1 and subclause 7.6.1 shall be applied.					
Dand II aparation	• • • • • • • • • • • • • • • • • • • •					
Band II operation	For 1915 ≤ f ≤ 2005 MHz, the appropriate in-band blocking or adjacent channel selectivity in subclause 7.5.1 and subclause 7.6.1 shall be applied					
	·					
Band III operation	For 1790 ≤ f ≤ 1895 MHz, the appropriate in-band blocking or adjacent channel selectivity in subclause 7.5.1 and subclause 7.6.1 shall be applied.				iei seiectivity iri	
Donal IV an aretic :	For 2095 ≤ f ≤ 2170 MHz, the appropriate in-band blocking or adjacent channel selectivity in					
Band IV operation	subclause 7.5.1 and subclause 7.6.1 shall be applied.					
Band V operation	For 854 ≤ f ≤ 909 MHz, the appropriate in-band blocking or adjacent channel selectivity in					
Daild v Operation	subclause 7.5.1 and subclause 7.6.1 shall be applied.					
Band VI operation			00 MHz, the appropriate in-band blocking or adjacent channel selectivity in			
Dana vi operation	subclause 7.5.1 and subclause 7.6.1 shall be applied.					

7.6.3 Minimum requirement (Narrow band blocking)

The BER shall not exceed 0.001 for the parameters specified in Table 7.7A. This requirement is measure of a receiver's ability to receive a W-CDMA signal at its assigned channel frequency in the presence of an unwanted narrow band interferer at a frequency, which is less than the nominal channel spacing

Table 7.7A: Narrow band blocking characteristics

Parameter	Unit	Band II, Band IV and	Band III	
		Band V		
DPCH_Ec	dBm/3.84 MHz	<refsens> + 10 dB</refsens>	<refsens> + 10 dB</refsens>	
Îor	dBm/3.84 MHz	<refî<sub>or> + 10 dB</refî<sub>	<refî<sub>or> + 10 dB</refî<sub>	
Iblocking (GMSK)	dBm	-57	-56	
F _{uw} (offset)	MHz	2.7	2.8	
UE transmitted mean	dBm	20 (for Power class 3)		
power	UDIII	18 (for Power class 4)		

NOTE: $I_{blocking}$ (GMSK) is an interfering signal as defined in TS 45.004 [6]

3GPP TSG RAN WG4 (Radio) Meeting #34 Scottsdale, US 14 - 18 February 2005

	CI	HANGE REQ	UEST	-	C	R-Form-v7.1
*	25.133 CR 7	<mark>19</mark>	¥	Current version:	6.8.0	#

For **HELP** on using this form, see bottom of this page or look at the pop-up text over the **%** symbols.

Proposed chang	e a	affects:	UICC apps#	M	IE X Radio Aco	cess Networ	k	Core Network	
Title:	\mathfrak{H}	GSM B	SIC reconfirmation						
Source:	\mathfrak{H}	3GPP T	SG RAN WG4 (Radio)						
Work item code:	\mathfrak{H}	TEI6						28/02/2005	
_									
Category:	\mathfrak{H}	=			1	Release: ₩		~	
			of the following categories	S.:				lowing releases:	
		•	orrection)				•	Phase 2)	
		•	orresponds to a correctio	n in a	an earlier release)		•	ase 1996)	
		•	ddition of feature),			R97	•	ase 1997)	
		•	unctional modification of f	eatur	re)	R98	•	ase 1998)	
		•	editorial modification)			R99	•	ase 1999)	
			explanations of the above	cate	gories can	Rel-4	(Relea	,	
		be found i	in 3GPP <u>TR 21.900</u> .			Rel-5	(Relea	,	
						Rel-6	(Relea	ase 6)	
						Ral-7	(Roles	asa 7)	

Reason for change:

Currently when no "GSM BSIC re-confirmation" transmission gap pattern sequence is activated in parallel to a "GSM Initial BSIC identification" transmission gap pattern sequence, then the cell shall be considered as nonverified immediately after the UE have performed one event evaluation or periodic reporting evaluation.

Now, there is a GSM cell that is strong, then the UE will have an event and afterwards the cell is considered non verified again. In the section 8.1.2.5.2.1 "Initial BSIC identification "the requirement states that "The UE shall give priority for BSIC decoding attempts in decreasing signal strength order to BSIC carriers with unknown BSIC."

According this requirement the UE shall always start to do a new attempt on the strongest GSM cell immediately after the event evaluation and the UE will in worst case never do any attempts to read BSIC on any other cells. If only verified cells are reported only the strongest GSM cell will be reported. No other GSM cells will be reported.

According GSM specification 05.08, para 7.2 the ME shall decode BSIC of a GSM cell at least every 10 s, otherwise the cell will not stay verified. The reason for verifying a GSM cell is when the UE move to the coverage of another cell on the same frequency. Since 10 s is used in GSM the same time limit shall be valid for GSM also when the UE is active on WCDMA.

Summary of change: # Add a timer that make sure that a GSM cell shall stay verified for 10 s. Thereby the UE will attempt to decode BSIC on other cells as well.

Consequences if # Only the strongest GSM cell will be reported when no BSIC reconfirmation not approved:

compressed mode pattern is activated.

Implementation of this CR by a Release 99 UE will not cause compatibility issues

Clauses affected:	策 8.1.2.5.2
Other specs affected:	Y N X Other core specifications
Other comments:	光

How to create CRs using this form:

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.1.2.5.2 BSIC verification

1) For a UE requiring compressed mode

In order for the requirements in the following subsections to apply the UTRAN must provide a transmission gap pattern sequence with measurement purpose GSM Initial BSIC identification or with measurement purpose GSM BSIC reconfirmation, using the following combinations for TGL1, TGL2 and TGD:

Table 8.5

TGL1 [slots]	TGL2 [slots]	TGD [slots]
5	-	undefined
7	-	undefined
10	-	undefined
14	-	undefined
5	5	15269
7	7	15269
10	10	41269
14	14	45269

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

Initial BSIC identification

Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the FDD and GSM cell. The UE shall trigger the initial BSIC identification within the available transmission gap pattern sequence with purpose "GSM Initial BSIC identification". The requirements for Initial BSIC identification can be found in 8.1.2.5.2.1.

BSIC re-confirmation

Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The UE shall trigger the BSIC re-confirmation within the available transmission gap pattern sequence with purpose "GSM BSIC reconfirmation". The requirements for BSIC re-confirmation can be found in 8.1.2.5.2.2.

Measurements on a GSM cell can be requested with BSIC verified or BSIC non-verified. If GSM measurements are requested with BSIC verified the UE shall be able to report the GSM cells with BSIC verified for those cells where the verification of BSIC has been successful.

If the network requests measurements on a GSM cell with BSIC verified, the UE shall behave as follows:

- The UE shall perform GSM carrier RSSI measurements according to Section 8.1.2.5.1 when ever a transmission gap pattern sequence with the purposes "GSM carrier RSSI measurements" is provided and the UE shall perform measurement reporting as defined in Section 8.6.7.6 of [16].
- The UE shall perform BSIC identification according to Section 8.1.2.5.2.1 when a "GSM Initial BSIC identification" transmission gap pattern sequence is activated. The UE shall use the last available GSM carrier RSSI measurement results for arranging GSM cells in signal strength order for performing BSIC identification.
- The UE shall perform BSIC re-confirmation according to Section 8.1.2.5.2.2 when a "GSM BSIC re-confirmation" transmission gap pattern sequence is activated.
- If a "GSM BSIC re-confirmation" transmission gap pattern sequence is not activated in parallel to a "GSM Initial BSIC identification" transmission gap pattern sequence or within one frame from the deactivation of a "GSM Initial BSIC identification" transmission gap pattern sequence, the BSIC shall be considered to be non-verified after 10s has elapsed after the UE identified the BSIC of the cell the UE has performed one event evaluation or periodic reporting evaluation with verified BSIC and the corresponding reporting if reporting is required after the evaluation.

The UE shall perform event evaluation for event-triggered reporting after the BSIC has been verified for a GSM cell. The UE shall use the last available GSM carrier RSSI measurement results in event evaluation and event-triggered reporting. Periodic reports shall be triggered according to Sections 8.6.7.5 and 8.6.7.6 of [16].

The BSIC of a GSM cell is considered to be "verified" if the UE has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification) and from that moment the BSIC shall be re-confirmed at least once every $T_{\text{re-confirm_abort}}$ seconds. Otherwise the BSIC of the GSM cell is considered as "non-verified". If a transmission gap pattern sequence with a purpose "GSM BSIC re-confirmation" is not activated by the network after BSIC identified or the "GSM BSIC re-confirmation" transmission gap pattern sequence is deactivated, the UE shall behave as described previously in this section.

The parameters $N_{identify_abort}$ and $T_{re\text{-confirm_abort}}$ are defined by higher layers and are signalled to the UE together with the transmission gap pattern sequence. $N_{identify_abort}$ indicates the maximum number of patterns that the UE shall use to attempt to decode the unknown BSIC of the GSM cell in the initial BSIC identification procedure. $T_{re\text{-confirm_abort}}$ indicates the maximum time allowed for the re-confirmation of the BSIC of one GSM cell in the BSIC re-confirmation procedure.

The UE shall be able to decode a BSIC within a transmission gap when the time difference between the middle of the received GSM synchronisation burst at the UE and the middle of the effective transmission gap is within the limits specified in table 8.6.

The effective transmission gap is calculated by assuming both UL and DL compressed mode and applying the worst-case values for UL/DL timing offset and pilot field length of last DL gap slot.

Gap length [slots]	Maximum time difference [µs]
5	± 500
7	± 1200
10	± 2200
14	+ 3500

Table 8.6: The gap length and maximum time difference for BSIC verification

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in TS 45.005.

2) For a UE not requiring compressed mode

If a BSIC is decoded and matches the expected value, it is considered as "verified", else it is considered as "non verified".

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in TS 45.005.

8.1.2.5.2.1 Initial BSIC identification

This measurement shall be based on a transmission gap pattern sequence with the purpose "GSM Initial BSIC identification"

For GSM cells that are requested with BSIC verified the UE shall attempt to decode the SCH on the BCCH carrier of the 8 strongest BCCH carriers of the GSM cells indicated in the measurement control information. The UE shall give priority for BSIC decoding attempts in decreasing signal strength order to BSIC carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value after layer 3 filtering. The GSM signal strength levels used in BSIC identification for arranging GSM cells in signal strength order shall be based on the latest GSM carrier RSSI measurement results available.

When the UE attempts to decode the BSIC of one GSM BCCH carrier with unknown BSIC, the UE shall use all available transmission gaps, within the transmission gap pattern sequence with the purpose "GSM Initial BSIC identification", to attempt to decode the BSIC from that GSM BCCH carrier.

If the BSIC of the GSM BCCH carrier has been successfully decoded the UE shall immediately continue BSIC identification with the next GSM BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within $N_{identify_abort}$ successive patterns, the UE shall abort the BSIC identification attempts for that GSM BCCH carrier. The UE shall continue to try to perform

BSIC identification of the next GSM BCCH carrier in signal strength order. The GSM BCCH carrier for which the BSIC identification failed shall not be re-considered for BSIC identification until BSIC identification attempts have been made for all the rest of the 8 strongest GSM BCCH carriers in the monitored set with unknown BSIC.

 $N_{identify_abort}$ values are given for a set of reference patterns in table 8.7. $T_{identify_abort}$ is the elapsed time during $N_{identify_abort}$ transmission gap patterns (informative). The figures given in table 8.7 represent the number of patterns required to guarantee at least two attempts to decode the BSIC for one GSM BCCH carrier.

Table 8.7: The worst-case time for identification of one previously not identified GSM cell

	TGL1 [slots]	TGL2 [slots]	TGD [slots]	TGPL1 [frames]	TGPL2 [frames]	T _{identify abort}	N _{identify_abort} [patterns]
Pattern 1	7	-	undefined	3	TGPL1	1.56	52
Pattern 2	7	-	undefined	8	TGPL1	5.28	66
Pattern 3	7	7	47	8	TGPL1	2.88	36
Pattern 4	7	7	38	12	TGPL1	2.88	24
Pattern 5	14	-	undefined	8	TGPL1	1.84	23
Pattern 6	14	-	undefined	24	TGPL1	5.28	22
Pattern 7	14	14	45	12	TGPL1	1.44	12
Pattern 8	10	-	undefined	12	TGPL1	2.88	36
Pattern 9	10	10	75	12	TGPL1	2.88	24

3GPP TSG RAN WG4 (Radio) Meeting #34 Scottsdale, US 14 - 18 February 2005

CHANGE REQUEST												
	25.133 CR 720 #	rev	rent version: 6.8.0									
For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the # symbols.												
Proposed change affects: UICC apps# ME X Radio Access Network Core Network												
Title: ೫	Improvement of interfrequency co	<mark>ell search requiremen</mark>	ts									
Source: #	3GPP TSG RAN WG4 (Radio)											
Work item code: ∺	TEI6		Date: 第 28/02/2005									
Category: # F Use one of the following categories: F (correction) A (corresponds to a correction in an earlier release) B (addition of feature), C (functional modification) D (editorial modification) D (editorial modification) D (etailed explanations of the above categories can be found in 3GPP TR 21.900. # Release: # Rel-6 Use one of the following releases: Ph2 (GSM Phase 2) R96 (Release 1996) R97 (Release 1997) R98 (Release 1998) R99 (Release 1999) Rel-4 (Release 4) Rel-5 (Release 5) Rel-6 (Release 6) Rel-7 (Release 7)												
Reason for change: Siemens have during some meetings investigated how much tighter the inter-frequency cell search requirements can be. Improving the requirements means that the density of the inter-frequency compressed mode pattern can be lowered and simultaneously the requirement for finding a new inter frequency cell can be improved. Siemens propose 200 ms for cell identification, The Ericsson proposal is to have a requirement of 300 ms as a general requirement for all "reasonable" propagation conditions and to assure a robust implementation for all realistic propagation conditions such as high speed trains etc.												
Summary of chang	ge:	ed from 800 to 300 ms	S									
Consequences if not approved:	The assumed performance network is planned is not im		n expect from a UE when the									
Clauses affected:	ж 8.1.2.3.2											
Other specs affected:	Y N X Other core specification Test specifications X O&M Specifications	ons										

How to create CRs using this form:

Other comments: #

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.1.2.3 FDD inter frequency measurements

In the CELL_DCH state when a transmission gap pattern sequence with the "FDD measurements" purpose is provided by the network the UE shall continuously measure identified inter frequency cells and search for new inter frequency cells indicated in the measurement control information.

In order for the requirements in the following subsections to apply the UTRAN must provide a transmission gap pattern sequence with measurement purpose FDD measurement using the following combinations for TGL1, TGL2, TGD and Max TGPL:

TGL1 [slots] TGL2 [slots] TGD [slots] Max TGPL [frames] undefined 18 undefined 10 undefined 24 18 + ceil(TGD/15) 15...269 14 14 45...269 36 + ceil(TGD/15)

Table 8.1

8.1.2.3.1 Identification of a new cell

The UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify, inter}} = T_{\text{basic identify FDD,inter}} \cdot \frac{T_{\text{Measurement Period, Inter}}}{T_{\text{Inter}}} \cdot N_{\textit{Freq}} \quad \textit{ms}$$

A cell shall be considered detectable when

- CPICH Ec/Io \geq -20 dB,
- SCH_Ec/Io ≥ -17 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

8.1.2.3.2 UE CPICH measurement capability

When transmission gaps are scheduled for FDD inter frequency measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.1 and 9.1.2 with measurement period given by

$$T_{\text{measurement inter}} = Max \left\{ T_{\text{Measurement_Period Inter}}, T_{\text{basic measurement FDD inter}} \cdot \frac{T_{\text{Measurement_Period Inter}}}{T_{\text{Inter}}} \cdot N_{\textit{Freq}} \right\} \textit{ms}$$

If the UE does not need compressed mode to perform inter-frequency measurements, the measurement period for inter-frequency measurements is 480 ms.

The UE shall be capable of performing CPICH measurements for $X_{basic\ measurement\ FDD\ inter}$ inter-frequency cells per FDD frequency of the monitored set or the virtual active set, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{Measurement\ Inter.}$

 $X_{\text{basic measurement FDDinter}} = 6$

 $T_{Measurement_Period\ Inter} = 480\ ms.$ The period used for calculating the measurement period $T_{measurement_inter}$ for interfrequency CPICH measurements.

 $T_{\text{Inter::}}$ This is the minimum time that is available for inter frequency measurements, during the period $T_{\text{Measurement_Period inter}}$ with an arbitrarily chosen timing. The minimum time per transmission gap is calculated by

using the actual idle length within the transmission gap as given in the table 11 of Annex B in TS 25.212 and by assuming 2*0.5 ms for implementation margin and after that taking only full slots into account in the calculation.

 $T_{basic_identify_FDD,inter} = \underline{3800}$ ms. This is the time period used in the inter frequency equation where the maximum allowed time for the UE to identify a new FDD cell is defined.

 $T_{basic_measurement_FDD\ inter} = 50$ ms. This is the time period used in the equation for defining the measurement period for inter frequency CPICH measurements.

 N_{Freq} : Number of FDD frequencies indicated in the inter frequency measurement control information.

8.1.2.3.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.3.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify\ inter}$ defined in Section 8.1.2.3.1 When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{identify_inter}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period\ Inter}$ provided the timing to that cell has not changed more than +/-32 chips while transmission gap has not been available and the L3 filter has not been used.

8

3GPP TSG RAN WG4 (Radio) Meeting #34

Scottsdale, US 14 - 18 February 2005

												(CR-Form-v7.1
				(CHAN	GE I	REQ	UE	ST				
*		25.	133	CR	721	э	rev		¥	Current ver	sion:	6.8.0	¥
For <u>HE</u>	For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the % symbols.												
Proposed	l change	affect	s: l	JICC a	pps#]	MEX	Rac	dio A	ccess Netwo	ork	Core No	etwork
Title:	ж	Cor	rection	of err	or in the	implem	entatio	n of C	CR50	<mark>2 (signalling</mark>	g rang	e of CPIC	H RSCP)
Source:	ж	3GF	P TS	G RAN	<mark>I WG4 (R</mark>	adio)							
Work iten	n code: ૠ	TEI	ŝ							Date: 3	€ <mark>28</mark>	/02/2005	
Category	: ¥	I I O I Detail	C (funded expense)	rection) respond lition of ctional torial m olanatio	owing cates ds to a con- feature), modification odification ns of the a FR 21.900.	rection in the second of the s	nture)		elease	Ph2	of the for (GS) (Rela (Rela (Rela (Rela (Rela (Rela (Rela	el-6 ollowing rel M Phase 2) ease 1996) ease 1997) ease 1998) ease 1999) ease 4) ease 5) ease 6)	
Reason fo	or change		introd CR6: imple Reaso The s	duced 27, the ements on for d ignallin	in the spe correct n the map	ecificati napping ping as CR502 of CPIC	on but on	due to chang R502.	ed to	CPICH RSC implementa the old in v rended in W sign.	tion e 6.4.0.	rror related This CR	d to re-
Summary	of chang				value for g table is				_	ed from -11	5dBm	to -120dl	∃m.
Conseque not appro		æ	Incon		y with oth								
					ay not be y with RA		o optimi	ize th	e cel	l design.			
Clauses	ffootod:												
Clauses a	mectea:	¥ T	9.1.1 Y N	.3 									
Other spe	ecs	\varkappa	X	Other	core spe	cificati	ons	H					

affected:	X Test specifications O&M Specifications
Other comments:	≖

How to create CRs using this form:

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

9.1.1.3 CPICH RSCP measurement report mapping

The reporting range is for *CPICH RSCP* is from <u>115</u> <u>-120 dBm</u>...-25 dBm.

In table 9.4 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.4

Reported value	Measured quantity value	Unit
CPICH_RSCP_LEV _00	CPICH RSCP <-115	dBm
CPICH_RSCP_LEV _01	-115 ≤ CPICH RSCP < -114	dBm
CPICH_RSCP_LEV _02	-114 ≤ CPICH RSCP < -113	dBm
		
CPICH_RSCP_LEV _89	-27 ≤ CPICH RSCP < -26	dBm
CPICH_RSCP_LEV _90	-26 ≤ CPICH RSCP < -25	dBm
CPICH RSCP LEV 91	-25 < CPICH RSCP	dBm

Reported value	Measured quantity value	<u>Unit</u>
CPICH RSCP LEV -05	CPICH RSCP <-120	<u>dBm</u>
CPICH RSCP LEV -04	-120 ≤ CPICH RSCP < -119	<u>dBm</u>
CPICH RSCP LEV -03	-119 ≤ CPICH RSCP < -118	<u>dBm</u>
<u></u>		
CPICH_RSCP_LEV _89	<u>-27 ≤ CPICH RSCP < -26</u>	<u>dBm</u>
CPICH_RSCP_LEV _90	<u>-26 ≤ CPICH RSCP < -25</u>	<u>dBm</u>
CPICH RSCP LEV 91	-25 ≤ CPICH RSCP	dBm

3GPP TSG RAN WG4 (Radio) Meeting #34 Scottsdale, US 14 - 18 February 2005

				(CHAN	IGE	REC	QUE	ST	•				CR-	Form-v7.1
*		25.	141	CR	362		жrev		¥	Curre	nt vers	sion:	6.8.	0 9	£
	For HELP on using this form, see bottom of this page or look at the pop-up text over the % symbols. Proposed change affects: UICC apps% ME Radio Access Network X Core Network														
Title:	H				ge for TX		sity test	case							
Source:	Я	3GI	PP TS	G RAN	I WG4 (F	Radio)									
Work ite	m code:∄	TEI	6							D	ate: ೫	28/	02/200	5	
Category	<i>y:</i> #	Detai	F (cord A (cord B (add C (fund D (edi	rection) respond lition of ctional in torial m olanatio	owing cate ds to a co feature), modification ns of the TR 21.900	rrectior ion of fe n) above	n in an e			Use F F F F F F F	ase: # o <u>ne</u> of Ph2 R96 R97 R98 R99 Rel-4 Rel-5 Rel-6 Rel-7	the for (GSN (Relea (Relea (Relea (Relea (Relea (Relea	I-6 Illowing	96) 96) 97) 98)	ses:
Reason	for chang	e: Ж	both discu	Anteniussed a	1, it was na-1 and at an ear rpriate sp	l Anter lier RA	nna-2 in N WG4	the c	ase o	f Tx di	versity	. This	issue	had b	peen
	y of changuences if	ge: ૠ ૠ			fines hov						•	raise	d in the	e futu	re.
not appr				J ,		,									
Clauses	affected:	¥	6.1.1 Y N												
Other sp affected:		*	X X X	Test	core specifica Specific	tions	tions	¥							
Other co	mments:	\varkappa													

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6.1.1 Test Models

The set-up of physical channels for transmitter tests shall be according to one of the test models below. A reference to the applicable table is made with each test.

For Tx diversity transmission, the same test model shall be used for both antennas. No diversity coding of the test models is required.

A code "level setting" of -X dB is the setting that according to the base station manufacturer will result in a code domain power of nominally X dB below the maximum output power. The relative accuracy of the code domain power to the maximum output power shall have tolerance of ± 1 dB.

3GPP TSG RAN WG4 (Radio) Meeting #34 Scottsdale, US 14 - 18 February 2005

	CHANGE REQUEST								
*	25	5.141	CR	363 ж r	ev 1	ж	Current vers	ion: 6.8	.0 *
For <u>HELP</u>	For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the 策 symbols.								
	Proposed change affects: UICC apps# ME Radio Access Network Core Network				e Network				
Title:	₩ De	escriptio	n of test prod	edure for T	ime align	ment	error in TX Di	versity	
Source:	₩ 30	SPP TS	G RAN WG4	(Radio)					
Work item co	de: Ж ТЕ	16					Date: ₩	28/02/20	05
Category:	ж <mark>F</mark>						Polosso: #	Rol-6	
Category: ## F Use one of the following categories: ## F (correction) ## A (corresponds to a correction in an earlier release) ## B (addition of feature), ## C (functional modification of feature) ## D (editorial modification) Detailed explanations of the above categories can be found in 3GPP TR 21.900. ## Release: # Rel-6 Use one of the following release. ## Rel-6 ## Rel-				e 2) 996) 997) 998) 999)					
December of	/ 0 <i>C</i>	The		4 f = 1 th = 4 i	E		and the Transition of		
Reason for ch	nange: #	inei	nethod of tes	t for the tim	e alignme	ent eri	or in Tx diver	Sity is uncl	ear.
Summary of o	change: #	Clarit	fication on the	e CPICH us	age for th	e tx d	iverstity test.		
Consequence not approved		This	method of tes	st will remain	n unclear	•			
61 66		0.70							
Clauses affec	ted: #	6.7.3							
Other specs affected:	₩	Y N X X	Other core s Test specific O&M Specif	ations	s #				
Other comme	ents: #	3							

How to create CRs using this form:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)	3) With "track changes" disabled, paste the entire CR form (the clause containing the first piece of changed text. Delethe change request.	use CTRL-A to select it) into the specification just in front of te those parts of the specification which are not relevant to

6.7.3 Time alignment error in Tx Diversity

6.7.3.1 Definition and applicability

In Tx Diversity, signals are transmitted from two antennas. These signals shall be aligned. The time alignment error in Tx Diversity is specified as the delay between the signals from the two diversity antennas at the antenna ports.

This test is only applicable for Node B supporting TX diversity transmission.

6.7.3.2 Minimum Requirement

The time alignment error in Tx Diversity shall not exceed $\frac{1}{4}$ T_c.

The normative reference for this requirement is in TS 25.104 [1] subclause 6.8.4

6.7.3.3 Test Purpose

To verify that the timing alignment error in TX diversity is within the limit specified in 6.7.3.2

6.7.3.4 Method of Test

6.7.3.4.1 Initial Conditions

Test environment: normal; see subclause 4.4.1.

RF channels to be tested: Middle. See subclause 4.8

Refer to annex B 1.6 for a functional block diagram of the test set-up.

- 1) Connect both base station RF antenna ports to the measurement equipment according to figure B.6.
- 2) Set the base station to transmit Test Model 1 according to subclause 6.1.1.1 using TX diversity.
- 3) Set BS frequency.

6.7.3.4.2 Procedure

- 1) Start BS transmission at Pmax.
- 2) Measure the time alignment error between the <u>P-CPICH</u> on the main antenna port and the <u>P-CPICH</u> on the diversity antenna port.

6.7.3.5 Test Requirement

The time alignment error shall be less than 0.35 $T_{\rm c}$.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in subclause 4.2 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex F.

3GPP TSG RAN WG4 (Radio) Meeting #34 Scottsdale, US 14 - 18 February 2005

CHANGE REQUEST				
×	25.942 CR 018 #r	* Current version: 6.3.0		
For <u>HELP</u> on u	ising this form, see bottom of this pag	ge or look at the pop-up text over the 策 symbols.		
Proposed change affects: UICC apps# ME X Radio Access Network Core Network				
Title: ₩	Scenarios for UE Receiver Blockin	ng Specifications		
Source: #	3GPP TSG RAN WG4 (Radio)			
Work item code: ₩	TEI6	Date: 第 28/02/2005		
Category: # F Use one of the following categories: F (correction) A (corresponds to a correction in an earlier release) B (addition of feature), C (functional modification of feature) Phy (Release 1996) R97 (Release 1997) R98 (Release 1998) D (editorial modification) R99 (Release 1999) Detailed explanations of the above categories can be found in 3GPP TR 21.900. Rel-6 (Release 6) Rel-7 (Release 7)				
Reason for change	e: 米 Update for Band 2 and Band {	5		
		ing UE Rx blocking due to UE to UE interference		
Consequences if not approved:	Needed for analyzing potentia receiver performance.	al interference threats and evaluating UMTS		
Clauses affected:	*			
Other specs affected:	Y N	ns ₩		
Other comments:				

How to create CRs using this form:

- 1) Fill out the above form. The symbols above marked % contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

4.2.2 Co-located MS and intermodulation

a) System constraints

Close mobile stations can produce intermodulation products, which can fall into mobile or base stations receiver bands. This can occur with MS operating in FDD and TDD modes, and the victim can be BS or MS operating in both modes.

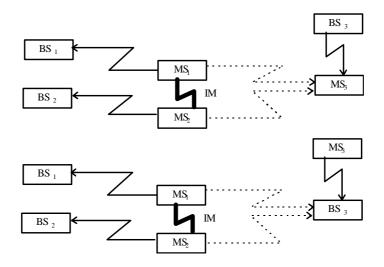


Figure 4.2: Possible collocated MS scenarios

b) Affected parameters

[FDD and TDD] intermodulation between MS.

[FDD and TDD] MS and BS blocking.

[FDD and TDD] MS and BS reference interference level.

c) Methodology

The first approach is to assume that the two mobile stations are collocated, and to derive the minimum coupling loss. It requires to assume that both mobiles are transmitting at maximum power.

Another approach can take into account the probability that the two mobiles come close to each other, in a dense environment, and to calculate the probability that the intermodulation products interfere with the receiver.

The second approach should be preferred.

d) Inputs required

Minimum separation distance: 5 m[for outdoor, 1 m for indoor]

Mobile station density: [TBD]

Base station density: [TBD in relation with MS density]

Power control algorithm: [TBD]

Maximum acceptable probability of interference: 2 %

Section 4.2.3 Estimated UE Out of Band Blocking

In some cases, it is possible to determine the expected out of band blocking performance of the UE through the examination of simple UE-to-UE interference scenarios. This is particularly true in the UE transmit band where the performance of the duplexer in the receiver must be sufficient to protect the UE from it's own transmitter as well as from other nearby transmitters. During the development of the specifications for Band I, this method was used to derive a value for out of band blocking performance within the UE transmit band. However, as additional frequency bands have been added to the UMTS specifications the blocking values were specified to be similar to Band I but did not accurately reflect the actual transmit/receive duplex spacing for the additional bands.

For some bands it is assumed that only UMTS mobiles will be active in the UE transmit band. However, for other bands (for example Band II and Band V) other technologies may also be deployed and may be transmitting near to the UE. In the analysis below it is assumed that the UMTS UE is operating near its minimum sensitivity (i.e. <REFSENS> + 3 dB), the mobiles are separated by 1m, and that the antenna gain is 0 dBi for each device.

As an example, the impact to a UMTS UE receiver due to nearby GSM and UMTS transmitters is calculated below.

<u>Band II (1900 MHz)</u>	<u>UMTS Tx</u>	GSM Tx	Comment
UE Max Transmit Power (a)	<u>24 dBm</u>	<u>30 dBm</u>	
Free Space Loss (b)	<u>38 dB</u>	<u>38 dB</u>	1 meter
Body Loss (total) (c)	<u>2 dB</u>	<u>2 dB</u>	From Table 4.1
Minimum Coupling Loss (MCL) (d)=(b)+	(c) 40 dB	<u>40 dB</u>	
Received Power Level (e)=(a)-	<u>-16 dBm</u>	<u>-10 dBm</u>	

In some cases, the body losses may be higher due to the close proximity of the users head and also due to blockage of the hand on the UE. For example, if body loss of 6 dB is included (3 dB per UE) then the blocking requirements become -20 and -14 for UMTS and GSM interferers, respectively. If body loss is increased to 12 dB (6 dB per UE) then the blocking requirements become -26 and -20 dBm for UMTS and GSM interferers, respectively. For data-only terminals there may be lower losses as the body blockage would be reduced and the antenna gain may be higher. Therefore, it is suggested to use -15 dBm as the UE receiver blocking level in the UE transmit band, similar to Band I.

Similar results are shown below for Band V:

Band V (850 MHz)		<u>UMTS Tx</u>	GSM Tx	Comment
UE Max Transmit Power (a)		<u>24 dBm</u>	<u>33 dBm</u>	
Free Space Loss (b)		<u>31 dB</u>	<u>31 dB</u>	1 meter
Body Loss (c)		<u>2 dB</u>	<u>2 dB</u>	From Table 4.1
Minimum Coupling Loss (MCL) (d)=(l	b)+(c)	33 dB	33 dB	
Received Power Level (e)=(s	<u>a)-(d)</u>	<u>-9 dBm</u>	<u>0 dBm</u>	

As described above, the body losses may be higher in some cases. Also, in general the body losses may be higher for frequencies below 1 GHz as compared to the losses at 2 GHz. If body loss is increased to 6 dB (3 dB per UE) then the blocking requirements become -13 and -4 for UMTS and GSM interferers, respectively. If body loss is increased to 12 dB (6 dB per UE) then the blocking requirements become -19 and -10 dBm for UMTS and GSM interferers, respectively. Thus, for Band V it is suggested to also use -15 dBm as the UE receiver blocking level in the UE transmit band.

4.3 Mobile Station to Base Station

a) System constraints

A mobile station, when far away from its base station, transmits at high power. If it comes close to a receiving base station, interference can occur.

The separation distance between the interfering mobile station and the victim base station can be small, but not as small as between two mobile stations.

Both the mobile and the base stations can operate in FDD and TDD modes, thus four scenarios are to be considered, as shown in figure 4.3.

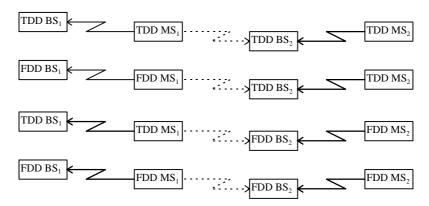


Figure 4.3: Possible MS to BS scenarios

b) Affected parameters

[FDD and TDD] MS Out-of-band emissions.

[FDD and TDD] MS Spurious emissions.

[FDD and TDD] BS Blocking.

[FDD and TDD] BS Reference interference level.

c) Methodology

The first approach is to assume that the mobile station transmits at maximum power, and to make calculations for a minimum distance separation. This approach is particularly well suited for the blocking phenomenon.

Another approach is to estimate the loss of uplink capacity at the level of the victim base station, due to the interfering power level coming from a distribution of interfering mobile stations. Those mobile stations are power controlled. A hexagonal cell lay-out is considered for the BS deployment with specified cell radius. Large cell radius are chosen since they correspond to worst case scenarios for coexistence studies.

The second approach should be preferred.

With both approaches two specific cases are to be considered.

Both base stations (BS_1 and BS_2) are co-located. This case occurs in particular when the same operator operates both stations (or one station with two carriers) on the same HCS layer.

The base stations are not co-located and uncoordinated. This case occurs between two operators, or between two layers.

d) Inputs required

Minimum separation distance: [30 m for rural, 15 m for urban, 3 m for indoor].

Base station density: [cell radius equal to 4 km for rural/macro, 1,5 km for urban/macro, 0,5 km for urban/micro or 0,1 km for indoor/pico].

Interfering mobile station density: [TBD in relation with service, cell radius and system capacity].

Power control algorithm: [TBD].

Maximum acceptable loss of capacity: [10 %].

e) scenarios for coexistence studies

Inter-operator guard band (uncoordinated deployment).

FDD macro/ FDD macro.

FDD macro/ FDD micro.

FDD macro/ FDD pico (indoor).

FDD micro/ FDD pico (indoor).

TDD macro/ TDD macro.

TDD macro/ TDD micro.

TDD macro/TDD pico (indoor).

TDD micro/ TDD pico (indoor).

FDD macro/ TDD macro at 1 920 MHz.

FDD macro/ TDD micro at 1 920 MHz.

FDD macro/TDD pico at 1 920 MHz.

FDD micro/TDD micro at 1 920 MHz.

FDD micro/ TDD pico at 1 920 MHz.

Intra-operator guard bands.

FDD macro/FDD macro (colocated).

FDD macro/ FDD micro.

FDD macro/ FDD pico (indoor).

FDD micro/ FDD pico (indoor).

TDD macro/ TDD macro.

TDD macro/ TDD micro.

TDD macro/ TDD pico (indoor).

TDD micro/ TDD pico (indoor).

FDD macro/ TDD macro at 1 920 MHz.

FDD macro/ TDD micro at 1 920 MHz.

FDD macro/ TDD pico at 1 920 MHz.

FDD micro/ TDD micro at 1 920 MHz.

FDD micro/ TDD pico at 1 920 MHz.

These scenarios should be studied for the following services.

Table 4.3

Environment	Services			
Rural Macro	Speech, LCD 144			
Urban Micro/Macro	Speech, LCD 384			
Indoor Pico	Speech, LCD 384, LCD 2 048			