RP-020302

TSG RAN Meeting #16 Marco Island, FL, USA, 4 - 7 June 2002

Title	CRs (Rel-5) for WI "High Speed Downlink Packet Access (HSDPA) - RF Radio
	Transmission/ Reception, System Performance Requirements and
	Conformance Testing"
Source	TSG RAN WG4
Agenda Item	8.6.1

RAN4 Tdoc	Spec	Curr Ver	New Ver	CR	R	Cat	Ph	Title	Acronym
R4-021013	25.101	5.2.0	5.3.0	177		В	Rel-5	UE HSDPA performance requirements (fixed reference channel)	HSDPA-RF
R4-020966	25.102	5.0.1	5.1.0	111	1	В	Rel-5	Inclusion of HSDPA into TS25.102	HSDPA-RF
R4-020981	25.104	5.2.0	5.3.0	122	1	F	Rel-5	Node B modulation accuracy requirements for HS-PDSCH	HSDPA-RF
R4-021009	25.142	5.0.0	5.1.0	126	1	В	Rel-5	Inclusion of HSDPA into TS25.142	HSDPA-RF

R4-021013

3GPP TSG RAN WG4 Meeting #23 Gyeongju, Korea 13th -17th May, 2002

	CR-Form-v4
	CHANGE REQUEST
¥	25.101 CR 177 * ev 1 * Current version: 5.2.0 *
For <u>HELP</u> o	n using this form, see bottom of this page or look at the pop-up text over the st symbols.
Proposed chang	ge affects: 第 (U)SIM ME/UE X Radio Access Network Core Network
Title:	# UE HSDPA performance requirements (Fixed reference channel)
Source:	# RAN WG4
Work item code	: ፝ HSDPA-RF Date: ፝ ፝ <mark>17/5/2002</mark>
Category:	B Release: % Rel-5 Use one of the following categories: Use one of the following releases: 2 F (correction) 2 (GSM Phase 2) A (corresponds to a correction in an earlier release) R96 (Release 1996) B (addition of feature), R97 (Release 1997) C (functional modification of feature) R98 (Release 1998) D (editorial modification) R99 (Release 1999) Detailed explanations of the above categories can be found in 3GPP TR 2900. REL-4 (Release 4)
Reason for char	nge: # Include performance requirements for UE HSDPA receiver performance requirements
Summary of cha	ange: # Performance requirement for fixed reference channel for QPSK / QAM
Consequences not approved:	if X No requirement in Rel 5 for HSPDA
Clauses affected	d: ፝፝፝፝፝ ೫ New clause added
Other specs affected:	 Conter core specifications Test specifications O&M Specifications
Other comments	s: Ж

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following definitions apply:

Power Spectral Density: The units of Power Spectral Density (PSD) are extensively used in this document. PSD is a function of power versus frequency and when integrated across a given bandwidth, the function represents the mean power in such a bandwidth. When the mean power is normalised to (divided by) the chiprate it represents the mean energy per chip. Some signals are directly defined in terms of energy per chip, (DPCH_E_c, E_c, OCNS_E_c and S-CCPCH_E_c) and others defined in terms of PSD (I_o, I_{oc}, I_{or} and \hat{I}_{or}). There also exist quantities that are a ratio of energy per chip to PSD (DPCH_E_c/I_{or}, E_c/I_{or} etc.). This is the common practice of relating energy magnitudes in communication systems.

It can be seen that if both energy magnitudes in the ratio are divided by time, the ratio is converted from an energy ratio to a power ratio, which is more useful from a measurement point of view. It follows that an energy per chip of X dBm/3.84 MHz can be expressed as a mean power per chip of X dBm. Similarly, a signal PSD of Y dBm/3.84 MHz can be expressed as a signal power of Y dBm.

Maximum Output Power: This s a measure of the maximum power the UE can transmit (i.e. the actual power as would be measured assuming no measurement error) in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio access mode. The period of measurement shall be at least one timeslot.

Mean power: When applied to a W-CDMA modulated signal this is the power (transmitted or received) in a bandwidth of at least $(1 + \alpha)$ times the chip rate of the radio access mode. The period of measurement shall be at least one timeslot unless otherwise stated.

Nominal Maximum Output Power: This is the nominal power defined by the UE power class.

RRC filtered mean power: The mean power as measured through a root raised cosine filter with roll-off factor α and a bandwidth equal to the chip rate of the radio access mode.

NOTE 1: The RRC filtered mean power of a perfectly modulated W-CDMA signal is 0.246 dB lower than the mean power of the same signal.

Throughput:Number of information bits per second excluding CRC bits successfully received on HS-
DSCH by a HSDPA capable UE.

3.2 Abbreviations

• • • • • • • • • •	
For the purposes of	the present document, the following abbreviations apply:
ACLR	Adjacent Channel Leakage power Ratio
ACS	Adjacent Channel Selectivity
AICH	Acquisition Indication Channel
BER	Bit Error Ratio
BLER	Block Error Ratio
CQI	Channel Quality Indicator
CW	Continuous Wave (un-modulated signal)
DCH	Dedicated Channel, which is mapped into Dedicated Physical Channel.
DL	Down Link (forward link)
DTX	Discontinuous Transmission
DPCCH	Dedicated Physical Control Channel
DPCH	Dedicated Physical Channel
DPCH $_E_c$	Average energy per PN chip for DPCH.
DPCH_E _c	The ratio of the transmit energy per PN chip of the DPCH to the total transmit power
I _{or}	
	spectral density at the Node B antenna connector.
DPDCH	Dedicated Physical Data Channel
EIRP	Effective Isotropic Radiated Power
E _c	Average energy per PN chip.

$\frac{E_c}{I_{or}}$	The ratio of the average transmit energy per PN chip for different fields or physical
	channels to the total transmit power spectral density.
FACH	Forward Access Channel
FDD	Frequency Division Duplex
FDR	False transmit format Detection Ratio. A false Transport Format detection occurs when the
	receiver detects a different TF to that which was transmitted, and the decoded transport block(s) for this incorrect TF passes the CRC check(s).
F_{uw}	Frequency of unwanted signal. This is specified in bracket in terms of an absolute
- uw	frequency(s) or a frequency offset from the assigned channel frequency.
HSDPA	High Speed Downlink Packet Access
HS-DSCH	High Speed Downlink Shared Channel
HS-PDSCH	High Speed Physical Downlink Shared Channel
HARQ Information Dat	Hybrid ARQ sequence
Information Dat	Rate of the user information, which must be transmitted over the Air Interface. For
	example, output rate of the voice codec.
I	The total received power spectral density, including signal and interference, as measured at
	the UE antenna connector.
I_{oc}	The power spectral density (integrated in a noise bandwidth equal to the chip rate and
	normalized to the chip rate) of a band limited white noise source (simulating interference
	from cells, which are not defined in a test procedure) as measured at the UE antenna
	connector.
I _{or}	The total transmit power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip
	rate and normalized to the chip rate)of the down link signal at the Node B antenna
î	connector.
$\hat{\mathbf{I}}_{\mathrm{or}}$	The received power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate
	and normalized to the chip rate) of the down link signal as measured at the UE antenna connector.
MER	Message Error Ratio
Node B	A logical node responsible for radio transmission / reception in one or more cells to/from
	the User Equipment. Terminates the Iub interface towards the RNC
OCNS	Orthogonal Channel Noise Simulator, a mechanism used to simulate the users or control
	signals on the other orthogonal channels of a downlink link.
$OCNS_E_c$	Average energy per PN chip for the OCNS.
OCNS_E _c	The ratio of the average transmit energy per PN chip for the OCNS to the total transmit
I _{or}	
P-CCPCH	power spectral density. Primary Common Control Physical Channel
РСН	Paging Channel
$P - CCPCH \frac{E_c}{I_o}$	The ratio of the received P-CCPCH energy per chip to the total received power spectral
$I = CCFCH \frac{1}{I_o}$	
	density at the UE antenna connector.
$\frac{P - CCPCH _ E_c}{I_{or}}$	The ratio of the average transmit energy per PN chip for the P-CCPCH to the total transmit
1 _{or}	power spectral density.
P-CPICH	Primary Common Pilot Channel
PICH	Paging Indicator Channel
PPM	Parts Per Million
<u>R</u>	Number of information bits per second excluding CRC bits successfully received on HS-
<refsens></refsens>	DSCH by a HSDPA capable UE. Reference sensitivity
$<$ REF $\hat{I}_{or}>$	
	Reference \hat{I}_{or}
RACH SCH	Random Access Channel Synchronization Channel consisting of Primary and Secondary synchronization channels
SCH S-CCPCH	Secondary Common Control Physical Channel.
5 001011	

I

$S - CCPCH _ E_c$	Average energy per PN chip for S-CCPCH.
SIR	Signal to Interference ratio
SSDT	Site Selection Diversity Transmission
STTD	Space Time Transmit Diversity
TDD	Time Division Duplexing
TFC	Transport Format Combination
TFCI	Transport Format Combination Indicator
TPC	Transmit Power Control
TSTD	Time Switched Transmit Diversity
UE	User Equipment
UL	Up Link (reverse link)
UTRA	UMTS Terrestrial Radio Access

--- NEXT SECTION----

9 Performance requirement (HSDPA)

9.1 General

The performance requirements for the UE in this subclause apply for the reference measurement channels specified in Annex A.6, the propagation conditions specified in table B.1B of Annex B and the dpown link pPhysical channels specified in Annex C.6.

9.2 Demodulation of HS-DSCH (fixed reference channel)

9.2.1 Single Link performance

The receiver single link performance of the High Speed Physical Downlink Shared Channel (HS-DSCH) in different multi-path fading environments are determined by the information bit throughput R

9.2.1.1 Minimum requirement QPSK, Fixed Reference Channel Set 1

For the parameters specified in Table x.x, the requirements are specified in terms of a minimum information bit throughput R as shown in Table y.y

Table x.x:

Parameter	Unit	Test 1	Test 2	Test 3	Test 4
Phase reference			<u>P-C</u>	PICH	
I _{oc}	<u>dBm/3.84 MHz</u>		<u>-(</u>	<u>60</u>	
Redundancy and constellation version coding sequence		<u>{0,2,5,6}</u>			
Maximum number of HARQ transmission		4			

Table y.y:

		Reference value				
<u>Test</u> Number	Propag. Conditions	<u>HS-</u> PDSCH	<u>T-put_</u> (kbps)	<u>T-put_</u> (kbps)		
		E _c / I _{or}	$\hat{I}_{or} / I_{oc} = 0 \text{ dB}$	$\hat{I}_{or} / I_{oc} = 10 \text{ dB}$		
	5.0	[-6]	<u>[109]</u>	<u>[372]</u>		
1	<u>1</u> <u>PA3</u>	[-3]	<u>[208]</u>	[428]		
	550	[-6]	[77]	[251]		
<u>2</u>	<u>PB3</u>	[-3]	<u>[201]</u>	<u>[421]</u>		
	V/400	[-6]	[76]	[260]		
<u>3</u>	<u>VA30</u>	[-3]	[205]	<u>[418]</u>		
<u>4</u>	<u>VA120</u>	[-6]	<u>[66]</u>	[242]		

		[-3]	[201]	[405]	
in				duction due to imp nged in future vers	

Minimum requirement 16QAM, Fixed Reference Channel Set 1 9.2.1.2

For the parameters specified in Table z.x, the requirements are specified in terms of a minimum information bit throughput R as shown in Table z.y

Table z.x:

Parameter	Unit	Test 1	Test 2	Test 3	Test 4
Phase reference			P-CI	PICH	
I _{oc}	<u>dBm/3.84 MHz</u>		<u>-6</u>	<u>30</u>	
Redundancy and constellation version coding sequence			<u>{6,2</u>	<u>,1,5}</u>	
Maximum number of HARQ transmission			:	<u>4</u>	

			Reference val	ue
<u>Test</u> <u>Number</u>	<u>Propag.</u> Conditions	$\frac{\text{HS-}}{\text{PDSCH}}$ $\frac{E_c / I_{or}}{\text{(dB)}}$		$\frac{\textbf{T-put} R}{(\textbf{kbps})}$ $\hat{I}_{or} / I_{oc} = 10 \text{ dB}$
	B AO	[-6]		[332]
<u>1</u>	<u>PA3</u>	[-3]		[507]

Table z.y:

		[-6]	<u>[164]</u>
<u>2</u>	<u>PB3</u>	[-3]	[333]
_	<u>3</u> <u>VA30</u>	<u>[-6]</u>	<u>[183]</u>
<u>3</u>		<u>[-3]</u>	<u>[351]</u>
		[-6]	[155]
<u>4</u> <u>VA120</u>	[-3]	[324]	

Note: Throughput values in table z.y do not include any reduction due to implementation impairments. Therefore, the values in table y.y will be changed in future versions of this document.

<u>4.6 DL</u>	<u>refere</u>	nce chan	nel pa	arame	eters	for HS	DPA
tes	sts						
6.1	Fixed	Reference	Chan	nel De	efinitio	on Set	<u>1</u>
	Dr	arameter	Unit	Va	lue		
		. Inf. Bit Rate	kbps	<u>533</u>	<u>784</u>		
	Inter-TTI Dis		<u>TTI's</u>	<u>3</u>	<u>3</u>		
	Number of H	ARQ Processes	Proces ses	<u>2</u>	<u>2</u>		
	Information E	Bit Payload (N _{INF})	Bits	3200	4704		
	Number Cod		Blocks	1	1		
	Binary Chan	nel Bits Per TTI	Bits	4800	7680		
		e SML's in UE	SML's	<u>19200</u>	<u>19200</u>		
	Number of S Proc.	<u>ML's per HARQ</u>	<u>SML's</u>	<u>9600</u>	<u>9600</u>		
	Coding Rate			0.67	0.62		
		hysical Channel	<u>Codes</u>	<u>5</u>	4		
	Codes Modulation			QPSK	16QAM		
		Table x Fixed Refe	erence Cha				
Inf. Bit Payl	load	3200					
CRC Addit	tion	3200 24 CF	RC				
Code Blo	ck						
Segmentat		3224					
Turbo-Encod	ing		96	72			12 Tail I
(R=1/3)							
1st Rate Matc	hing		90	600			
RV Selecti	ion	4800			1		
					_		
Physical Channe Segmentation							
_		P					
	Figure x: Co	oding rate for Fix	ed referer	ice Chan	nel Set 1	<u>(QPSK)</u>	
Inf	. Bit Payload	4704					
			1				
	RC Addition	4704 24	CRC				
	code Block	4728					
Turbo-Encoding				10.4			J
	(R=1/3)			184		12	² Tail Bits
1st R	ate Matching		9	600]
R'	V Selection	768	30				
	cal Channel	1920					
		ling rate for Fiaxe	ad referen	oo Charr	nol Sot 4		

Fixed Reference Channel Definition Set 2

<u>A6.2</u>

	Parameter	Unit	Va	alue	
F	Nominal Avg. Inf. Bit Rate	kbps	1600	2352	
	Inter-TTI Distance	TTI's	1	1	
	Number of HARQ Processes	Processes	6	6	
	Information Bit Payload (N _{INF})	Bits	<u>3200</u>	<u>4704</u>	
F	Number Code Blocks	Blocks	1	1	
	Binary Channel Bits Per TTI	Bits	4800	7680	
	Total Available SML's,in UE	SML's	57600	57600	
	Number of SML's per HARQ Proc.	<u>SML's</u>	<u>9600</u>	<u>9600</u>	
	Coding Rate		0.67	0.62	
	Number of Physical Channel	Codes	<u>5</u>	<u>4</u>	
	Codes				
	Modulation		<u>QPSK</u>	<u>16QAM</u>	
	<u>Table x Fixed Re</u>				
Inf. Bit Payload	3200				
CRC Addition	3200 24 CRC				
Code Block Segmentation	3224				
Turbo-Encoding (R=1/3)		9672			12 Tail B
1st Rate Matching		9600			
RV Selection	4800				
Physical Channel Segmentation	960				
<u>Figu</u>	re x: Coding rate for Fi <mark>a</mark> xed	l reference (Channel	<u>Set 2 (QP</u>	<u>SK)</u>
Inf. Bit P	ayload 4704				
CRC A	ddition 4704 24 CR	С			
Code l Segmei					
Turbo-En	coding	14184			12 Tail Bits
(R=1/					
1st Rate M	latching	9600			
RV Sel	ection 7680				
Physical Cl	hannel				

--- NEXT SECTION----

B.2.2 Multi-path fading propagation conditions

Table B1 shows propagation conditions that are used for the performance measurements in multi-path fading environment. All taps have classical Doppler spectrum.

	e 1, 3km/h		se 2, 3 km/h		e 3, 20 km/h	Cas speed	e 4, 3 km/h	* Ca speed \$	se 5, 50 km/h	Cas speed 2	e 6, 50 km/h
Relative Delay [ns]	Relative mean Power [dB]										
0	0	0	0	0	0	0	0	0	0	0	0
976	-10	976	0	260	-3	976	0	976	-10	260	-3
		20000	0	521	-6					521	-6
				781	-9					781	-9

Table B.1: Propagation Conditions for Multi path Fading Environments

NOTE: Case 5 is only used in TS25.133.

1

Table B.1A shows propagation conditions that are used for the performance measurements in multi-path environment when UE is informed by higher layer signalling that only DPCCH exists for channel estimation. All taps have classical Doppler spectrum. Taps are normalized to the strongest tap in the beam/sector. The actual power relation between the sector and the beam is determined by the test case.

Table B.1A: Propagation Conditions for Multi path Fading Environments

Case 7, speed 50 km/h					
Relative Delay [ns]	Average P	ower [dB]			
	Sector	Beam			
0	0.0	-			
260	-4.3	-			
1040	-6.6	-			
4690	-2.0	0.0			
7290	-7.0	-0.3			
14580	-7.5	-0.9			

Table B.1B shows propagation conditions that are used for HSDPA performance measurements in multi-path fading environment.

<u>Ta</u>	Table B1B: Propagation Conditions for Multi-Path Fading Environments for HSDPA Performance Requirements								
Spee	destrian A ed 3km/h PA3)	ITU Pedestrian B Speed 3km/h (PB3)		ITU vehicular A Speed 30km/h (VA30)		ITU vehicular A Speed 120km/h (VA120)			
Relative Delay [ns]	Relative Mean Power [dB]	Relative Delay [ns]	Relative Mean Power [dB]	<u>Relative</u> <u>Delay</u> [ns]	Relative Mean Power [dB]	<u>Relative</u> <u>Delay</u> [ns]	Relative Mean Power [dB]		
<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>		
<u>110</u>	<u>-9.7</u>	<u>200</u>	<u>-0.9</u>	<u>310</u>	<u>-1.0</u>	<u>310</u>	<u>-1.0</u>		
<u>190</u>	<u>-19.2</u>	<u>800</u>	<u>-4.9</u>	<u>710</u>	<u>-9.0</u>	<u>710</u>	<u>-9.0</u>		
<u>410</u>	<u>-22.8</u>	<u>1200</u>	<u>-8.0</u>	<u>1090</u>	<u>-10.0</u>	<u>1090</u>	<u>-10.0</u>		
		<u>2300</u>	<u>-7.8</u>	<u>1730</u>	<u>-15.0</u>	<u>1730</u>	<u>-15.0</u>		
	<u>3700</u>		<u>-23.9</u>	<u>2510</u>	<u>-20.0</u>	<u>2510</u>	<u>-20.0</u>		
Note: The	e propagation	conditions	used in simulation	ons were bas	ed on the TR 2	5.890. The	effect of re-		

Note: The propagation conditions used in simulations were based on the TR 25.890. The effect of remapping of channel rays to integer sample locations is FFS.

--- NEXT SECTION----

C.6 HSDPA DL Physical channels

C.6.1 Downlink Physical Channels connection set-up

<u>Physical</u> Channel	Parameter Parameter	Value	Note
P-CPICH	P-CPICH_Ec/lor	<u>-10dB</u>	
P-CCPCH	P-CCPCH_Ec/lor	<u>-12dB</u>	Mean power level is shared with SCH.
<u>SCH</u>	SCH_Ec/lor	<u>-12dB</u>	Mean power level is shared with P-CCPCH – SCH includes P- and S-SCH, with power split between both.
<u>PICH</u>	PICH_Ec/lor	<u>-15dB</u>	
<u>DPCH</u>	DPCH Ec/lor	<u>Test-</u> specific	12.2 kbps DL reference measurement channel as defined in Annex A.3.1
HS-SCCH_1	HS-SCCH_Ec/lor	<u>Test-</u> specific	Specifies fraction of Node-B radiated power transmitted when TTI is active (i.e. due to minimum inter-TTI interval).
HS-SCCH_2	HS-SCCH_Ec/lor	DTX'd	No signalling scheduled, or power radiated, on this HS-SCCH, but signalled to the UE as present.
HS-SCCH_3	HS-SCCH_Ec/lor	DTX'd	As HS-SCCH_2.
HS-SCCH 4	HS-SCCH Ec/lor	DTX'd	As HS-SCCH_2.
HS-PDSCH	HS-PDSCH_Ec/lor	<u>Test-</u> specific	-
<u>OCNS</u>		<u>Test-</u> <u>specific</u>	Balance of power I_{or} of the Node-B is assigned toOCNS.

Table x is applicable for the measurements for tests xx

<u>Table 1 – Downlink physical channels for HSDPA receiver testing.</u>

C.6.1 OCNS Definition

The selected channelization codes and relative power levels for OCNS transmission during for HSDPA performance assessment are defined in Table x. The selected codes are designed to have a single length-16 parent code.

Channelization Code at SF=128	Relative Level setting (dB)	DPCH Data
<u>2</u>	<u>-6</u>	The DPCH data for each
<u>3</u>	<u>-8</u>	channelization
<u>4</u>	<u>-8</u>	code shall be uncorrelated
<u>5</u>	<u>-10</u>	with each other and with any
<u>6</u>	<u>-7</u>	wanted signal over the period of any
<u>7</u>	<u>-9</u>	measurement.

Table x – OCNS definition for HSDPA receiver testing.

R4-020966

3GPP TSG RAN WG4 Meeting #23 Gyeongju, Korea 13th -17th May, 2002

	CR-Form-v4					
	CHANGE REQUEST					
ж	25.102 CR 111 * ev 1 * Current version: 5.0.1 *					
For <u>HELP</u> on us	sing this form, see bottom of this page or look at the pop-up text over the X symbols.					
Proposed change affects: # (U)SIM ME/UE X Radio Access Network Core Network						
Title: ೫	Inclusion of HSDPA into TS25.102					
Source: ೫	RAN WG4					
Work item code: ₩	HSDPA-RF Date: # 17/5/2002					
Category: % B Release: % Rel-5 Use one of the following categories: Ise one of the following releases: Ise one of the following releases: (GSM Phase 2) A (corresponds to a correction in an earlier release) R96 (Release 1996) B (addition of feature), R97 (Release 1997) C (functional modification of feature) R98 (Release 1998) D (editorial modification) R99 (Release 1999) Detailed explanations of the above categories can be found in 3GPP TR 21.900. REL-4 (Release 4)						
Reason for change	: 業 Inclusion of HSDPA in RAN4 specifications.					
Summary of chang	 e: # Update of abbreviation and definition lists. New HSDPA performance requirement section for 1.4 Mbps UE class with fixed measurement channel. New performance requirements for QPSK based on simulation results shown in R4-020934 and R4-020931 and discussed in R4-020984. New service mapping for QPSK and 16 QAM for 1.4 Mbps UE class. Addition of ITU multipath propagation models used in HSDPA performance requirement tests. 					
Consequences if not approved:	* No performance requirement for HSDPA is incorporated to TS25.102.					

 Clauses affected:
 # 3.3, 9 (new), A.3(new), B.2.2

 Other specs affected:
 # Other core specifications Test specifications O&M Specifications
 # 34.122

 Other comments:
 #

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

3

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ACIR	Adjacent Channel Interference Ratio
ACLR	Adjacent Channel Leakage power Ratio
ACS	Adjacent Channel Selectivity
BS	Base Station
CW	Continuous wave (unmodulated signal)
DL	Down link (forward link)
DPCH	Dedicated physical channel
DPCH_Ec	Average energy per PN chip for DPCH
	Average energy per PN chip for DPCH
DPCH_Ec	
I _{or}	The ratio of the average energy per PN chip of the DPCH to the total transmit power spectral
	density of the downlink at the BS antenna connector
Σ DPCH_Ec	density of the downlink at the DS and that connector
Ior	
01	The ratio of the sum of DPCH_Ec for one service in case of multicode to the total transmit power
LIDD	spectral density of the downlink at the BS antenna connector
EIRP	Effective Isotropic Radiated Power
FDD	Frequency Division Duplexing
FER	Frame Error Ratio
Fuw	Frequency of unwanted signal. This is specified in bracket in terms of an absolute frequency(s) or
H 1 1 1 4 D O	frequency offset from the assigned channel frequency.
Hybrid ARQ	Hybrid Automatic Repeat reQuest
HSDPA	High Speed Downlink Packet Access
HS-DSCH	High Speed Downlink Shared Channel
HS-PDSCH	High Speed Physical Downlink Shared Channel
Ioc	The power spectral density of a band limited white noise source (simulating interference from
T	other cells) as measured at the UE antenna connector.
Ior	The total transmit power spectral density of the downlink at the BS antenna connector
Î _{or}	The received power spectral density of the downlink as measured at the UE antenna connector
PPM	Parts Per Million
RSSI	Received Signal Strength Indicator
R	Number of information bits per second excluding CRC bits successfully received on HS-DSCH by
<u>R</u>	a HSDPA capable UE.
RU	Resource Unit
SCTD	Space Code Transmit Diversity
SIR	Signal to Interference ratio
TDD	Time Division Duplexing
TPC	Transmit Power Control
UE	User Equipment
UL	Up link (reverse link)
UTRA	UMTS Terrestrial Radio Access

--- NEXT SECTION----

9 Performance requirements (HSDPA)

9.1 Performance requirement for 3.84 Mcps TDD option

void

9.2 Performance requirements for 1.28 Mcps TDD option

The requirements are stated for the HSDPA UE reference combination classes specified in [2] and under the multipath propagation conditions specified in Annex B. The performance metric for HS-DSCH requirements in multi-path propagation conditions is the throughput R measured on HS-DSCH.

9.2.1 HS-DSCH throughput for fixed reference channels

For each HSDPA UE reference combination class tested with a fixed reference measurement channel, information bit payload, number of allocated RUs, coding and modulation scheme are fixed as specified in Annex A.

9.2.1.1 1.4 Mbps UE class

For the parameters specified in Table 8.17, the measured throughput-R shall exceed the throughput specified in Table 8.18 for each radio condition and modulation scheme.

Table 8.17: Test parameters for fixed reference measurement channel requirements for 1.4 Mbps UE class (1.28 Mcps TDD Option)

Parameters	Unit	<u>Test 1</u>	Test 2	<u>Test 3</u>	Test 4	Test 5	Test 6
Propagation conditions	<u>-</u>	Case 4	Case 4	<u>Case 5</u>	Case 5	Case 6	Case 6
HS-PDSCH Modulation	-	<u>QPSK</u>	<u>16QAM</u>	<u>QPSK</u>	<u>16QAM</u>	<u>QPSK</u>	<u>16QAM</u>
Number of DPCH _o	-	<u>2</u>	0	<u>2</u>	<u>0</u>	2	<u>0</u>
Scrambling code and basic midamble code number*	Ξ	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
HS-PDSCH Channelization Codes*	<u>C(k,Q)</u>	<u>C(i,16)</u> <u>I=18</u>	<u>C(i,16)</u> <u>i=17</u>	<u>C(i,16)</u> <u>i=1…8</u>	<u>C(i,16)</u> <u>i=17</u>	<u>C(i,16)</u> <u>i=18</u>	<u>C(i,16)</u> <u>i=1…7</u>
<u>DPCH_o Channelization</u> <u>Codes*</u>	<u>C(k,Q)</u>	<u>C(i,16)</u> <u>9≤ i ≤10</u>	=	<u>C(i,16)</u> <u>9≤ i ≤10</u>	Ξ	<u>C(i,16)</u> <u>9≤ i ≤10</u>	Ξ
Number of Hybrid ARQ processes	Ξ	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>
Maximum number of Hybrid ARQ transmissions	-	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>	<u>4</u>
Redundancy and constellation version coding sequence	=	<u>{0,0,0,0}</u>	<u>{0,0,0,0}</u>	<u>{0,0,0,0}</u>	<u>{0,0,0,0}</u>	<u>{0,0,0,0}</u>	<u>{0,0,0,0}</u>
$DPCH_o _E_c$	<u>dB</u>	<u>-10</u>	-	<u>-10</u>	<u>-</u>	<u>-10</u>	<u>-</u>
I _{or}							
loc	<u>dBm/1.28</u>	<u>dBm/1.28</u> <u>-60</u> MHz					

Table 8.18: Performance requirements for fixed reference measurement channel requirement in multipath channels for 1.4 Mbps UE class (1.28 Mcps TDD Option)

Test Number	$\frac{\hat{I}_{or}}{I_{oc}}$ [dB]	<u>R</u> (Throughput) [kbps]
<u>1</u>	<u>10</u>	<u>365</u>
<u>2</u>	<u>TBD</u>	<u>TBD</u>
<u>3</u>	<u>10</u>	<u>300</u>
4	TBD	TBD
5	<u>10</u>	<u>220</u>
<u>6</u>	TBD	TBD

---NEXT SECTION----

A.3 HSDPA reference measurement channels

<u>A.3.1</u>

Void

A.3.2 HSDPA reference measurement channels for 1.28 Mcps TDD option

A.3.2.1Reference measurement channels for 1.4 Mbps

A.3.2.1.1 QPSK modulation scheme

Table A.9

Parameter	Value
Maximum information data rate	<u>528 kbps</u>
RU's allocated	<u>5TS (8*SF16) =</u>
	40RU/5ms
Midamble	<u>144 chips</u>
Puncturing level at code rate 1/3 : first	<u>12% / 50%</u>
stage/second stage	

Error! No text of specified style in document.

7

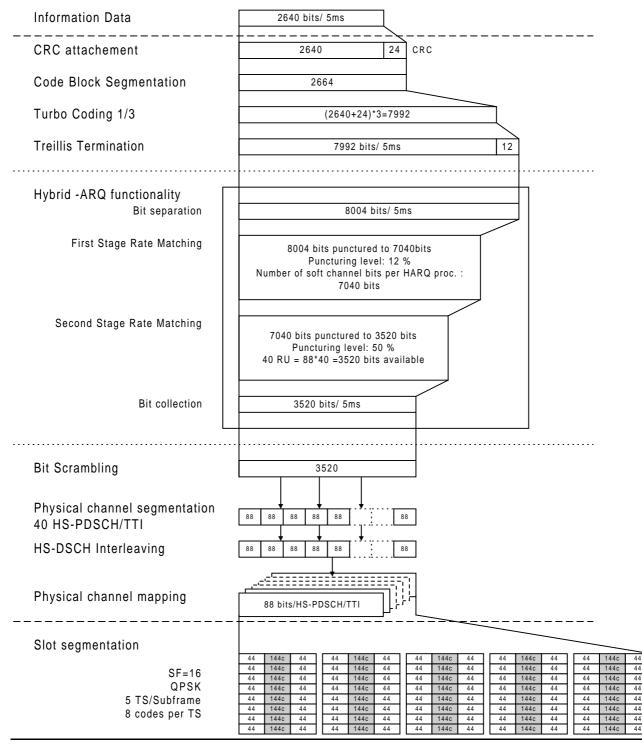


Figure A.9

8

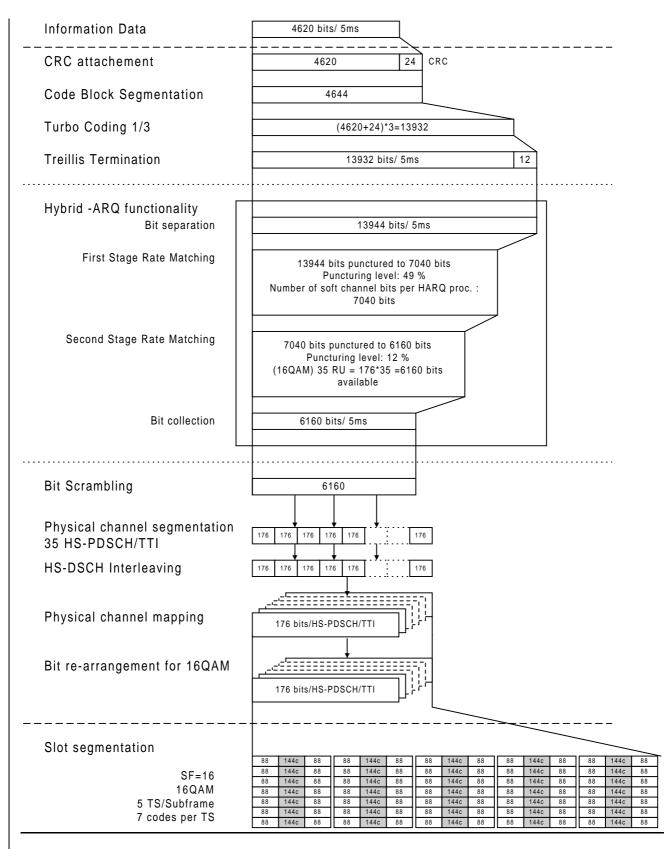

A.3.2.1.2 16QAM modulation scheme

Table A.10

Parameter	Value
Maximum information data rate	<u>924 kbps</u>
RU's allocated	<u>5TS (7*SF16) =</u>
	<u>35RU/5ms</u>
Midamble	<u>144 chips</u>
Puncturing level at Code rate 1/3 : first	<u>49% / 12%</u>
stage/second stage	

Error! No text of specified style in document.

9

Figure A.10

Annex B (normative): Propagation conditions

B.1 Static propagation condition

The propagation for the static performance measurement is an Additive White Gaussian Noise (AWGN) environment. No fading and multi-paths exist for this propagation model.

B.2 Multi-path fading propagation conditions

B.2.1 3.84 Mcps TDD Option

Table B1 shows propagation conditions that are used for the performance measurements in multi-path fading environment. All taps have classical Doppler spectrum.

Case 1, speed 3km/h		Case 2, s	peed 3 km/h	Case 3, 120 km/h	
Relative Delay [ns]	Average Power [dB]	Relative Delay [ns]	Delay Power		Average Power [dB]
0	0	0	0	0	0
976	-10	976	0	260	-3
		12000	0	521	-6
				781	-9

Table B1: Propagation Conditions for Multi path Fading Environments

B.2.2 1.28 Mcps TDD Option

Table B2 shows propagation conditions that are used for the <u>general performance measurements in multi-path fading</u> environment. <u>Table B3 shows propagation conditions that are used for HSDPA performance measurements in multi-path fading environmements</u>. All taps <u>in both tables</u> have classical Doppler spectrum.

Case 1, sp	Case 1, speed 3km/h		eed 3km/h	Case 3, speed 120km/h		
Relative Delay [ns]	Average Power [dB]	Relative Average Delay [ns] Power [dB]		Relative Delay [ns]	Average Power [dB]	
0	0	0	0	0	0	
2928	-10	2928	0	781	-3	
12000 0				1563	-6	
			•	2344	-9	

 Table B2: Propagation Conditions for Multi-Path Fading Environments

Table B3: Propagation Conditions for Multi-Path Fading Environments for HSDPA Performance Requirements

	eed 3km/h estrian B		eed 30km/h icular A	Case 6, speed 120km/ ITU vehicular A	
<u>Relative</u> Delay [ns]	Relative Mean Power [dB]	<u>Relative</u> Delay [ns]	Relative Mean Power [dB]	<u>Relative</u> Delay [ns]	Relative Mean Power [dB]
<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
<u>200</u>	<u>-0.9</u>	<u>310</u>	<u>-1.0</u>	<u>310</u>	<u>-1.0</u>
<u>800</u>	<u>-4.9</u>	<u>710</u>	<u>-9.0</u>	<u>710</u>	<u>-9.0</u>
<u>1200</u>	<u>-8.0</u>	<u>1090</u>	<u>-10.0</u>	<u>1090</u>	<u>-10.0</u>
<u>2300</u>	<u>-7.8</u>	<u>1730</u>	<u>-15.0</u>	<u>1730</u>	<u>-15.0</u>
<u>3700</u>	<u>-23.9</u>	<u>2510</u>	<u>-20</u>	<u>2510</u>	<u>-20</u>

---END OF CHANGES---

R4-020981

3GPP TSG RAN WG4 Meeting #23 Gyeongju, Korea 13th -17th May, 2002

CHANGE REQUEST												
ж	25.	104	CR	122	ж	ev	1	ж	Current vers	sion:	5.2.0	ж
For <u>HELP</u> on us	ising t	his for	m, see	bottom	of this p	age or	look	at th	e pop-up tex	t over	the X syr	nbols.
Proposed change a	affect	s: #	(U)S	IM	ME/U	E	Rac	dio Ad	ccess Networ	k X	Core Ne	etwork
Title: ೫	No	de B r	nodula	tion ac	curacy	requir	eme	nts f	or HS-PDS	СН		
Source: ೫	RAI	<mark>N WG</mark>	4									
Work item code: 郑	HSI	DPA-F	RF						Date: ¥	3 17/5	5/2002	
Category: Ж	Detai	F (corr A (corr B (adc C (fund D (edit led exp	rection) respond lition of ctional r torial mo planation	wing cate s to a col feature), nodificatior dificatior as of the a R 21.900	rrection i on of fea) above ca	ture)			Release: # Use <u>one</u> or 2 e) R96 R97 R98 R99 REL-4 REL-5	f the foi (GSM (Relea (Relea (Relea (Relea (Relea		eases:
Reason for change	e: #	New	feature	HSDPA	in Rele	ase 5	will i	ntrod	uce new phy	sical c	hannel H	S-
		PDS case the c intro requ	CH. Mo when optiona duction iremen	odulatio only Q I 16QA n of 160	n accu PSK is M mod QAM ar higher	racy re suppo ulation nd low sensit	equir orted n are er co ivity	eme and sup odinc to m	nts need to the case w ported by th efficiency l odulation in	be de hen b ie BS. eads	fined for oth QPS The to higher	the K and Eb/No
Summary of chang	ye:	been in Ro case com 12.5	added elease and fo posite	PCDE 99. Re or (QPS signal v	require quirem SK+16C when o	ement ent is QAM) (nly QF	= -3 valid case PSK i	3 dB for t . EVI is su	when HS-PE at SF=256 the both cas M requireme pported. EV QPSK and	rema ses: fo ent = 7 /M rec	ins the s or QPSK 17.5% fo quiremen	ame as only r a
Consequences if not approved:	Ħ	wher	n only C	PSK or	QPSK	and 16	QAN	l are	r PCDE and supported by put loss in sy	the B	S. With c	urrent
Clauses affected:	ж	6.8.2	.1									
Other specs Affected:	¥ [X T€	est spe	e specif ification	S	H	25		clause 6.7 r ing to this cha		o be modi	fied

Other comments: #

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6.8.1 Transmit pulse shape filter

The transmit pulse-shaping filter is a root-raised cosine (RRC) with roll-off α =0.22 in the frequency domain. The impulse response of the chip impulse filter $RC_0(t)$ is

$$RC_{0}(t) = \frac{\sin\left(\pi \frac{t}{T_{c}}(1-\alpha)\right) + 4\alpha \frac{t}{T_{c}}\cos\left(\pi \frac{t}{T_{c}}(1+\alpha)\right)}{\pi \frac{t}{T_{c}}\left(1-\left(4\alpha \frac{t}{T_{c}}\right)^{2}\right)}$$

Where the roll-off factor $\alpha = 0.22$ and the chip duration:

$$T_c = \frac{1}{chiprate} \approx 0.26042 \mu s$$

6.8.2 Error Vector Magnitude

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Both waveforms pass through a matched Root Raised Cosine filter with bandwidth 3.84 MHz and roll-off α =0.22. Both waveforms are then further modified by selecting the frequency, absolute phase, absolute amplitude and chip clock timing so as to minimise the error vector. The EVM result is defined as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. The measurement interval is one timeslot as defined by the C-PICH (when present) otherwise the measurement interval is one timeslot starting with the beginning of the SCH. The requirement is valid over the total power dynamic range as specified in subclause 6.4.3.

6.8.2.1 Minimum requirement

The Error Vector Magnitude shall not be worse than 17.5 %- when the base station is transmitting a composite signal using only QPSK modulation.

The Error Vector Magnitude shall not be worse than 12.5 % when the base station is transmitting a composite signal that includes 16QAM modulation.

6.8.3 Peak code Domain error

The Peak Code Domain Error is computed by projecting the power of the error vector (as defined in 6.8.2) onto the code domain at a specified spreading factor. The Code Domain Error for every code in the domain is defined as the ratio of the mean power of the projection onto that code, to the mean power of the composite reference waveform. This ratio is expressed in dB. The Peak Code Domain Error is defined as the maximum value for the Code Domain Error for all codes. The measurement interval is one timeslot as defined by the C-PICH (when present) otherwise the measurement interval is one timeslot starting with the beginning of the SCH.

6.8.3.1 Minimum requirement

The peak code domain error shall not exceed -33 dB at spreading factor 256.

R4-021009

3GPP TSG RAN WG4 Meeting #23 Gyeongju, Korea 13th -17th May, 2002

	CR-Form-v4
	CHANGE REQUEST
# 	25.142 CR 126 * ev 1 * Current version: 5.0.0 *
For <u>HELP</u> on u	using this form, see bottom of this page or look at the pop-up text over the $#$ symbols.
Proposed change	affects: ೫ (U)SIM ME/UE Radio Access Network X Core Network
Title: ដ	Inclusion of HSDPA into TS25.142
Source: ೫	RAN WG4
Work item code: ℜ	HSDPA-RF Date: 육 17/5/2002
Category: ₩	BRelease: %Rel-5Use one of the following categories:Use one of the following releases:F (correction)2(GSM Phase 2)A (corresponds to a correction in an earlier release)R96(Release 1996)B (addition of feature),R97(Release 1997)C (functional modification of feature)R98(Release 1998)D (editorial modification)R99(Release 1999)Detailed explanations of the above categories canREL-4(Release 4)be found in 3GPP TR 21.900.REL-5(Release 5)
Reason for change	e: ೫ Inclusion of HSDPA in RAN4 specs.
Summary of chang	ge: #-Addition of HSDPA related abbreviations-Spectrum emission mask, spurious emission, transmit intermodulation , ACLR, EVM and PCDE requirements are tested for QPSK channels (DPCH) and 16 QAM channels (HS-DSCH) for 1,28 Mcps TDD option BS supporting 16QAM. Same requirements apply for both modulation schemes.EVM for 16 QAM is only tested at max power.
Consequences if not approved:	# Testing of node B requirements for 16 QAM is missing in specification
Clauses affected:	% 3.3, 6.6.2.1.4, 6.6.2.1.5, 6.6.2.2.4, 6.6.2.2.5, 6.6.3.4, 6.6.3.5, 6.7.4, 6.8.1, 6.8.2,
Other specs affected:	# Other core specifications # Test specifications O&M Specifications

How to create CRs using this form:

ж

Other comments:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

3

3.3 Abbreviations

For the purposes of the present document, the following and abbreviations apply:

3GPP	3rd Generation Partnership Project
16QAM	16 – Quadrature Amplitude Modulation
AWGN	Additive White Gaussian Noise
dB	decibel
dBm	decibel relative to 1 milliWatt
DPCHo	Mechanism used to simulate an individual intracell interferer in the cell with one code and a
21 0110	spreading factor of 16
DPCH E	
$\frac{DPCH_o _E_c}{I_{or}}$	Ratio of the average transmit energy per PN chip for the $DPCH_o$ to the total transmit power
I or	
	spectral density of all users in the cell in one timeslot as measured at the BS antenna connector
EVM	Error Vector Magnitude
F	Frequency (of the assigned channel frequency of the wanted signal)
Fuw	Frequency offset of the unwanted interfering signal from the assigned channel frequency of the
	wanted signal
HSDPA	High Speed Downlink Packet Access
HS-DSCH	High Speed Downlink Shared Channel
HS-PDSCH	High Speed Physical Downlink Shared Channel
IMT-2000	International Mobile Telecommunications 2000
Ioc	Power spectral density of a band limited white noise source (simulating interference form other
^	cells) as measured at the BS antenna connector.
Îor	Received power spectral density of all users in the cell in one timeslot as measured at the BS
	antenna connector
IPR	Intellectual Property Rights
Р	Output power
Pout	Output power of the base station
Pmax	Maximum output power of the base station
<u>QPSK</u>	Quadrature Phase Shift Keying
RBER	Residual BER
REFSENS	Reference Sensitivity Level
RMS	Root-Mean Square
PRAT	Rated output power of the base station
RRC	Root-Raised Cosine
T _C	Chip duration
TS	Time Slot

--- NEXT SECTION----

6.6.2 Out of band emission

Out of band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission requirement is specified both in terms of a spectrum emission mask and adjacent channel power ratio for the transmitter.

6.6.2.1 Spectrum emission mask

- 6.6.2.1.1 Definition and applicability
- 6.6.2.1.1.1 3,84 Mcps TDD option

The spectrum emission mask specifies the limit of the transmitter out of band emissions at frequency offsets from the assigned channel frequency of the wanted signal between 2,5 MHz and 12,5 MHz.

The mask defined in subclause 6.6.2.1.2.1 below may be mandatory in certain regions. In other regions this mask may not be applied.

6.6.2.1.1.2 1,28 Mcps TDD option

The spectrum emission mask specifies the limit of the transmitter out of band emissions at frequency offsets from the assigned channel frequency of the wanted signal between 0,8 MHz and 4 MHz.

The mask defined in subclause 6.6.2.1.2.2 below may be mandatory in certain regions. In other regions this mask may not be applied.

6.6.2.1.2 Minimum Requirements

6.6.2.1.2.1 3,84 Mcps TDD option

For regions where this subclause applies, the requirement shall be met by a base station transmitting on a single RF carrier configured in accordance with the manufacturer's specification. Emissions shall not exceed the maximum level specified in tables 6.13 to 6.16 in the frequency range of f_offset from 2,515 MHz to f_offset_{max} from the carrier frequency, where:

f_offset is the separation between the carrier frequency and the centre of the measurement filter

 $f_{offset_{max}}$ is either 12,5 MHz or the offset to the UMTS Tx band edge as defined in subclause 4.2, whichever is the greater.

Table 6.13: Spectrum emission mask values, BS maximum output power $P \ge 43$ dBm

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
2,515 MHz ≤ f_offset < 2,715 MHz	-14 dBm	30 kHz
2,715 MHz ≤ f_offset < 3,515 MHz	$-14dBm - 15 \cdot \left(\frac{f _ offset}{MHz} - 2,715\right) dB$	30 kHz
3,515 MHz ≤ f_offset < 4,0 MHz	-26 dBm	30 kHz
4,0 MHz \leq f_offset < 8,0 MHz	-13 dBm	1 MHz
8,0 MHz \leq f_offset < f_offset _{max}	-13 dBm	1 MHz

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
2,515 MHz ≤ f_offset < 2,715 MHz	-14 dBm	30 kHz
2,715 MHz ≤ f_offset < 3,515 MHz	$-14dBm - 15 \cdot \left(\frac{f _offset}{MHz} - 2,715\right) dB$	30 kHz
3,515 MHz ≤ f_offset < 4,0 MHz	-26 dBm	30 kHz
4,0 MHz \leq f_offset < 8,0 MHz	-13 dBm	1 MHz
8,0 MHz \leq f_offset < f_offset _{max}	P – 56 dB	1 MHz

Table 6.14: Spectrum emission mask values, BS maximum output power $39 \le P < 43$ dBm

Table 6.15: Spectrum emission mask values, BS maximum output power $31 \le P < 39$ dBm

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
2,515 MHz ≤ f_offset < 2,715 MHz	P – 53 dB	30 kHz
2,715 MHz ≤ f_offset < 3,515 MHz	$P - 53dB - 15 \cdot \left(\frac{f - offset}{MHz} - 2,715\right) dB$	30 kHz
3,515 MHz ≤ f_offset < 4,0 MHz	P – 65 dB	30 kHz
4,0 MHz \leq f_offset < 8,0 MHz	P – 52 dB	1 MHz
8,0 MHz \leq f_offset < f_offset _{max}	P – 56 dB	1 MHz

Table 6.16: Spectrum emission mask values, BS maximum output power P < 31 dBm

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
2,515 MHz ≤ f_offset < 2,715 MHz	-22 dBm	30 kHz
2,715 MHz ≤ f_offset < 3,515 MHz	$-22dBm-15\cdot\left(\frac{f_offset}{MHz}-2,715\right)dB$	30 kHz
3,515 MHz ≤ f_offset < 4,0 MHz	-34 dBm	30 kHz
4,0 MHz \leq f_offset < 8,0 MHz	-21 dBm	1 MHz
8,0 MHz \leq f_offset < f_offset _{max}	-25 dBm	1 MHz

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.2.1.1

6.6.2.1.2.2 1,28 Mcps TDD option

For regions where this subclause applies, the requirement shall be met by a base station transmitting on a single RF carrier configured in accordance with the manufacturer's specification. Emissions shall not exceed the maximum level specified in tables 6.13A to 16A in the frequency range of f_offset from 0.815 MHz to f_offset_{max} from the carrier frequency, where:

- f_offset is the separation between the carrier frequency and the centre of the measurement filter
- f_offset_{max} is either 4 MHz or the offset to the UMTS Tx band edge as defined in subclause 4.2, whichever is the greater.

Table 6.13A: Spectrum emission mask values, BS maximum output power P \geq 34 dBm for 1,28 Mcps TDD

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
$0.815MHz \leq f_offset < 1.015MHz$	-20 dBm	30 kHz
1.015MHz ≤ f_offset < 1.815MHz	$-20dBm - 10 \cdot \left(\frac{f _ offset}{MHz} - 1,015\right) dB$	30 kHz
1.815MHz ≤ f_offset < 2.3MHz	-28 dBm	30 kHz
$2.3MHz \leq f_offset < f_offset_max$	-13 dBm	1 MHz

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
0.815MHz ≤ f_offset < 1.015MHz	P-54 dB	30 kHz
1.015MHz ≤ f_offset < 1.815MHz	$P - 54dB - 10 \cdot \left(\frac{f - offset}{MHz} - 1,015\right) dB$	30 kHz
$1.815MHz \le f_offset < 2.3MHz$	P-62 dB	30 kHz
$2.3MHz \leq f_offset < f_offset_max$	P - 47 dB	1 MHz

Table 6.14A: Spectrum emission mask values, BS maximum output power $26 \le P < 34$ dBm for 1,28 Mcps TDD

Table 6.16A: Spectrum emission mask values, BS maximum output power $\,$ P < 26 dBm for 1,28 Mcps $\,$ TDD $\,$

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
0.815MHz ≤ f_offset < 1.015MHz	-28 dBm	30 kHz
1.015MHz ≤ f_offset < 1.815MHz	$-28dBm - 10 \cdot \left(\frac{f _ offset}{MHz} - 1,015\right) dB$	30 kHz
1.815MHz ≤ f_offset < 2.3MHz	-36 dBm	30 kHz
$2.3MHz \leq f_offset < f_offset_max$	-21 dBm	1 MHz

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.2.1.2.

6.6.2.1.3 Test purpose

The test purpose is to verify that the BS out of band emissions do not result in undue interference to any other system (wideband, narrowband) operating at frequencies close to the assigned channel bandwidth of the wanted signal.

This test is independent of the characteristics of possible victim systems and, therefore, complements the tests on occupied bandwidth in 6.6.1 (verifying the spectral concentration of the BS Tx emissions) and on ACLR in 6.6.2.2 (simulating the perception of other UTRA receivers).

6.6.2.1.4 Method of test

6.6.2.1.4.1 Initial conditions

For 1,28 Mcps BS supporting 16QAM, the spectrum emission mask requirements shall be tested with the general test set up specified in section 6.6.2.1.4.1.2 and also with the special test set up for 16QAM capable BS specified in section 6.6.2.1.4.1.3.

6.6.2.1.4.1.0 General test conditions

Test environment: normal; see subclause 5.9.1.

RF channels to be tested: B, M and T; see subclause 5.3.

6.6.2.1.4.1.1 3,84 Mcps TDD option

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.17.

Table 6.17: Parameters of the BS transmitted signal for spectrum emission mask testing

Parameter	Value/description
TDD Duty Cycle	TS i; i = 0, 1, 2,, 14:
	transmit, if i is even;
	receive, if i is odd.
BS output power setting	PRAT
Number of DPCH in each active TS	9
Power of each DPCH	1/9 of Base Station output power
Data content of DPCH	real life
	(sufficient irregular)

6.6.2.1.4.1.2 1,28 Mcps TDD option – General test set up

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.17A.

Table 6.17A: Parameters of the BS transmitted signal for spectrum emission mask testing for 1,28Mcps TDD

Parameter	Value/description
TDD Duty Cycle	TS i; i = 0, 1, 2, 3, 4, 5, 6:
	transmit, if i is 0,4,5,6;
	receive, if i is 1,2,3.
BS output power setting	PRAT
Number of DPCH in each active TS	8
Power of each DPCH	1/8 of Base Station output power
Data content of DPCH	real life
	(sufficient irregular)

6.6.2.1.4.1.3 1,28 Mcps TDD option – Special test set up for 16QAM capable BS

This test set up only applies for 16QAM capable BS.

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.17B.

Table 6.17B: Parameters of the BS transmitted signal for spectrum emission mask testing for 1,28 Mcps TDD - 16QAM capable BS

Parameter	Value/description
TDD Duty Cycle	<u>TS i; i = 0, 1, 2, 3, 4, 5, 6:</u>
	transmit, if i is 0,4,5,6;
	receive, if i is 1,2,3.
BS output power setting	PRAT
HS-PDSCH modulation	<u>16QAM</u>
Number of HS-PDSCH in each active	8
<u>TS</u>	
Power of each HS-PDSCH	1/8 of Base Station output power
Data content of HS-PDSCH	real life
	(sufficient irregular)
Spreading factor	<u>16</u>

6.6.2.1.4.2 Procedure

6.6.2.1.4.2.1 3,84 Mcps TDD option

Measure the power of the BS spectrum emissions by applying measurement filters with bandwidths as specified in the relevant table in subclause 6.6.2.1.2.1. The characteristic of the filters shall be approximately Gaussian (typical

spectrum analyzer filters). The centre frequency of the filter shall be stepped in contiguous steps over the ranges of frequency offsets f_offset as given in the tables. The step width shall be equal to the respective measurement bandwidth. The time duration of each step shall be sufficiently long to capture one active time slot.

For frequency offsets of the measurement filter centre frequency in the range 4,0 MHz \leq f_offset < f_offset_{max}, the measurement shall be performed by applying filters with measurement bandwidth of 50 kHz or less and integrating the measured results over the nominal measurement bandwidth 1 MHz specified in the tables in subclause 6.6.2.1.2.1.

6.6.2.1.4.2.2 1,28 Mcps TDD option

Measure the power of the BS spectrum emissions by applying measurement filters with bandwidths as specified in the relevant table in subclause 6.6.2.1.2.2. The characteristic of the filters shall be approximately Gaussian (typical spectrum analyzer filters). The centre frequency of the filter shall be stepped in contiguous steps over the ranges of frequency offsets f_offset as given in the tables. The step width shall be equal to the respective measurement bandwidth. The time duration of each step shall be sufficiently long to capture one active time slot.

The measurement shall be performed by applying filters with measurement bandwidth of 50 kHz or less and integrating the measured results over the nominal measurement bandwidth 1 MHz specified in the tables in subclause 6.6.2.1.2.2 when the measurement bandwidth is 1MHz.

6.6.2.1.4.2.3 1,28 Mcps TDD option – 16QAM capable BS

The same procedure specified in 6.6.2.1.4.2.2 applies to 1,28 Mcps TDD option BS supporting 16QAM.

6.6.2.1.5 Test Requirements

NOTE: If the Test Requirements below differ from the Minimum Requirements, then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in subclause 5.11 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex D.

6.6.2.1.5.1 3,84 Mcps TDD option

The spectrum emissions measured according to subclause 6.6.2.1.4.2.1 shall not exceed the maximum level specified in tables 6.18 to 6.21 for the appropriate BS maximum output power

Table 6.18: Test Requirements for spectrum emission mask values, BS maximum output power $P \ge 43$ dBm

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
2,515 MHz ≤ f_offset < 2,715 MHz	-12,5 dBm	30 kHz
2,715 MHz ≤ f_offset < 3,515 MHz	$-12,5dBm - 15 \cdot \left(\frac{f _ offset}{MHz} - 2,715\right) dB$	30 kHz
3,515 MHz ≤ f_offset < 4,0 MHz	-24,5 dBm	30 kHz
4,0 MHz ≤ f_offset < 8,0 MHz	-11,5 dBm	1 MHz
8,0 MHz ≤ f_offset < f_offset _{max}	-11,5 dBm	1 MHz

Table 6.19: Test Requirements for spectrum emission mask values,
BS maximum output power 39 ≤ P < 43 dBm

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
2,515 MHz ≤ f_offset < 2,715 MHz	-12,5 dBm	30 kHz
2,715 MHz ≤ f_offset < 3,515 MHz	$-12,5dBm-15\cdot\left(\frac{f_offset}{MHz}-2,715\right)dB$	30 kHz
3,515 MHz ≤ f_offset < 4,0 MHz	-24,5 dBm	30 kHz
4,0 MHz ≤ f_offset < 8,0 MHz	-11,5 dBm	1 MHz
8,0 MHz \leq f_offset < f_offset _{max}	P – 54,5 dB	1 MHz

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
2,515 MHz ≤ f_offset < 2,715 MHz	P – 51,5 dB	30 kHz
2,715 MHz ≤ f_offset < 3,515 MHz	$P - 51,5dB - 15 \cdot \left(\frac{f _ offset}{MHz} - 2,715\right) dB$	30 kHz
3,515 MHz ≤ f_offset < 4,0 MHz	P – 63,5 dB	30 kHz
4,0 MHz \leq f_offset < 8,0 MHz	P – 50,5 dB	1 MHz
8,0 MHz \leq f_offset < f_offset _{max}	P – 54,5 dB	1 MHz

Table 6.20: Test Requirements for spectrum emission mask values, BS maximum output power $31 \le P < 39$ dBm

Table 6.21: Test Requirements for spectrum emission mask values,BS maximum output power P < 31 dBm</td>

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
2,515 MHz ≤ f_offset < 2,715 MHz	-20,5 dBm	30 kHz
2,715 MHz ≤ f_offset < 3,515 MHz	$-20,5dBm - 15 \cdot \left(\frac{f _ offset}{MHz} - 2,715\right) dB$	30 kHz
3,515 MHz ≤ f_offset < 4,0 MHz	-32,5 dBm	30 kHz
4,0 MHz \leq f_offset < 8,0 MHz	-19,5 dBm	1 MHz
8,0 MHz \leq f_offset < f_offset _{max}	-23,5 dBm	1 MHz

6.6.2.1.5.2 1,28 Mcps TDD option

The spectrum emissions measured according to subclause 6.6.2.1.4.2.2 shall be within the mask defined in the table 6.18A to 6.21A.

Table 6.18A: Test requirements for spectrum emission mask values, BS maximum output power P \ge 34 dBm for 1,28 Mcps TDD

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
0.815MHz ≤ f_offset < 1.015MHz	-18.5 dBm	30 kHz
1.015MHz ≤ f_offset < 1.815MHz	$-18.5dBm - 10 \cdot \left(\frac{f _ offset}{MHz} - 1,015\right) dB$	30 kHz
1.815MHz ≤ f_offset < 2.3MHz	-26.5 dBm	30 kHz
$2.3MHz \leq f_offset < f_offset_{max}$	-11.5 dBm	1 MHz

Table 6.19A: Test requirements for spectrum emission mask values, BS maximum output power 26 \leq P < 34 dBm for 1,28 Mcps TDD

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
0.815MHz ≤ f_offset < 1.015MHz	P-52.5 dB	30 kHz
1.015MHz ≤f_offset < 1.815MHz	$P - 52.5dB - 10 \cdot \left(\frac{f - offset}{MHz} - 1,015\right) dB$	30 kHz
1.815MHz ≤ f_offset < 2.3MHz	P-60.5 dB	30 kHz
$2.3MHz \leq f_offset < f_offset_max$	P – 45.5 dB	1 MHz

Table 6.21A: Test requirements for spectrum emission mask values, BS maximum output power P <</th>26 dBm for 1,28 Mcps TDD

Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
0.815MHz ≤ f_offset < 1.015MHz	-26.5 dBm	30 kHz
1.015MHz ≤ f_offset < 1.815MHz	$-26.5dBm - 10 \cdot \left(\frac{f _ offset}{MHz} - 1,015\right) dB$	30 kHz
1.815MHz ≤ f_offset < 2.3MHz	-34.5 dBm	30 kHz
$2.3MHz \leq f_offset < f_offset_max$	-19.5 dBm	1 MHz

6.6.2.1.5.3 1,28 Mcps TDD option – 16QAM capable BS

The spectrum emissions measured according to subclause 6.6.2.1.4.2.3 shall be within the mask defined in the table 6.18A to 6.21A in section 6.6.2.1.5.2.

6.6.2.2 Adjacent Channel Leakage power Ratio (ACLR)

6.6.2.2.1 Definition and applicability

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the average power centered on the assigned channel frequency to the average power centered on an adjacent channel frequency. In both cases, the power is measured with a filter that has a Root Raised Cosine (RRC) filter response with roll-off $\alpha = 0,22$ and a bandwidth equal to the chip rate. The requirements shall apply for all configurations of BS (single carrier or multi-carrier), and for all operating modes foreseen by the manufacturer's specification.

The requirements in this subclause shall apply to base stations intended for general-purpose applications.

- 6.6.2.2.2 Minimum Requirements
- 6.6.2.2.2.1 Minimum requirement
- 6.6.2.2.2.1.1 3,84 Mcps TDD option

The ACLR of a single carrier BS or a multi-carrier BS with contiguous carrier frequencies shall be equal to or greater than the limits given in table 6.22.

Table 6.22: BS ACLR limits

BS adjacent channel offset below the first or above the last carrier frequency used	ACLR limit
5 MHz	45 dB
10 MHz	55 dB

If a BS provides multiple non-contiguous single carriers or multiple non-contiguous groups of contiguous single carriers, the above requirements shall be applied individually to the single carriers or group of single carriers.

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.2.2.1.1.

6.6.2.2.2.1.2 1,28 Mcps TDD option

The ACLR of a single carrier BS or a multi-carrier BS with contiguous carrier frequencies shall be equal to or greater than the limits given in Table 6.22A.

Table 6.22A: BS ACLR limits for 1,28 Mcps TDD

BS adjacent channel offset below the first or above the last carrier frequency used	ACLR limit
1.6 MHz	40 dB
3.2 MHz	45 dB

If a BS provides multiple non-contiguous single carriers or multiple non-contiguous groups of contiguous single carriers, the above requirements shall be applied individually to the single carriers or group of single carriers.

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.2.2.1.2

6.6.2.2.2.2 Requirement in case of operation in proximity to TDD BS or FDD BS operating on an adjacent frequency

6.6.2.2.2.2.1 3,84 Mcps TDD option

In case the equipment is operated in proximity to another TDD BS or FDD BS on an adjacent frequency, the ACLR of a single carrier BS or a multi-carrier BS with contiguous carrier frequencies shall be equal to or greater than the value specified in table 6.23.

Table 6.23: BS ACLR limits in	case of operation in proximity
-------------------------------	--------------------------------

BS adjacent channel offset below the first or above the last carrier frequency used	ACLR limit
5 MHz	70 dB
10 MHz	70 dB

The requirement is based on the assumption that the coupling loss between the base stations is at least 84dB.

If a BS provides multiple non-contiguous single carriers or multiple non-contiguous groups of contiguous single carriers, the above requirements shall be applied to those adjacent channels of the single carriers or group of single channels which are used by the TDD BS or FDD BS in proximity.

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.2.2.2.1.

NOTE: The necessary dynamic range to very the conformance requirements specified in table 6.23 is at the limits of the capability of state-of-art measuring equipment.

6.6.2.2.2.2.2 1,28 Mcps TDD option

In case the equipment is operated in proximity to another TDD BS or FDD BS and both BSs operating on an adjacent frequency band, the requirement is specified in terms of power level of the transmitting BS. This requirement is valid for co-existence with non-frame and non-switching point synchronised systems operating on the closest used carrier. The interference power level shall not exceed the limit in Table 6.23A.

Table 6.23A:	BS ACLR in case o	f operation ir	n proximity for	1,28 Mcps TDD
--------------	-------------------	----------------	-----------------	---------------

Center Frequency for Measurement	Maximum Level of the interference power (in case of multiple antennas the interference powers shall be summed at all antenna connectors)	Measurement Bandwidth
Closest used carrier of the victim receiver: Either FDD carrier Or 3,84 Mcps TDD carrier Or 1,28 Mcps TDD carrier	-36 dBm	chip rate of the victim receiver: In case of FDD: 3,84 MHz In case of 3,84 Mcps TDD: 3,84 MHz In case of 1,28 Mcps TDD: 1,28 MHz

The closest used carrier with respect to the regarded carrier of one system is defined by

a minimum difference in centre frequency between the regarded carrier and the carriers used in the other system and the chip rate of the other system.

If the actual allowed interference level $P_{int, allowed, actual}$ at the victim receiver is higher than -106dBm, this requirement may be relaxed by the amount $P_{int, allowed, actual} - (-106dBm)$.

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.2.2.2.2.

6.6.2.2.2.3 Requirement in case of co-sitting with TDD BS or FDD BS operating on an adjacent frequency

6.6.2.2.2.3.1 3,84 Mcps TDD option

In case the equipment is co-sited to another TDD BS or FDD BS operating on an adjacent frequency, the ACLR is specified in terms of the absolute average power level of the BS measured in the adjacent channel. The maximum power level of a single carrier BS or a multi-carrier BS with contiguous carrier frequencies shall not exceed the limit in table 6.24.

BS adjacent channel offset below the first or above the last carrier frequency used	Maximum Level	Measurement Bandwidth
5 MHz	-80 dBm	3.84 MHz
10 MHz	-80 dBm	3.84 MHz

Table 6.24: BS ACLR limits in case of co-siting

If a BS provides multiple non-contiguous single carriers or multiple non-contiguous groups of contiguous single carriers, the above requirements shall be applied to those adjacent channels of the single carriers or group of single channels which are used by the co-sited TDD BS or FDD BS.

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.2.2.3.1.

NOTE: The necessary dynamic range of the measuring equipment to verify the conformance requirements specified in table 6.24 is dependent on the BS output power. If the BS output power is larger than -10 dBm, the necessary dynamic range is beyond the capability of state-of-the-art measuring equipment; direct verification of the conformance requirements is not feasible. Alternatively, indirect measurement methods need to be defined.

6.6.2.2.2.3.2 1,28 Mcps TDD option

In case the equipment is co-sited to another TDD BS or FDD BS and both BSs operating on an adjacent frequency band, the requirement is specified in terms of the average power level of the transmitting BS. This requirement is valid for co-existence with a non-frame and non-switching point synchronised systems operating on closest used carrier. The interference power level shall not exceed the limit in Table 6.24A.

Table 6.24A : BS ACLR in case of co-siting for 1,28 Mcps TDD

Center Frequency for Measurement	Maximum Level of the interference power (in case of multiple antennas the interference powers shall be summed at all antenna connectors)	Measurement Bandwidth
Closest used carrier of the victim receiver: Either FDD carrier Or 3,84 Mcps TDD carrier Or 1,28 Mcps TDD carrier	-76 dBm	chip rate of the victim receiver: In case of FDD: 3,84 MHz In case of 3,84 Mcps TDD: 3,84 MHz In case of 1,28 Mcps TDD: 1,28 MHz

The closest used carrier with respect to the regarded carrier of one system is defined by:

a minimum difference in centre frequency between the regarded carrier and the carriers used in the other system and the chip rate of the other system.

If the actual MCL_{actual} is higher than 30dB, this requirement may be relaxed by the amount MCL_{actual} - 30dB.

If the actual allowed interference level $P_{int, allowed, actual}$ at the victim receiver is higher than -106dBm, this requirement may be relaxed by the amount $P_{int, allowed, actual} - (-106dBm)$.

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.2.2.3.2.

6.6.2.2.3 Test purpose

The test purpose is to verify the ability of the BS to limit the interference produced by the transmitted signal to other UTRA receivers operating at the first or second adjacent RF channel.

6.6.2.2.4 Method of test

6.6.2.2.4.1 Initial conditions

For 1,28 Mcps BS supporting 16QAM, the ALCR requirements shall be tested with the general test set up specified in section 6.6.2.2.4.1.2 and also with the special test set up for 16QAM capable BS specified in section 6.6.2.2.4.1.3.

6.6.2.2.4.1.0 General test conditions

Test environment: normal; see subclause 5.9.1.

RF channels to be tested: B, M and T with multiple carriers if supported; see subclause 5.3.

6.6.2.2.4.1.1 3,84 Mcps TDD option

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.25.

Table 6.25: Parameters of the BS transmitted signal for ACLR testing

Parameter	Value/description
TDD Duty Cycle	TS i; i = 0, 1, 2,, 14:
	transmit, if i is even;
	receive, if i is odd.
BS output power setting	PRAT
Number of DPCH in each active TS	9
Power of each DPCH	1/9 of Base Station output power
Data content of DPCH	Real life
	(sufficient irregular)

6.6.2.2.4.1.2 1,28 Mcps TDD option – General test set up

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.25A.

Table 6.25A: Parameters of the BS transmitted signal for ACLR testing for 1,28 Mcps TDD

Parameter	Value/description
TDD Duty Cycle	TS i; i = 0, 1, 2, 3, 4, 5, 6:
	transmit, if i is 0,4,5,6;
	receive, if i is 1,2,3.
BS output power setting	PRAT
Number of DPCH in each active TS	8
Power of each DPCH	1/8 of Base Station output power
Data content of DPCH	real life
	(sufficient irregular)

6.6.2.2.4.1.3 1,28 Mcps TDD option – Special test set up for 16QAM capable BS

This test set up only applies for 16QAM capable BS.

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.25B.

Table 6.25B: Parameters of the BS transmitted signal for ACLR testing for 1,28 Mcps TDD- 16QAM capable BS

Parameter	Value/description
TDD Duty Cycle	<u>TS i; i = 0, 1, 2, 3, 4, 5, 6:</u>
	transmit, if i is 0,4,5,6;
	receive, if i is 1,2,3.
BS output power setting	PRAT
HS-PDSCH modulation	<u>16QAM</u>
Number of HS-PDSCH in each active	<u>8</u>
<u>TS</u>	
Power of each HS-PDSCH	1/8 of Base Station output power
Data content of HS-PDSCH	real life
	(sufficient irregular)
Spreading factor	<u>16</u>

6.6.2.2.4.2 Procedure

6.6.2.2.4.2.1 3,84 Mcps TDD option

- 1) Measure the average power centered on the lowest assigned channel frequency over the 2464 active chips of the even time slots TS i (this excludes the guard period), and with a measurement filter that has a RRC filter response with a roll off $\alpha = 0.22$ and a bandwidth equal to the chip rate.
- 2) Average over TBD time slots.
- 3) Measure the average power at the first lower adjacent RF channel (center frequency 5 MHz below the lowest assigned channel frequency of the transmitted signal) over the useful part of the burst within the even time slots TS i (this excludes the guard period), and with a measurement filter that has a RRC filter response with a roll off $\alpha = 0,22$ and a bandwidth equal to the chip rate. The power is determined by calculating the RMS value of the signal samples at the measurement filter output taken with adherence to the sampling theorem.
- 4) Average over TBD time slots.
- 5) Calculate the ACLR by the ratio

ACLR = average acc. to (2) / average interference power acc. to (4).

- 6) Repeat steps (3), (4) and (5) for the second lower adjacent RF channel (center frequency 10 MHz below the lowest assigned channel frequency of the transmitted signal).
- 7) In case of a multi-carrier Bs, repeat steps (1) and (2) for the highest assigned channel frequency. Otherwise, use the result obtained in step (2) above for further calculation in step (10).
- 8) Measure the average power at the first higher adjacent RF channel (center frequency 5 MHz above the highest assigned channel frequency of the transmitted signal) over the useful part of the burst within the even time slots TS i (this excludes the guard period), and with a measurement filter that has a RRC filter response with a roll off $\alpha = 0.22$ and a bandwidth equal to the chip rate. The power is determined by calculating the RMS value of the signal samples at the measurement filter output taken with adherence to the sampling theorem.
- 9) Average over TBD time slots.
- 10)Calculate the ACLR by the ratio

ACLR = average power acc. to (7) / average interference power acc. to (9).

- 11)Repeat steps (8) to (10) for the second upper adjacent RF channel (center frequency 10 MHz above the highest assigned channel frequency of the transmitted signal).
- 6.6.2.2.4.2.2 1,28 Mcps TDD option
 - 1) Measure the average power centered on the lowest assigned channel frequency over the 848 active chips of the transmit time slots TS i (this excludes the guard period), and with a measurement filter that has a RRC filter response with a roll off $\alpha = 0.22$ and a bandwidth equal to the chip rate.

- 2) Average over TBD time slots.
- 3) Measure the average power at the first lower adjacent RF channel (center frequency 1,6 MHz below the assigned channel frequency of the transmitted signal) over the useful part of the burst within the transmit time slots TS i (this excludes the guard period), and with a measurement filter that has a RRC filter response with a roll off $\alpha = 0,22$ and a bandwidth equal to the chip rate. The power is determined by calculating the RMS value of the signal samples at the measurement filter output taken with adherence to the sampling theorem.
- 4) Average over TBD time slots.
- 5) Calculate the ACLR by the ratio:

ACLR = average power acc. to (2) / average interference power acc. to (4).

- 6) Repeat steps (3), (4) and (5) for the second lower adjacent RF channel (center frequency 3,2 MHz below the lowest assigned channel frequency of the transmitted signal) and also for the first and second upper adjacent RF channel (center frequency 1,6 MHz and 3,2 MHz above the assigned channel frequency of the transmitted signal, respectively).
- 7) In case of a multi-carrier BS, repeat steps (1) and 2 for the highest assigned channel frequency. Otherwise, use the result obtained in step (2) above for further calculation in step (10).
- 8) Measure the average power at the first higher adjacent RF channel (center frequency 1,6 MHz above the highest assigned channel frequency of the transmitted signal) over the useful part of the burst within the transmit time slots TS i (this excludes the guard period), and with a measurement filter that has a RRC filter response with a roll off $\alpha = 0,22$ and a bandwidth equal to the chip rate. The power is determined by calculating the RMS value of the signal samples at the measurement filter output taken with adherence to the sampling theorem.
- 9) Average over TBD time slots.

10)Calculate the ACLR by the ratio

ACLR = average power acc. to (7) / average interference power acc. to (9).

11)Repeat steps (8) to (10) for the second upper adjacent RF channel (center frequency 3,2 MHz above the highest assigned channel frequency of the transmitted signal).

6.6.2.2.4.2.3 1,28 Mcps TDD option – 16QAM capable BS

The same procedure specified in 6.6.2.2.4.2.2 applies to 1,28 Mcps TDD option BS supporting 16QAM.

6.6.2.2.5 Test Requirements

NOTE: If the Test Requirements below differ from the Minimum Requirements, then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in subclause 5.11 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex D.

6.6.2.2.5.1 3,84 Mcps TDD option

The ACLR calculated in steps (5) and (10) of subclause 6.6.2.2.4.2.1 shall be equal or greater than the limits given in table 6.26 or table 6.272, respectively. In case the equipment is co-sited to another TDD BS or FDD BS operating on an adjacent frequency, the interference power at the first and second adjacent channel measured according to steps (4) and (9) of subclause 6.6.2.2.4.2.1 shall not exceed the maximum level specified in table 6.28

BS adjacent channel offset below the first or above the last carrier frequency used	ACLR limit
5 MHz	44,2 dB
10 MHz	54,2 dB

Table 6.26: BS ACLR Test Requirements

BS adjacent channel offset below the first or above the last carrier frequency used	ACLR limit
5 MHz	66 dB
10 MHz	66 dB

Table 6.28: BS ACLR Test Requirements in case of co-sitting

BS adjacent channel offset below the first or above the last carrier frequency used	Maximum Level	Measurement Bandwidth
5 MHz	-[80 dBm - TT]	3.84 MHz
10 MHz	-[80 dBm - TT]	3.84 MHz

6.6.2.2.5.2 1,28 Mcps TDD option

The ACLR calculated in steps (5) and (10) of subclause 6.6.2.2.4.2.2 shall be equal or greater than the limits given in table 6.26A. In case the equipment is in proximity or co-sited to another TDD BS or FDD BS operating on an adjacent frequency, the interference power at the adjacent channel measured according to steps (3) and (4) of subclause 6.6.2.2.4.2.2 shall not exceed the maximum level specified in table 6.27A or 6.28A respectively.

Table 6.26A: BS ACLR Test Requirements (1,28 Mcps option)

BS adjacent channel offset below the first or above the last carrier frequency used	ACLR limit
1.6 MHz	39.2 dB
3.2 MHz	44.2 dB

Table 6.27A: BS ACLR Test Requirements in case of operation in proximity (1,28 Mcps option)

Center Frequency for Measurement	Maximum Level (sum of emitted interference power of all node B antennas at the antenna connector)	Measurement Bandwidth
Closest used frequency of victim receiver	[-36 dBm-TT]	chip rate of victim receiver

Table 6.28A: BS ACLR Test Requirements in case of co-siting (1,28 Mcps option)

Center Frequency for Measurement	Maximum Level (sum of emitted interference power of all node B antennas at the antenna connector)	Measurement Bandwidth
Closest used frequency of victim receiver	[-76 dBm-TT]	Chip rate of victim receiver

6.6.2.2.5.3 1,28 Mcps TDD option- 16QAM capable BS

The same test requirements specified in section 6.6.2.2.5.2 applies to 1,28 Mcps TDD option BS supporting 16QAM.

6.6.3 Spurious emissions

6.6.3.1 Definition and applicability

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions. This is measured at the base station RF output port.

The requirements shall apply whatever the type of transmitter considered (single carrier or multiple carrier). It applies for all transmission modes foreseen by the manufacturer's specification.

For 3.84 Mcps TDD option, either requirement applies at frequencies within the specified frequency ranges which are more than 12,5 MHz under the first carrier frequency used or more than 12,5 MHz above the last carrier frequency used.

For 1,28 Mcps TDD option, either requirement applies at frequencies within the specified frequency ranges which are more than 4 MHz under the first carrier frequency used or more than 4 MHz above the last carrier frequency used.

Unless otherwise stated, all requirements are measured as mean power.

The requirements in this subclause shall apply to base stations intended for general-purpose applications.

6.6.3.2 Minimum Requirements

6.6.3.2.1 Mandatory requirements

The requirements of either subclause 6.6.3.2.1.1 or subclause 6.6.3.2.1.2 shall apply.

6.6.3.2.1.1 Spurious emissions (Category A)

The following requirements shall be met in cases where Category A limits for spurious emissions, as defined in ITU-R Recommendation SM.329-8 [6], are applied.

6.6.3.2.1.1.1 3,84 Mcps TDD option

The power of any spurious emission shall not exceed the maximum level given in Table 6.29.

Table 6.29: BS Mandatory spurious emissions limits, Category A

Band	Maximum level	Measurement bandwidth	Note
9 kHz – 150 kHz		1 kHz	Bandwidth as in ITU-R SM.329-8, s4.1
150 kHz – 30 MHz		10 kHz	Bandwidth as in ITU-R SM.329-8, s4.1
30 MHz – 1 GHz	-13 dBm	100 kHz	Bandwidth as in ITU-R SM.329-8, s4.1
1 GHz – 12,75 GHz		1 MHz	Upper frequency as in ITU-R SM.329-8, s2.5
			table 1

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.3.1.1.1.1.

6.6.3.2.1.1.2 1,28 Mcps TDD option

The power of any spurious emission shall not exceed the maximum level given in Table 6.29A.

Table 6.29A: BS Mandatory spurious emissions limits, Category A

Band	Maximum level	Measurement bandwidth	Note
9 kHz – 150 kHz		1 kHz	Bandwidth as in ITU-R SM.329-8, s4.1
150 kHz – 30 MHz		10 kHz	Bandwidth as in ITU-R SM.329-8, s4.1
30 MHz – 1 GHz	-13 dBm	100 kHz	Bandwidth as in ITU-R SM.329-8, s4.1
1 GHz – 12,75 GHz		1 MHz	Upper frequency as in ITU-R SM.329-8, s2.5
			table 1

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.3.1.1.1.2.

6.6.3.2.1.2 Spurious emissions (Category B)

The following requirements shall be met in cases where Category B limits for spurious emissions, as defined in ITU-R Recommendation SM.329-8 [6], are applied.

6.6.3.2.1.2.1 3,84 Mcps TDD option

The power of any spurious emission shall not exceed the maximum levels given in Table 6.30.

Band	Maximum level	Measurement bandwidth	Note
9 kHz – 150 kHz	-36 dBm	1 kHz	Bandwidth as in ITU-R SM.329-8, s4.1
150 kHz – 30 MHz	-36 dBm	10 kHz	Bandwidth as in ITU-R SM.329-8, s4.1
30 MHz – 1 GHz	-36 dBm	100 kHz	Bandwidth as in ITU-R SM.329-8, s4.1
1 GHz – Fc1 - 60 MHz or Fl - 10 MHz <i>whichever is the higher</i>	-30 dBm	1 MHz	Bandwidth as in ITU-R SM.329-8, s4.1
Fc1 - 60 MHz or FI - 10 MHz whichever is the higher – Fc1 - 50 MHz or FI -10 MHz whichever is the higher	-25 dBm	1 MHz	Specification in accordance with ITU-R SM.329-8, s4.3 and Annex 7
Fc1 - 50 MHz or Fl -10 MHz whichever is the higher – Fc2 + 50 MHz or Fu +10 MHz whichever is the lower	-15 dBm	1 MHz	Specification in accordance with ITU-R SM.329-8, s4.3 and Annex 7
Fc2 + 50 MHz or Fu + 10 MHz whichever is the lower – Fc2 + 60 MHz or Fu + 10 MHz whichever is the lower	-25 dBm	1 MHz	Specification in accordance with ITU-R SM.329-8, s4.3 and Annex 7
Fc2 + 60 MHz or Fu + 10 MHz whichever is the lower - 12,75 GHz	-30 dBm	1 MHz	Bandwidth as in ITU-R SM.329-8, s4.1. Upper frequency as in ITU-R SM.329-8, s2.5 table 1

Table 6.30: BS Mandatory spurious emissions limits, Category B

Fc1: Center frequency of emission of the first carrier transmitted by the BS

Fc2: Center frequency of emission of the last carrier transmitted by the BS

 $\ensuremath{\mathsf{Fl}}\xspace$: Lower frequency of the band in which TDD operates

Fu : Upper frequency of the band in which TDD operates

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.3.1.2.1.1.

6.6.3.2.1.2.2 1,28 Mcps TDD option

The power of any spurious emission shall not exceed the maximum levels given in Table 6.30A.

Band	Maximum Level	Measurement Bandwidth	Note
9kHz – 150kHz	-36 dBm	1 kHz	Bandwidth as in ITU SM.329-8, s4.1
150kHz – 30MHz	- 36 dBm	10 kHz	Bandwidth as in ITU SM.329-8, s4.1
30MHz – 1GHz	-36 dBm	100 kHz	Bandwidth as in ITU SM.329-8, s4.1
1GHz ↔ Fc1-19,2 MHz or FI –3,2 MHz whichever is the higher	-30 dBm	1 MHz	Bandwidth as in ITU SM.329-8, s4.1
Fc1 – 19,2 MHz or FI - 3,2MHz whichever is the higher ↔ Fc1 - 16 MHz or FI –3,2 MHz whichever is the higher	-25 dBm	1 MHz	Specification in accordance with ITU-R SM.329-8, s4.1
Fc1 - 16 MHz or FI –3,2 MHz whichever is the higher ↔ Fc2 + 16 MHz or Fu +3,2 MHz whichever is the lower	-15 dBm	1 MHz	Specification in accordance with ITU-R SM.329-8, s4.1
Fc2 + 16 MHz or Fu + 3,2MHz whichever is the lower \leftrightarrow Fc2 +19,2 MHz or Fu + 3,2MHz whichever is the lower	-25 dBm	1 MHz	Specification in accordance with ITU-R SM.329-8, s4.1
Fc2 + 19,2 MHz or Fu +3,2 MHz whichever is the lower ↔ 12,75 GHz	-30 dBm	1 MHz	Bandwidth as in ITU-R SM.329-8, s4.1. Upper frequency as in ITU-R SM.329-8, s2.5 table 1

Table 6.30A: BS Mandatory spurious emissions limits, Category B for 1,28 Mcps TDD

Fc1: Center frequency of emission of the first carrier transmitted by the BS

Fc2: Center frequency of emission of the last carrier transmitted by the BS

Fl : Lower frequency of the band in which TDD operates

Fu : Upper frequency of the band in which TDD operates

The reference for this requirement is TS 25.105 subclause 6.6.3.1.2.1.2.

6.6.3.2.2 Co-existence with GSM

6.6.3.2.2.1 Operation in the same geographic area

This requirement may be applied for the protection of GSM 900 MS in geographic areas in which both GSM 900 and UTRA are deployed.

The power of any spurious emission shall not exceed the maximum level given in Table 6.31.

Table 6.31: BS Spurious emissions limits for BS in geographic coverage area of GSM 900 MS receiver

Band	Maximum level	Measurement bandwidth	Note
921 MHz – 960 MHz	-57 dBm	100 kHz	

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.3.2.1.1.

6.6.3.2.2.2 Co-located base stations

This requirement may be applied for the protection of GSM 900 BTS receivers when GSM 900 BTS and UTRA BS are co-located.

The power of any spurious emission shall not exceed the maximum level given in table 6.32.

Table 6.32: BS Spurious emissions limits for protection of the GSM 900 BTS receiver

Band	Maximum level	Measurement bandwidth	Note
876 MHz – 915 MHz	–98 dBm	100 kHz	

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.3.2.2.1.

6.6.3.2.3 Co-existence with DCS 1800

6.6.3.2.3.1 Operation in the same geographic area

This requirement may be applied for the protection of DCS 1800 MS in geographic areas in which both DCS 1800 and UTRA are deployed.

The power of any spurious emission shall not exceed the maximum level given in table 6.33.

Table 6.33: BS Spurious emissions limits for BS in geographic coverage area of DCS 1800 MS receiver

Band	Maximum level	Measurement bandwidth	Note
1805 MHz – 1880 MHz	-47 dBm	100 kHz	

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.3.3.1.1.

6.6.3.2.3.2 Co-located base stations

This requirement may be applied for the protection of DCS 1800 BTS receivers when DCS 1800 BTS and UTRA BS are co-located.

The power of any spurious emission shall not exceed the maximum level given in table 6.34.

Table 6.34: BS Spurious emissions limits for BS co-located with DCS 1800 BTS

Band	Maximum level	Measurement bandwidth	Note
1710 MHz – 1785 MHz	-98 dBm	100 kHz	

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.3.3.2.1.

6.6.3.2.4 Co-existence with UTRA FDD

6.6.3.2.4.1 Operation in the same geographic area

This requirement may be applied to geographic areas in which both UTRA TDD and UTRA FDD are deployed.

The power of any spurious emission shall not exceed the maximum level given in table 6.35.

Band	Maximum Level	Measurement Bandwidth	Note
1920 – 1980 MHz	-32 dBm	1 MHz	
2110 – 2170 MHz	-52 dBm	1 MHz	

Table 6.35: BS Spurious emissions limits for BS in geographic coverage area of UTRA FDD

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.3.4.1.1.

6.6.3.2.4.2 Co-located base stations

This requirement may be applied for the protection of UTRA FDD BS receivers when UTRA TDD BS and UTRA FDD BS are co-located.

The power of any spurious emission shall not exceed the maximum level given in table 6.36.

Table 6.36: BS Spurious emissions limits for BS co-located with UTRA FDD

Band	Maximum Level	Measurement Bandwidth	Note
1920 – 1980 MHz	-86 dBm	1 MHz	
2110 – 2170 MHz	-52 dBm	1 MHz	

The normative reference for this requirement is TS 25.105 [1] subclause 6.6.3.4.2.1.

6.6.3.3 Test purpose

6.6.3.3.1 3,84 Mcps TDD option

The test purpose is to verify the ability of the BS to limit the interference caused by unwanted transmitter effects to other systems operating at frequencies which are more than 12,5 MHz away from of the UTRA band used.

6.6.3.3.2 1,28 Mcps TDD option

The test purpose is to verify the ability of the BS to limit the interference caused by unwanted transmitter effects to other systems operating at frequencies which are more than 4 MHz away from of the UTRA band used.

6.6.3.4 Method of test

6.6.3.4.1 Initial conditions

For 1.28 Mcps BS supporting 16QAM, the spurious requirements shall be tested with the general test set up specified in section 6.6.3.4.1.2 and also with the special test set up for 16QAM capable BS specified in section 6.6.3.4.1.3.

6.6.3.4.1.0 General test conditions

Test environment: normal; see subclause 5.9.1.

RF channels to be tested: B, M and T with multiple carriers if supported; see subclause 5.3.

6.6.3.4.1.1 3,84 Mcps TDD option

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.37.

Table 6.37: Parameters of the BS transmitted signal for spurious emissions testing

Parameter	Value/description
TDD Duty Cycle	TS i; i = 0, 1, 2,, 14:
	transmit, if i is even;
	receive, if i is odd.
BS output power setting	PRAT
Number of DPCH in each active TS	9
Power of each DPCH	1/9 of Base Station output power
Data content of DPCH	real life
	(sufficient irregular)

6.6.3.4.1.2 1,28 Mcps TDD option <u>– General test set up</u>

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.37A.

Table 6.37A: Parameters of the BS transmitted signal for spurious emissions testing for 1,28 Mcps TDD

Parameter	Value/description
TDD Duty Cycle	TS i; i = 0, 1, 2, 3, 4, 5, 6:
	transmit, if i is 0,4,5,6;
	receive, if i is 1,2,3.
BS output power setting	PRAT
Number of DPCH in each active TS	8
Power of each DPCH	1/8 of Base Station output power
Data content of DPCH	real life
	(sufficient irregular)

6.6.3.4.1.3 1,28 Mcps TDD option – Special test set up for 16QAM capable BS

This test set up only applies for 16QAM capable BS.

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.37B.

Table 6.37B: Parameters of the BS transmitted signal for spurious emissions testing for 1,28 Mcps TDD – 16QAM capable BS

Parameter	Value/description
TDD Duty Cycle	<u>TS i; i = 0, 1, 2, 3, 4, 5, 6:</u>
	transmit, if i is 0,4,5,6;
	receive, if i is 1,2,3.
BS output power setting	<u>PRAT</u>
HS-PDSCH modulation	<u>16QAM</u>
Number of HS-PDSCH in each active	8
<u>TS</u>	
Power of each HS-PDSCH	1/8 of Base Station output power
Data content of HS-PDSCH	real life
	(sufficient irregular)
Spreading factor	<u>16</u>

6.6.3.4.2 Procedure

Measure the power of the spurious emissions by applying measurement filters with bandwidths as specified in the relevant tables of subclause 6.6.3.2. The characteristic of the filters shall be approximately Gaussian (typical spectrum analyzer filters). The center frequency of the filter shall be stepped in contiguous steps over the frequency bands as given in the tables. The step width shall be equal to the respective measurement bandwidth. The time duration of each step shall be sufficiently long to capture one active time slot.

6.6.3.5 Test Requirements

NOTE: If the Test Requirement below differs from the Minimum Requirement, then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in subclause 5.11 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex D.

The spurious emissions measured according to subclause 6.6.3.4.2 shall not exceed the limits specified in the relevant tables of 6.6.3.2.

For 1,28 Mcps TDD BS supporting 16QAM, the measured spurious emissions shall not exceed the limits specified for 1,28 Mcps TDD option in section 6.6.3.2.

6.7 Transmit intermodulation

6.7.1 Definition and applicability

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

The transmit intermodulation level is the power of the intermodulation products when a WCDMA modulated interference signal is injected into the antenna connector at a level of 30 dB lower than that of the subject signal.

The requirements are applicable for a single carrier.

6.7.1.1 3,84 Mcps TDD option

The carrier frequency of the interference signal shall be ± 5 MHz, ± 10 MHz and ± 15 MHz offset from the subject signal carrier frequency, but excluding interference carrier frequencies outside of the UTRA frequency bands specified in 4.2a, 4.2b or 4.2c, respectively.

The requirements in this subclause shall apply to base stations intended for general-purpose applications.

6.7.1.2 1,28 Mcps TDD option

The carrier frequency of the interference signal shall be $\pm 1,6$ MHz, $\pm 3,2$ MHz and $\pm 4,8$ MHz offset from the subject signal carrier frequency, but excluding interference carrier frequencies outside of the UTRA frequency bands specified in 4.2a, 4.2b or 4.2c, respectively.

The requirements in this subclause shall apply to base stations intended for general-purpose applications.

6.7.2 Minimum Requirements

The transmit intermodulation level shall not exceed the out of band or the spurious emission requirements of subclause 6.6.2 and 6.6.3, respectively.

The normative reference for this requirement is TS 25.105 [1] subclause 6.7.1.

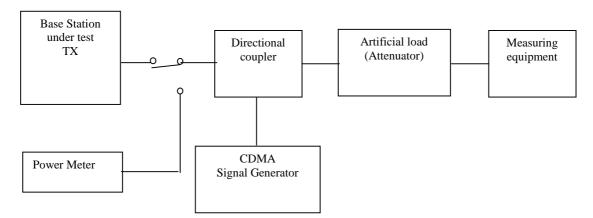
6.7.3 Test purpose

The test purpose is to verify the ability of the BS transmitter to restrict the generation of intermodulation products in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna to below specified levels.

6.7.4 Method of test

6.7.4.1 Initial conditions

For 1,28 Mcps BS supporting 16QAM, the transmit intermodulation requirements shall be tested with the general test set up specified in section 6.7.4.1.2 and also with the special test set up for 16QAM capable BS specified in section 6.7.4.1.3.


6.7.4.1.0 General test conditions

Test environment: normal; see subclause 5.9.1.

RF channels to be tested: B, M and T; see subclause 5.3.

6.7.4.1.1 3,84 Mcps TDD option

- (1) Connect the measuring equipment, the BS under test and the WCDMA signal generator as shown in figure 6.2.
- (2) Set the parameters of the BS transmitted signal according to table 6.38.
- (3) Configure the WCDMA signal generator to produce an interference signal with a mean power level according to subclause 6.7.5. The interference signal shall be like-modulated as the BS transmitted signal, and the active time slots of both signals shall be synchronized. The carrier frequency of the interference signal shall be ±5 MHz, ±10 MHz and ±15 MHz offset from the carrier frequency of the wanted signal, but excluding interference frequencies outside of the UTRA frequency bands specified in 4.2a, 4.2b or 4.2c, respectively.

Parameter	Value/description
TDD Duty Cycle	TS i; i = 0, 1, 2,, 14:
	transmit, if i is odd;
	receive, if i is even.
BS output power setting	PRAT
Number of DPCH in each active TS	9
Power of each DPCH	1/9 of Base Station output power
Data content of DPCH	real life
	(sufficient irregular)

6.7.4.1.2 1,28 Mcps TDD option – General test set up

(1) Connect the measuring equipment, the BS under test and the WCDMA signal generator as shown in figure 6.2A.

- (2) Set the parameters of the BS transmitted signal according to table 6.38A.
- (3) Configure the WCDMA signal generator to produce an interference signal with a mean power level according to subclause 6.7.5. The interference signal shall be like-modulated as the BS transmitted signal, and the active time slots of both signals shall be synchronized. The carrier frequency of the interference signal shall be ±1,6 MHz, ±3,2 MHz and ±4,8 MHz offset from the carrier frequency of the wanted signal, but excluding interference frequencies outside of the UTRA frequency bands specified in 4.2a, 4.2b or 4.2c, respectively.

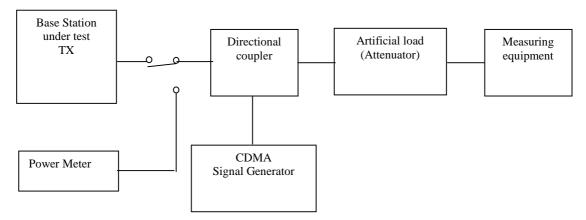
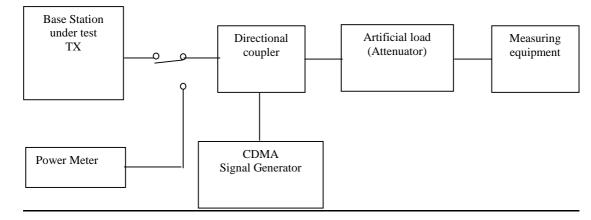


Figure 6.2A: Measuring setup for Base Station transmit intermodulation testing

Table 6.38A: Parameters of the BS transmitted signal for transmit intermodulation testing for 1,28 Mcps TDD

Parameter	Value/description
TDD Duty Cycle	TS i; I = 0, 1, 2, 3, 4, 5, 6:
	transmit, if i is 0,4,5,6;
	receive, if i is 1,2,3.
BS output power setting	PRAT
Number of DPCH in each active TS	8
Power of each DPCH	1/8 of Base Station output power
Data content of DPCH	real life
	(sufficient irregular)


6.7.4.1.3 1,28 Mcps TDD option – Special test set up for 16QAM capable BS

This test set up only applies for 16QAM capable BS.

(1) Connect the measuring equipment, the BS under test and the WCDMA signal generator as shown in figure 6.2B.

(2) Set the parameters of the BS transmitted signal according to table 6.38B.

(3) Configure the WCDMA signal generator to produce an interference signal with a mean power level according to subclause 6.7.5. The interference signal shall be like-modulated as the BS transmitted signal, and the active time slots of both signals shall be synchronized. The carrier frequency of the interference signal shall be ±1.6 MHz, ±3.2 MHz and ±4.8 MHz offset from the carrier frequency of the wanted signal, but excluding interference frequencies outside of the UTRA frequency bands specified in 4.2a, 4.2b or 4.2c, respectively.

Figure 6.2B: Measuring setup for Base Station transmit intermodulation testing

Table 6.38B: Parameters of the BS transmitted signal for transmit intermodulation testing for 1,28 Mcps TDD- 16QAM capable BS

Parameter	Value/description
TDD Duty Cycle	<u>TS i; i = 0, 1, 2, 3, 4, 5, 6:</u>
	transmit, if i is 0,4,5,6;
	receive, if i is 1,2,3.
BS output power setting	PRAT
HS-PDSCH modulation	<u>16QAM</u>
Number of HS-PDSCH in each active	<u>8</u>
TS	
Power of each HS-PDSCH	1/8 of Base Station output power
Data content of HS-PDSCH	real life
	(sufficient irregular)
Spreading factor	<u>16</u>

6.7.4.2 Procedure

Apply the test procedures for out of band and spurious emissions as described in 6.6.2 and 6.6.3, respectively, at the frequencies of all third and fifth order intermodulation products. The frequency band occupied by the interference signal are excluded from the measurements.

NOTE: The third order intermodulation products are at frequencies (F1 ± 2F2) and (2F1 ± F2), the fifth order intermodulation products are at frequencies (2F1 ± 3F2), (3F1 ± 2F2), (4F1 ± F2) and (F1 ± 4F2), where F1 represents the frequencies within the bandwidth of the wanted signal and F2 represents the frequencies within the bandwidth of the WCDMA modulated interference signal.

6.7.5 Test Requirements

NOTE: If the Test Requirement below differs from the Minimum Requirement, then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in subclause 5.11 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex D.

The mean power level of the WCDMA modulated interference signal shall be 30 dB below the mean power level of the wanted signal.

At the frequencies of all third and fifth order intermodulation products, the Test Requirements for out of band and spurious emissions as specified in subclauses 6.6.2.1.5 (Spectrum emission mask), 6.6.2.2.5 (ACLR) and 6.6.3.5 (Spurious emissions) shall be met.

6.8 Transmit Modulation

6.8.1 Modulation accuracy

6.8.1.1 Definition and applicability

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Both waveforms pass through a matched Root Raised Cosine filter with bandwidth corresponding to the considered chip rate and roll-off α =0,22. Both waveforms are then further modified by selecting the frequency, absolute phase, absolute amplitude and chip clock timing so as to minimise the error vector. The EVM result is defined as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. The measurement interval is one timeslot. The requirement is valid over the total power dynamic range as specified in 25.105 subclause 6.4.3. See Annex C of this specification for further details.

The requirements in this subclause shall apply to base stations intended for general-purpose applications.

NOTE: The theoretical modulated waveform shall be calculated on the basis that the transmit pulse shaping filter is a root-raised cosine (RRC) with roll-off $\alpha = 0,22$ in the frequency domain. The impulse response of the chip impulse filter $RC_0(t)$ is

$$RC_{0}(t) = \frac{\sin\left(\pi \frac{t}{T_{c}}(1-\alpha)\right) + 4\alpha \frac{t}{T_{c}}\cos\left(\pi \frac{t}{T_{c}}(1+\alpha)\right)}{\pi \frac{t}{T_{c}}\left(1-\left(4\alpha \frac{t}{T_{c}}\right)^{2}\right)}$$

Where the roll-off factor $\alpha = 0,22$ and T_c is the chip duration

6.8.1.2 Minimum Requirements

The error vector magnitude (EVM) shall not exceed 12,5 %. The requirement is valid over the total power dynamic range as specified in subclause 6.4.3 of TS 25.105.

The normative reference for this requirement is TS 25.105 [1] subclause 6.8.2.1.

6.8.1.3 Test purpose

The test purpose is to verify the ability of the BS transmitter to generate a sufficient precise waveform and thus to enable the UE receiver to achieve the specified error performance.

6.8.1.4 Method of test

6.8.1.4.1 Initial conditions

For 1,28 Mcps BS supporting 16QAM, the EVM requirements shall be tested with the general test set up specified in section 6.8.1.4.1.2 and also with the special test set up for 16QAM capable base station specified in section 6.8.1.4.1.2.

6.8.1.4.1.0 General test conditions

Test environment: normal; see subclause 5.9.1.

RF channels to be tested: B, M and T; see subclause 5.3.

6.8.1.4.1.1 3,84 Mcps TDD option

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.39.

Table 6.39: Parameters of the BS transmitted signal for modulation accuracy testing

Parameter	Value/description
TDD Duty Cycle	TS i; i = 0, 1, 2,, 14:
	transmit, if i is even;
	receive, if i is odd.
Number of DPCH in each active TS	1
BS power setting	PRAT
Data content of DPCH	real life
	(sufficient irregular)

6.8.1.4.1.2 1,28 Mcps TDD option – General test set up

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.39A.

Table 6.39A: Parameters of the BS transmitted signal for modulation accuracy testing for 1,28 Mcps TDD

Parameter	Value/description
TDD Duty Cycle	TS i; i = 0, 1, 2,, 6:
	Transmit, if i is 0,4,5,6;
	receive, if i is 1,2,3.
Number of DPCH in each active TS	1
Base station power	maximum, according to manufacturer's
	declaration
Data content of DPCH	real life
	(sufficient irregular)

6.8.1.4.1.3 1,28 Mcps TDD option – Special test set up for 16QAM capable BS

This test set up only applies for 16QAM capable BS.

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.39B.

Table 6.39B: Parameters of the BS transmitted signal for modulation accuracy testing for 1,28 Mcps TDD 16QAM capable BS

Parameter	Value/description
TDD Duty Cycle	$\frac{\text{TS i; i = 0, 1, 2, 3, 4, 5, 6:}}{\text{transmit, if i is 0, 4, 5, 6;}}$
	receive, if i is 1,2,3.
HS-PDSCH modulation	<u>16QAM</u>
Number of HS-PDSCH in each active	1
BS station power	Maximum, according to manufacturer's declaration
Data content of HS-PDSCH	Real life (sufficient irregular)
Spreading factor	16

6.8.1.4.2 Procedure

6.8.1.4.2.1 3,84 Mcps TDD option

- (1) Measure the error vector magnitude (EVM) by applying the global in-channel Tx test method described in Annex C.
- (2) Set the BS output power to PRAT 30 dB and repeat step (1) above.

6.8.1.4.2.2 1,28 Mcps TDD option – General procedure

- (1) Measure the error vector magnitude (EVM) by applying the global in-channel Tx test method described in <u>Annex C.</u>
- (2) Set the BS output power to PRAT 30 dB and repeat step (1) above.

6.8.1.4.2.3 1,28 Mcps TDD option – Special procedure for 16QAM capable BS

(1) Measure the error vector magnitude (EVM) by applying the global in-channel Tx test method described in Annex C.

6.8.1.5 Test Requirements

NOTE: If the Test Requirement below differs from the Minimum Requirement, then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in subclause 5.11 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex D.

The error vector magnitude (EVM) measured according to subclause 6.8.1.4.2 shall not exceed 12,5 %.

6.8.2 Peak code domain error

6.8.2.1 Definition and applicability

The code domain error is computed by projecting the error vector power onto the code domain at a specific spreading factor. The error power for each code is defined as the ratio to the mean power of the reference waveform expressed in dB. And the Peak Code Domain Error is defined as the maximum value for Code Domain Error. The measurement interval is one timeslot.

The requirements in this subclause shall apply to base stations intended for general-purpose applications.

6.8.2.2 Minimum Requirements

The peak code domain error shall not exceed -28 dB at spreading factor 16.

The normative reference for this requirement is TS 25.105 [1] subclause 6.8.3.1.

6.8.2.3 Test purpose

The test purpose is to verify the ability of the BS transmitter to limit crosstalk among codes and thus to enable the UE receiver to achieve the specified error performance.

6.8.2.4 Method of test

6.8.2.4.1 Initial conditions

For 1,28 Mcps BS supporting 16QAM, the PCDE requirement shall be tested with the general test set up specified in section 6.8.2.4.2 and also with the special test set up for 16QAM capable BS specified in section 6.8.2.4.3.

6.8.2.4.1.0 General test conditions

Test environment: normal; see subclause 5.9.1.

RF channels to be tested: B, M and T; see subclause 5.3.

6.8.2.4.1.1 3,84 Mcps TDD option

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.40.

Table 6.40: Parameters of the BS transmitted signal

Parameter	Value/description
TDD Duty Cycle	TS i; i = 0, 1, 2,, 14:
	transmit, if i is even;
	receive, if i is odd.
BS output power setting	PRAT
Number of DPCH in each active TS	9
Power of each DPCH	1/9 of Base Station output power
Data content of DPCH	real life
	(sufficient irregular)
Spreading factor	16

6.8.2.4.1.2 1,28 Mcps TDD option – General test set up

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.40A.

Table 6.40A: Parameters of the BS transmitted signal for 1,28 Mcps TDD

Parameter	Value/description
TDD Duty Cycle	TS i; i = 0, 1, 2,, 6:
	transmit, if i is 0,4,5,6;
	receive, if i is 1,2,3.
BS output power setting	PRAT
Number of DPCH in each active TS	8
Power of each DPCH	1/8 of Base Station output power
Data content of DPCH	real life
	(sufficient irregular)
Spreading factor	16

6.8.2.4.1.3 1,28 Mcps TDD option – Special test set up for 16QAM capable BS

This test set up only applies for 16QAM capable BS.

(1) Connect the measuring equipment to the antenna connector of the BS under test.

(2) Set the parameters of the BS transmitted signal according to table 6.40B.

Table 6.40B: Parameters of the BS transmitted signal for 1,28 Mcps TDD – 16QAM capable BS

Parameter	Value/description
TDD Duty Cycle	<u>TS i; i = 0, 1, 2,, 6:</u>
	transmit, if i is 0,4,5,6;
	receive, if i is 1,2,3.
HS-PDSCH modulation	<u>16QAM</u>
BS output power setting	PRAT
Number of HS-PDSCH in each active	8
TS	
Power of each HS-PDSCH	1/8 of Base Station output power
Data content of HS-DSCH	real life
	(sufficient irregular)
Spreading factor	16

6.8.2.4.2 Procedure

Measure the peak code domain error by applying the global in-channel Tx test method described in Annex C.

6.8.2.5 Test Requirements

NOTE: If the Test Requirement below differs from the Minimum Requirement, then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in subclause 5.11 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex D.

The peak code domain error measured according to subclause 6.8.2.4.2 shall not exceed -27 dB.

--- END OF CHANGES---